1
|
Gao H, Sinha R, Wemm S, Milivojevic V. Pregnenolone effects on parasympathetic response to stress and alcohol cue provocation in treatment-seeking individuals with alcohol use disorder. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:619-628. [PMID: 39779217 PMCID: PMC11928267 DOI: 10.1111/acer.15529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Chronic alcohol consumption in alcohol use disorder (AUD) is associated with autonomic nervous system dysregulation, increasing cardiovascular risk, and high alcohol cravings. Heart rate variability (HRV), a marker of autonomic nervous system responsiveness to stressors, may mediate alcohol's impact on the cardiovascular system. While pregnenolone (PREG) has been shown to normalize heart rate and blood pressure in individuals with AUD, its effects on sympathetic and parasympathetic components of HRV and related alcohol craving are not known. METHODS Fifty-five treatment-seeking individuals with AUD were randomized to placebo (n = 21) or daily pregnenolone at 300 mg (n = 18) or 500 mg (n = 16), in a double-blind, 8-week pilot clinical trial. In week 2, participants underwent three randomized, counterbalanced 5-minute personalized guided imagery provocations (stress, alcohol, and neutral/relaxing cues) on separate days. HRV indices were assessed during each session and analyzed using linear mixed-effects models (LMEs), including association between HRV indices and anxiety and alcohol craving. RESULTS A medication group × condition interaction was found for parasympathetic, high-frequency (HF) (p = 0.028) and sympathetic/parasympathetic, low-frequency/high-frequency (LF/HF) ratio (p = 0.017) indices of HRV. Placebo had higher HF during alcohol cue (p = 0.011), while 500 mg PREG demonstrated lower HF in response to stress (p = 0.050) and alcohol cues (p = 0.047). Placebo showed lower LF/HF ratio during stress (p = 0.006) and alcohol cue (p = 0.001), while the PREG groups showed no changes. Overall, the LF/HF response to alcohol cue was significantly lower in placebo compared to the 300 mg PREG (p = 0.012) and 500 mg PREG (p = 0.037) groups. Lastly, HF was found to predict alcohol craving regardless of PREG doses. CONCLUSIONS We found a normalization of autonomic response in PREG groups. These findings suggest that PREG holds therapeutic potential for enhancing autonomic function in AUD.
Collapse
Affiliation(s)
- Huaze Gao
- The Yale Stress Center, Yale University School of Medicine, Department of Psychiatry, New Haven, CT 06519
| | - Rajita Sinha
- The Yale Stress Center, Yale University School of Medicine, Department of Psychiatry, New Haven, CT 06519
| | | | - Verica Milivojevic
- Address correspondence to: Verica Milivojevic, PhD, 2 Church Street South, Suite 209, New Haven, CT 06519, , Fax: 203-737-1272
| |
Collapse
|
2
|
Gao H, Magin Z, Fogelman N, Sinha R, Angarita GA, Milivojevic V. Stability and Reliability of Repeated Plasma Pregnenolone Levels After Oral Pregnenolone Dosing in Individuals with Cocaine Use Disorder: Pilot Findings. Life (Basel) 2024; 14:1483. [PMID: 39598281 PMCID: PMC11595496 DOI: 10.3390/life14111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Substance use disorders (SUDs), including cocaine use disorder (CUD), have significant negative health risks and impose a substantial social burden, yet effective treatments are limited. Pregnenolone, a neuroactive steroid precursor, has been shown to reduce alcohol craving and normalize stress biology in individuals with CUD, but its clinical utility has been questioned due to limited data on bioavailability and the stability of blood levels in humans. Thus, this pilot study aimed to determine whether twice-daily oral pregnenolone (PREG) at 300 mg/day and 500 mg/day versus placebo in week two of PREG administration led to stable increased plasma pregnenolone levels in individuals with CUD. Seven treatment-seeking individuals with CUD, enrolled in an eight-week double-blind clinical trial, were randomized to receive placebo (n = 2) or pregnenolone at 300 mg/day (n = 3) or 500 mg/day (n = 2). For the first two weeks of the eight-week trial, participants were admitted to an inpatient Clinical Neuroscience Research Unit for repeated serial sampling of plasma pregnenolone concentrations over a 32.5 h period in week two of their inpatient stay while taking their assigned study drug under observation. Pregnenolone levels showed a significant main effect of the medication group (p = 0.039), with sustained higher levels in the 300 mg (p = 0.018) and 500 mg (p = 0.035) groups compared to placebo, and no significant difference between the two pregnenolone dosing groups. Moreover, correlation analyses showed that after observed study medication dosing on repeated sampling day 1, levels of pregnenolone were highly associated across time, with strong, positive correlations between time of dosing and 2 h (r = 0.80, p = 0.031), 4 h (r = 0.80, p = 0.031), 6 h (r = 0.86, p = 0.013), and 8 h post-dosing (r = 0.97, p < 0.001). These findings from this pilot study suggest that chronic twice-daily/"bis in die" (b.i.d.) oral administration of pregnenolone at both 300 mg/day and 500 mg/day achieved stable and reliable elevated plasma pregnenolone levels over 32.5 h in individuals with CUD, thereby supporting the good bioavailability of pregnenolone in these samples. These data indicate that twice-daily chronic dosing may overcome any potential concerns of poor bioavailability and rapid metabolism of pregnenolone in humans, and support further clinical investigations into pregnenolone's role in the treatment of cocaine use disorders.
Collapse
Affiliation(s)
- Huaze Gao
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; (H.G.); (Z.M.); (N.F.); (R.S.)
| | - Zachary Magin
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; (H.G.); (Z.M.); (N.F.); (R.S.)
| | - Nia Fogelman
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; (H.G.); (Z.M.); (N.F.); (R.S.)
| | - Rajita Sinha
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; (H.G.); (Z.M.); (N.F.); (R.S.)
| | - Gustavo A. Angarita
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Verica Milivojevic
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; (H.G.); (Z.M.); (N.F.); (R.S.)
| |
Collapse
|
3
|
Finn DA. Stress and gonadal steroid influences on alcohol drinking and withdrawal, with focus on animal models in females. Front Neuroendocrinol 2023; 71:101094. [PMID: 37558184 PMCID: PMC10840953 DOI: 10.1016/j.yfrne.2023.101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Sexually dimorphic effects of alcohol, following binge drinking, chronic intoxication, and withdrawal, are documented at the level of the transcriptome and in behavioral and physiological responses. The purpose of the current review is to update and to expand upon contributions of the endocrine system to alcohol drinking and withdrawal in females, with a focus on animal models. Steroids important in the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes, the reciprocal interactions between these axes, the effects of chronic alcohol use on steroid levels, and the genomic and rapid membrane-associated effects of steroids and neurosteroids in models of alcohol drinking and withdrawal are described. Importantly, comparison between males and females highlight some divergent effects of sex- and stress-steroids on alcohol drinking- and withdrawal-related behaviors, and the distinct differences in response emphasize the importance of considering sex in the development of novel pharmacotherapies for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States; Department of Research, VA Portland Health Care System, Portland, OR, United States.
| |
Collapse
|
4
|
Milivojevic V, Sullivan L, Tiber J, Fogelman N, Simpson C, Hermes G, Sinha R. Pregnenolone effects on provoked alcohol craving, anxiety, HPA axis, and autonomic arousal in individuals with alcohol use disorder. Psychopharmacology (Berl) 2023; 240:101-114. [PMID: 36445398 PMCID: PMC10630889 DOI: 10.1007/s00213-022-06278-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Chronic alcohol intake down-regulates GABAergic transmission and reduces levels of neuroactive steroids. These changes are associated with greater stress dysregulation and high alcohol craving which in turn increases relapse risk. OBJECTIVES This study tested whether potentiation of the neurosteroid system with pregnenolone (PREG), a precursor to neuroactive steroids and known to increase GABAergic transmission, will normalize chronic alcohol-related stress adaptations in the hypothalamic-pituitary-adrenal (HPA) axis and autonomic responses and reduce alcohol craving to significantly impact relapse risk. METHODS Forty-three treatment-seeking individuals with alcohol use disorder (AUD) were randomized to placebo (PBO) or supraphysiologic pregnenolone doses of 300 mg or 500 mg treatment using a parallel-between subject design as part of a larger 8-week pilot clinical trial. In week 2, they participated in a 3-day laboratory experiment where on each day they self-administered the assigned study drug in the laboratory and were then exposed to 5-min personalized guided imagery provocation of stress, alcohol, or neutral/relaxing cues, one condition per day on separate days, in a random, counterbalanced order. Repeated assessments of alcohol craving, anxiety, HPA axis, heart rate (HR), systolic (SBP), and diastolic blood pressure (DBP) and serum pregnenolone levels were made on each day. RESULTS Pregnenolone levels were significantly increased in the PREG groups versus PBO. PREG treatment decreased stress- and alcohol cue- induced craving and dose-specifically reduced stress-induced anxiety in the 300 mg/day group. Both PREG doses compared to PBO also normalized CORT/ACTH and increased stress-induced HR, stress- and cue-induced SBP, and in the 300 mg PREG group cue-induced DBP responses relative to neutral condition. CONCLUSIONS Findings indicate that pregnenolone decreases stress- and alcohol cue-provoked craving and normalizes HPA axis and autonomic arousal in individuals with AUD, thereby supporting the need for further assessment of pregnenolone in the treatment of AUD.
Collapse
Affiliation(s)
- Verica Milivojevic
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA.
| | - Liam Sullivan
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Jessica Tiber
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Nia Fogelman
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Christine Simpson
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gretchen Hermes
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Rajita Sinha
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| |
Collapse
|
5
|
Caruso MA, Robins MT, Fulenwider HD, Ryabinin AE. Temporal analysis of individual ethanol consumption in socially housed mice and the effects of oxytocin. Psychopharmacology (Berl) 2021; 238:899-911. [PMID: 33404737 PMCID: PMC7786142 DOI: 10.1007/s00213-020-05741-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023]
Abstract
RATIONALE The majority of preclinical studies assessing treatments for alcohol use disorder use singly housed animals. Because social factors affect ethanol intake, studies investigating such treatments in group-housed animals are needed. OBJECTIVES We investigated the effects of repeated oxytocin treatment on ethanol intake in socially housed male and female C57BL/6J mice. METHODS We used the novel "Herdsman" system implementing radiotracking technology to measure individual ethanol intake in group-housed animals. Mice were housed in same-sex groups of 4 per cage and exposed to 3 and 6% ethanol solutions. After baseline drinking was established, half of the animals in each cage received repeated intraperitoneal injections of 3 mg/kg oxytocin. RESULTS During baseline, females consumed more ethanol than males partly due to greater number of ethanol drinks taken by females. We also observed a gradual development of two peaks of ethanol consumption during the dark phase of the circadian cycle. The effects of oxytocin treatment were short-acting and varied across treatment days. Oxytocin significantly decreased ethanol intake on three out the four treatment days. On the fourth treatment day, oxytocin decreased ethanol intake and water intake. CONCLUSION The greater intake of ethanol in female mice is associated with the number of drinks taken. Oxytocin treatments not only cause an acute decrease in ethanol consumption, but can also change in efficacy over time. While the oxytocin system remains a promising therapeutic target for alcoholism, studies investigating longer periods of repeated oxytocin treatment and those using additional oxytocin receptor agonists are warranted.
Collapse
Affiliation(s)
- Maya A. Caruso
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239 USA
| | - Meridith T. Robins
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239 USA
| | - Hannah D. Fulenwider
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239 USA
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239 USA
| |
Collapse
|
6
|
Abstract
Sexually dimorphic effects of alcohol exposure throughout life have been documented in clinical and preclinical studies. In the past, rates of alcohol use disorder (AUD) were higher in men than in women, but over the past 10 years, the difference between sexes in prevalence of AUD and binge drinking has narrowed. Recent evidence adds to historical data regarding the influence of sex steroids on alcohol drinking and the interaction with stress-related steroids. This review considers the contribution of the endocrine system to alcohol drinking in females, with a focus on the hypothalamic pituitary gonadal axis and the hypothalamic pituitary adrenal axis and their reciprocal interactions. Emphasis is given to preclinical studies that examined genomic and rapid membrane effects of estrogen, progesterone, glucocorticoids, and GABAergic neurosteroids for their effects on alcohol drinking and models of relapse. Pertinent comparisons to data in males highlight divergent effects of sex and stress steroids on alcohol drinking and emphasize the importance of considering sex in the development of novel pharmacotherapeutic targets for the treatment of AUD. For instance, pharmacological strategies targeting the corticotropin releasing factor and glucocorticoid receptor systems may be differentially effective in males and females, whereas strategies to enhance GABAergic neurosteroids may represent a biomarker of treatment efficacy in both sexes.
Collapse
Affiliation(s)
- Deborah A Finn
- Oregon Health & Science University, Portland, Oregon.,Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
7
|
Bengtsson S, Bäckström T, Brinton R, Irwin R, Johansson M, Sjöstedt J, Wang M. GABA-A receptor modulating steroids in acute and chronic stress; relevance for cognition and dementia? Neurobiol Stress 2020; 12:100206. [PMID: 31921942 PMCID: PMC6948369 DOI: 10.1016/j.ynstr.2019.100206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
Cognitive dysfunction, dementia and Alzheimer's disease (AD) are increasing as the population worldwide ages. Therapeutics for these conditions is an unmet need. This review focuses on the role of the positive GABA-A receptor modulating steroid allopregnanolone (APα), it's role in underlying mechanisms for impaired cognition and of AD, and to determine options for therapy of AD. On one hand, APα given intermittently promotes neurogenesis, decreases AD-related pathology and improves cognition. On the other, continuous exposure of APα impairs cognition and deteriorates AD pathology. The disparity between these two outcomes led our groups to analyze the mechanisms underlying the difference. We conclude that the effects of APα depend on administration pattern and that chronic slightly increased APα exposure is harmful to cognitive function and worsens AD pathology whereas single administrations with longer intervals improve cognition and decrease AD pathology. These collaborative assessments provide insights for the therapeutic development of APα and APα antagonists for AD and provide a model for cross laboratory collaborations aimed at generating translatable data for human clinical trials.
Collapse
Affiliation(s)
- S.K.S. Bengtsson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - T. Bäckström
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - R. Brinton
- Center for Innovation in Brain Science, Professor Departments of Pharmacology and Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - R.W. Irwin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - M. Johansson
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - J. Sjöstedt
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| | - M.D. Wang
- Umeå Neurosteroid Research Center, Department of Clinical Sciences, University of Umeå, Sweden
| |
Collapse
|
8
|
Bartolomé I, Llidó A, Darbra S, Pallarès M. Early postnatal allopregnanolone levels alteration and adult behavioral disruption in rats: Implication for drug abuse. Neurobiol Stress 2019; 12:100208. [PMID: 32435661 PMCID: PMC7231993 DOI: 10.1016/j.ynstr.2019.100208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023] Open
Abstract
Several studies have highlighted the role that early postnatal levels of allopregnanolone play in the development of the CNS and adult behavior. Changes in allopregnanolone levels related to stress have been observed during early postnatal periods, and perinatal stress has been linked to neuropsychiatric disorders. The alteration of early postnatal allopregnanolone levels in the first weeks of life has been proven to affect adult behaviors, such as anxiety-related behaviors and the processing of sensory inputs. This review focuses on the first studies about the possible relationship between the early postnatal allopregnanolone levels and the vulnerability to abuse of drugs such as alcohol in adulthood, given that (1) changes in neonatal allopregnanolone levels affect novelty exploration and novelty seeking has been linked to vulnerability to drug abuse; (2) early postnatal administration of progesterone, the main allopregnanolone precursor, affects the maturation of dopaminergic meso-striatal systems, which have been related to novelty seeking and drug abuse; and (3) alcohol consumption increases plasma and brain allopregnanolone levels in animals and humans. Manipulating neonatal allopregnanolone by administering finasteride, an inhibitor of the 5α-reductase enzyme that participates in allopregnanolone synthesis, increases alcohol consumption and decreases the locomotor stimulant effects of low alcohol doses. At a molecular level, finasteride decreases dopamine and serotonin in ventral striatum and dopamine release in nucleus accumbens. Preliminary results suggest that serotonin 5HT3 receptors could also be affected. Although an in-depth study is necessary, evidence suggests that there is a relation between early postnatal allopregnanolone and vulnerability to drug use/abuse. Early postnatal AlloP levels alteration affects brain maturation and adult behavior. Early stress interacts to AlloP influencing neuropsychiatric disorders vulnerability. Fluctuations in neonatal AlloP levels play a role in alcohol abuse vulnerability. Neonatal finasteride induces novelty-seeking profile and increases ethanol intake.
Collapse
Affiliation(s)
- Iris Bartolomé
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Anna Llidó
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Sònia Darbra
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marc Pallarès
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Erwin LL, Nilges MR, DeLarge AF, Weed PF, Winsauer PJ. Effects of noncontingent ethanol, DHEA, and pregnanolone administration on ethanol self-administration in outbred female rats. Alcohol 2019; 75:67-77. [PMID: 30445249 DOI: 10.1016/j.alcohol.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 11/28/2022]
Abstract
Previous research from this laboratory demonstrated that male outbred rats (Long-Evans) can be trained to prefer ethanol (10% v/v) over water during 30-min home-cage sessions and that higher ethanol concentrations (18-32% v/v) can serve as a reinforcer under various operant schedules. Further, we have shown that two neurosteroids, dehydroepiandrosterone (DHEA) and pregnanolone, can readily decrease ethanol self-administration in males. The present study used the same procedures in an attempt to systematically replicate the previous findings in female outbred rats. Rats were first trained to self-administer ethanol in the home cage using a saccharin-fading procedure. Subsequently, a two-bottle preference test was initiated by substituting different ethanol concentrations after subjects reliably consumed 10% ethanol alone. Water was always available during this phase. Next, subjects were transitioned to a fixed-ratio 10 (FR-10) schedule of reinforcement with 0.1 mL of ethanol (18% v/v) serving as the reinforcer so that a concentration-effect curve could be established. Upon completion, subjects were transitioned to an FR-10 FR-20 multiple schedule of ethanol (32% v/v) and food reinforcement to determine whether noncontingent ethanol, DHEA, and pregnanolone could selectively decrease ethanol intake. Not surprisingly, female subjects preferentially consumed ethanol over water at concentrations of 3.2-18% (v/v) during the home-cage procedure, and significantly increased the mean dose of ethanol consumed and blood ethanol concentration (BEC). Similarly, increasing concentrations under an FR-10 schedule significantly increased the dose of ethanol presented and BEC compared to control (water). Finally, under the multiple schedule, noncontingent injections of ethanol (0.32-1.8 g/kg), DHEA (10-100 mg/kg), and pregnanolone (1.8-32 mg/kg) dose-dependently decreased food- and ethanol-maintained responding and the dose of ethanol presented. BEC was significantly decreased by the neurosteroids, but increased by ethanol due to its noncontingent administration. Together, these data replicate only a subset of the data previously obtained in males, suggesting there are sex differences particularly with respect to the effects of DHEA and pregnanolone.
Collapse
Affiliation(s)
- Laura L Erwin
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States.
| | - Mark R Nilges
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Alyssa F DeLarge
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Peter F Weed
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States; School of Nursing, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Peter J Winsauer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| |
Collapse
|
10
|
Logrip ML, Milivojevic V, Bertholomey ML, Torregrossa MM. Sexual dimorphism in the neural impact of stress and alcohol. Alcohol 2018; 72:49-59. [PMID: 30227988 PMCID: PMC6148386 DOI: 10.1016/j.alcohol.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
Alcohol use disorder is a widespread mental illness characterized by periods of abstinence followed by recidivism, and stress is the primary trigger of relapse. Despite the higher prevalence of alcohol use disorder in males, the relationship between stress and behavioral features of relapse, such as craving, is stronger in females. Given the greater susceptibility of females to stress-related psychiatric disorders, understanding sexual dimorphism in the relationship between stress and alcohol use is essential to identifying better treatments for both male and female alcoholics. This review addresses sex differences in the impact of stressors on alcohol drinking and seeking in rodents and humans. As these behavioral differences in alcohol use and relapse originate from sexual dimorphism in neuronal function, the impact of stressors and alcohol, and their interaction, on molecular adaptations and neural activity in males and females will also be discussed. Together, the data reviewed herein, arising from a symposium titled "Sex matters in stress-alcohol interactions" presented at the Fourth Volterra Conference on Stress and Alcohol, will highlight the importance of identifying sex differences to improve treatments for comorbid stress and alcohol use disorder in both sexes.
Collapse
Affiliation(s)
- Marian L Logrip
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States.
| | - Verica Milivojevic
- The Yale Stress Center, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Megan L Bertholomey
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Mary M Torregrossa
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA 15219, United States
| |
Collapse
|
11
|
Finn DA, Helms ML, Nipper MA, Cohen A, Jensen JP, Devaud LL. Sex differences in the synergistic effect of prior binge drinking and traumatic stress on subsequent ethanol intake and neurochemical responses in adult C57BL/6J mice. Alcohol 2018; 71:33-45. [PMID: 29966824 PMCID: PMC10957143 DOI: 10.1016/j.alcohol.2018.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/26/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022]
Abstract
Alcohol-use disorders (AUDs) are characterized by repeated episodes of binge drinking. Based on reports that exposure to predator odor stress (PS) consistently increases ethanol intake, the present studies examined whether prior binge drinking differentially altered responsivity to PS and subsequent ethanol intake in male and female mice, when compared to mice without prior binge exposure. Initial studies in naïve male and female C57BL/6J mice confirmed that 30-min exposure to dirty rat bedding significantly increased plasma corticosterone (CORT) levels and anxiety-related behavior, justifying the use of dirty rat bedding as PS in the subsequent drinking studies. Next, separate groups of male and female C57BL/6J mice received seven binge ethanol sessions (binge) or drank water (controls), followed by a 1-month period of abstinence. Then, 2-bottle choice ethanol intake (10% or 10E vs. water, 23 h/day) was measured in lickometer chambers for 4 weeks. After baseline intake stabilized, exposure to intermittent PS (2×/week × 2 weeks) significantly enhanced ethanol intake after the 2nd PS in male, but not female, binge mice vs. baseline and vs. the increase in controls. However, in a subgroup of females (with low baselines), PS produced a similar increase in 10E intake in control and binge mice vs. baseline. Analysis of lick behavior determined that the enhanced 10E intake in binge male mice and in the female low baseline subgroup was associated with a significant increase in 10E bout frequency and 10E licks throughout the circadian dark phase. Thus, PS significantly increased 10E intake and had a synergistic interaction with prior binge drinking in males, whereas PS produced a similar significant increase in 10E intake in the low baseline subgroup of binge and control females. Plasma CORT levels were increased significantly in both binge and control animals after PS. CORT levels at 24-h withdrawal from daily 10E intake were highest in the groups with elevated 10E licks (i.e., binge males and control females). At 24-h withdrawal, protein levels of GABAA receptor α1 subunit, corticotropin releasing factor receptor 1, and glucocorticoid receptor in prefrontal cortex (PFC) and hippocampus (HC) were differentially altered in the male and female mice vs. levels in separate groups of age-matched naïve mice, with more changes in HC than in PFC and in females than in males. Importantly, the sexually divergent changes in protein levels in PFC and HC add to evidence for sex differences in the neurochemical systems influenced by stress and binge drinking, and argue for sex-specific pharmacological strategies to treat AUD.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR, United States; VA Portland Health Care System, Portland, OR, United States.
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR, United States
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR, United States
| | - Allison Cohen
- VA Portland Health Care System, Portland, OR, United States
| | - Jeremiah P Jensen
- Department of Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR, United States
| | - Leslie L Devaud
- School of Pharmacy, Pacific University, Hillsboro, OR, United States
| |
Collapse
|
12
|
Effects of neonatal and adolescent neuroactive steroid manipulation on locomotor activity induced by ethanol in male wistar rats. Behav Brain Res 2017; 330:68-74. [DOI: 10.1016/j.bbr.2017.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/24/2017] [Accepted: 05/03/2017] [Indexed: 11/20/2022]
|
13
|
Yardley MM, Ray LA. Medications development for the treatment of alcohol use disorder: insights into the predictive value of animal and human laboratory models. Addict Biol 2017; 22:581-615. [PMID: 26833803 DOI: 10.1111/adb.12349] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/20/2022]
Abstract
Development of effective treatments for alcohol use disorder (AUD) represents an important public health goal. This review provides a summary of completed preclinical and clinical studies testing pharmacotherapies for the treatment of AUD. We discuss opportunities for improving the translation from preclinical findings to clinical trial outcomes, focusing on the validity and predictive value of animal and human laboratory models of AUD. Specifically, while preclinical studies of medications development have offered important insights into the neurobiology of the disorder and alcohol's molecular targets, limitations include the lack of standardized methods and streamlined processes whereby animal studies can readily inform human studies. Behavioral pharmacology studies provide a less expensive and valuable opportunity to assess the feasibility of a pharmacotherapy prior to initiating larger scale clinical trials by providing insights into the mechanism of the drug, which can then inform recruitment, analyses, and assessments. Summary tables are provided to illustrate the wide range of preclinical, human laboratory, and clinical studies of medications development for alcoholism. Taken together, this review highlights the challenges associated with animal paradigms, human laboratory studies, and clinical trials with the overarching goal of advancing treatment development and highlighting opportunities to bridge the gap between preclinical and clinical research.
Collapse
Affiliation(s)
- Megan M. Yardley
- Department of Psychology; University of California, Los Angeles; Los Angeles CA USA
| | - Lara A. Ray
- Department of Psychology; University of California, Los Angeles; Los Angeles CA USA
- Department of Psychiatry and Biobehavioral Sciences; University of California, Los Angeles; Los Angeles CA USA
| |
Collapse
|
14
|
Huynh N, Arabian N, Naito A, Louie S, Jakowec MW, Asatryan L, Davies DL. Preclinical development of moxidectin as a novel therapeutic for alcohol use disorder. Neuropharmacology 2016; 113:60-70. [PMID: 27641072 DOI: 10.1016/j.neuropharm.2016.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/14/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023]
Abstract
Current pharmacotherapies for alcohol used disorder (AUD) are few and relatively ineffective illustrating the need for the development of new, effective medications. Using a translational approach, our laboratory reported that ivermectin, an FDA-approved, human and animal anti-parasitic agent, can significantly reduce ethanol intake in male and female mice across different drinking paradigms. Extending this line of investigation, the current paper investigated the utility of moxidectin (MOX), an analogue of ivermectin, to reduce ethanol intake. Notably, MOX is widely held to have lower neurotoxicity potential and improved margin of safety compared to ivermectin. Using a 24-h-two-bottle choice paradigm, MOX significantly reduced ethanol intake in a dose dependent manner in both male and female C57BL/6J mice, respectively (1.25-7.5 mg/kg) and (1.25-10 mg/kg). Further, multi-day administration of MOX (2.5 mg/kg; intraperitoneal injection) for 5 consecutive days significantly reduced ethanol intake in both the 24-h-two-bottle choice and Drinking-in-the-Dark paradigms in female mice. No overt signs of behavioral toxicity were observed. Notably in both male and female mice, MOX significantly reduced ethanol intake starting approximately 4 h post-injection. Using a Xenopus oocyte expression system, we found that MOX significantly potentiated P2X4 receptor (P2X4R) function and antagonized the inhibitory effects of ethanol on ATP-gated currents in P2X4Rs. This latter finding represents the first report of MOX having activity on P2X4Rs. In addition, MOX potentiated GABAA receptors, but to a lesser degree as compared to ivermectin supporting the hypothesis that MOX would be advantageous (compared to ivermectin) with respect to reducing contraindications. Overall, the results illustrate the potential for development of MOX as a novel pharmacotherapy for the treatment of AUD.
Collapse
Affiliation(s)
- Nhat Huynh
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Natalie Arabian
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Anna Naito
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Stan Louie
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Michael W Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA.
| |
Collapse
|
15
|
Barkley-Levenson AM, Crabbe JC. Distinct ethanol drinking microstructures in two replicate lines of mice selected for drinking to intoxication. GENES, BRAIN, AND BEHAVIOR 2015; 14:398-410. [PMID: 25981501 PMCID: PMC4749147 DOI: 10.1111/gbb.12225] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/01/2015] [Accepted: 05/13/2015] [Indexed: 02/01/2023]
Abstract
The High Drinking in the Dark (HDID) mice have been selectively bred for reaching high blood ethanol concentrations (BECs) following the limited access Drinking in the Dark (DID) test. We have shown previously that mice from the first HDID replicate line (HDID-1) drink in larger, but not longer, ethanol drinking bouts than the low-drinking HS/Npt control mice when consuming modest amounts in the DID test. Here, we assessed drinking microstructure in HDID-1 mice during binge-like levels of ethanol intake using a lickometer system. Mice from both HDID replicates (HDID-1 and -2) and HS mice were also given three DID tests (single-bottle ethanol, two-bottle choice and single-bottle saccharin) using a continuously recording BioDAQ system to determine whether there are selection-dependent changes in drinking microstructure. Larger ethanol bout size in the HDID-1 mice than the HS mice was found to be due to a larger lick volume in these mice. HDID-1 and HDID-2 mice were also seen to have different drinking microstructures that both resulted in high intake and high BECs. The HDID-1 mice drank in larger ethanol bouts than HS, whereas HDID-2 mice drank in more frequent bouts. This pattern was also seen in two-bottle choice DID. The HDID-2 mice had a high bout frequency for all fluid types tested, whereas the large bout size phenotype of the HDID-1 mice was specific to alcohol. These findings suggest that selection for drinking to intoxication has resulted in two distinct drinking microstructures, both of which lead to high BECs and high ethanol intake.
Collapse
Affiliation(s)
- A M Barkley-Levenson
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Portland Alcohol Research Center, VA Medical Center, Portland, OR, USA
| | - J C Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Portland Alcohol Research Center, VA Medical Center, Portland, OR, USA
| |
Collapse
|
16
|
Ford MM, Nickel JD, Kaufman MN, Finn DA. Null mutation of 5α-reductase type I gene alters ethanol consumption patterns in a sex-dependent manner. Behav Genet 2015; 45:341-53. [PMID: 25416204 PMCID: PMC4425631 DOI: 10.1007/s10519-014-9694-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/10/2014] [Indexed: 02/04/2023]
Abstract
The neuroactive steroid allopregnanolone (ALLO) is a positive modulator of GABAA receptors, and manipulation of neuroactive steroid levels via injection of ALLO or the 5α-reductase inhibitor finasteride alters ethanol self-administration patterns in male, but not female, mice. The Srd5a1 gene encodes the enzyme 5α-reductase-1, which is required for the synthesis of ALLO. The current studies investigated the influence of Srd5a1 deletion on voluntary ethanol consumption in male and female wildtype (WT) and knockout (KO) mice. Under a continuous access condition, 6 and 10 % ethanol intake was significantly greater in KO versus WT females, but significantly lower in KO versus WT males. In 2-h limited access sessions, Srd5a1 deletion retarded acquisition of 10 % ethanol intake in female mice, but facilitated it in males, versus respective WT mice. The present findings demonstrate that the Srd5a1 gene modulates ethanol consumption in a sex-dependent manner that is also contingent upon ethanol access condition and concentration.
Collapse
Affiliation(s)
- Matthew M Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA,
| | | | | | | |
Collapse
|
17
|
Milivojevic V, Covault J. Alcohol exposure during late adolescence increases drinking in adult Wistar rats, an effect that is not reduced by finasteride. Alcohol Alcohol 2013; 48:28-38. [PMID: 22997410 PMCID: PMC3523383 DOI: 10.1093/alcalc/ags105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/18/2012] [Accepted: 07/31/2012] [Indexed: 11/13/2022] Open
Abstract
AIMS We tested whether an exposure to alcohol in late adolescence, an age of rapid increase in neuroactive steroid precursors, would increase voluntary alcohol consumption in adult rats and whether this effect would be modulated by finasteride, an inhibitor of neuroactive steroid synthesis. METHODS In Experiment 1, we exposed male Wistar rats to 8% alcohol during the dark cycle for 1 week during late adolescence [postnatal days (PNDs) 51-58], and then measured voluntary alcohol consumption 1 month later in adulthood (PNDs 91-104). In Experiment 2, finasteride was administered during the forced alcohol exposure in late adolescence and, in Experiment 3, during voluntary alcohol consumption in adulthood. Plasma was collected at the end of each finasteride treatment to confirm the reduction of plasma neuroactive steroid levels. RESULTS We found that a daily 12-h exposure to alcohol for 7 days in late adolescence significantly increased voluntary alcohol consumption (4-fold) a month later during adulthood. Finasteride administration in late adolescence increased group alcohol intake in late adolescence but did not block the effect of adolescent alcohol exposure on increasing alcohol preference in adulthood. There was no effect of finasteride treatment in adulthood on alcohol preference. CONCLUSIONS A daily 12-h exposure to alcohol for 7 days in late adolescence was sufficient to induce chronically increased alcohol preference in adulthood, indicating that this age may be sensitive to the effects of alcohol.
Collapse
Affiliation(s)
- Verica Milivojevic
- Graduate Program in Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Psychiatry, Alcohol Research Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jonathan Covault
- Department of Psychiatry, Alcohol Research Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
18
|
Bell RL, Sable HJ, Colombo G, Hyytia P, Rodd ZA, Lumeng L. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity. Pharmacol Biochem Behav 2012; 103:119-55. [PMID: 22841890 PMCID: PMC3595005 DOI: 10.1016/j.pbb.2012.07.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 07/07/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Helen J.K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Petri Hyytia
- Institute of Biomedicine, University of Helsinki, Finland
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lawrence Lumeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
19
|
Davies DL, Bortolato M, Finn DA, Ramaker MJ, Barak S, Ron D, Liang J, Olsen RW. Recent advances in the discovery and preclinical testing of novel compounds for the prevention and/or treatment of alcohol use disorders. Alcohol Clin Exp Res 2012; 37:8-15. [PMID: 22671690 DOI: 10.1111/j.1530-0277.2012.01846.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/26/2012] [Indexed: 11/27/2022]
Abstract
Alcohol abuse and dependence have a staggering socioeconomic impact, yet current therapeutic strategies are largely inadequate to treat these disorders. Thus, the development of new strategies that can effectively prevent alcohol use disorders (AUDs) is of paramount importance. Currently approved medications attempt to deter alcohol intake by blocking ethanol metabolism or by targeting the neurochemical systems downstream of the cascades leading to craving and dependence. Unfortunately, these medications have provided only limited success as indicated by the continued high rates of alcohol abuse and alcoholism. The lack of currently available effective treatment strategies is highlighted by the urgent call by the NIAAA to find new and paradigm-changing therapeutics to either prevent or treat alcohol-related problems. This mini-review highlights recent findings from 4 laboratories with a focus on compounds that have the potential to be novel therapeutic agents that can be developed for the prevention and/or treatment of AUDs.
Collapse
Affiliation(s)
- Daryl L Davies
- School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yardley MM, Wyatt L, Khoja S, Asatryan L, Ramaker MJ, Finn DA, Alkana RL, Huynh N, Louie SG, Petasis NA, Bortolato M, Davies DL. Ivermectin reduces alcohol intake and preference in mice. Neuropharmacology 2012; 63:190-201. [PMID: 22465817 DOI: 10.1016/j.neuropharm.2012.03.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/19/2022]
Abstract
The high rate of therapeutic failure in the management of alcohol use disorders (AUDs) underscores the urgent need for novel and effective strategies that can deter ethanol consumption. Recent findings from our group showed that ivermectin (IVM), a broad-spectrum anthelmintic with high tolerability and optimal safety profile in humans and animals, antagonized ethanol-mediated inhibition of P2X4 receptors (P2X4Rs) expressed in Xenopus oocytes. This finding prompted us to hypothesize that IVM may reduce alcohol consumption; thus, in the present study we investigated the effects of this agent on several models of alcohol self-administration in male and female C57BL/6 mice. Overall, IVM (1.25-10 mg/kg, intraperitoneal) significantly reduced 24-h alcohol consumption and intermittent limited access (4-h) binge drinking, and operant alcohol self-administration (1-h). The effects on alcohol intake were dose-dependent with the significant reduction in intake at 9 h after administration corresponding to peak IVM concentrations (C(max)) in the brain. IVM also produced a significant reduction in 24-h saccharin consumption, but did not alter operant sucrose self-administration. Taken together, the findings indicate that IVM reduces alcohol intake across several different models of self-administration and suggest that IVM may be useful in the treatment of AUDs.
Collapse
Affiliation(s)
- Megan M Yardley
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Becker HC. Effects of alcohol dependence and withdrawal on stress responsiveness and alcohol consumption. Alcohol Res 2012; 34:448-58. [PMID: 23584111 PMCID: PMC3860383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
A complex relationship exists between alcohol-drinking behavior and stress. Alcohol has anxiety-reducing properties and can relieve stress, while at the same time acting as a stressor and activating the body's stress response systems. In particular, chronic alcohol exposure and withdrawal can profoundly disturb the function of the body's neuroendocrine stress response system, the hypothalamic-pituitary-adrenocortical (HPA) axis. A hormone, corticotropin-releasing factor (CRF), which is produced and released from the hypothalamus and activates the pituitary in response to stress, plays a central role in the relationship between stress and alcohol dependence and withdrawal. Chronic alcohol exposure and withdrawal lead to changes in CRF activity both within the HPA axis and in extrahypothalamic brain sites. This may mediate the emergence of certain withdrawal symptoms, which in turn influence the susceptibility to relapse. Alcohol-related dysregulation of the HPA axis and altered CRF activity within brain stress-reward circuitry also may play a role in the escalation of alcohol consumption in alcohol-dependent individuals. Numerous mechanisms have been suggested to contribute to the relationship between alcohol dependence, stress, and drinking behavior. These include the stress hormones released by the adrenal glands in response to HPA axis activation (i.e., corticosteroids), neuromodulators known as neuroactive steroids, CRF, the neurotransmitter norepinephrine, and other stress-related molecules.
Collapse
|
22
|
Ramaker MJ, Ford MM, Fretwell AM, Finn DA. Alteration of ethanol drinking in mice via modulation of the GABA(A) receptor with ganaxolone, finasteride, and gaboxadol. Alcohol Clin Exp Res 2011; 35:1994-2007. [PMID: 21649668 DOI: 10.1111/j.1530-0277.2011.01551.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neurosteroids and other γ-aminobutyric acid(A) (GABA(A) ) receptor-modulating compounds have been shown to affect ethanol intake, although their mechanism remains unclear. This study examined how patterns of 24-hour ethanol drinking in mice were altered with the synthetic GABAergic neurosteroid ganaxolone (GAN), with an inhibitor of neurosteroid synthesis (finasteride [FIN]), or a GABA(A) receptor agonist with some selectivity at extrasynaptic receptors (gaboxadol HCL [THIP]). METHODS Male C57BL/6J mice had continuous access to a 10% v/v ethanol solution (10E) or water. Using lickometer chambers, drinking patterns were analyzed among mice treated in succession to GAN (0, 5, and 10 mg/kg), FIN (0 or 100 mg/kg), and THIP (0, 2, 4, 8, and 16 mg/kg). RESULTS GAN shifted drinking in a similar but extended manner to previous reports using low doses of the neurosteroid allopregnanolone (ALLO); drinking was increased in hour 1, decreased in hours 2 and 3, and increased in hours 4 and 5 postinjection. THIP (8 mg/kg) and FIN both decreased 10E drinking during the first 5 hours postinjection by 30 and 53%, respectively, while having no effect on or increasing water drinking, respectively. All 3 drugs altered the initiation of drinking sessions in a dose-dependent fashion. FIN increased and GAN decreased time to first lick and first bout. THIP (8 mg/kg) decreased time to first lick but increased time to first bout and attenuated first bout size. CONCLUSIONS The present findings support a role for the modulation of ethanol intake by neurosteroids and GABA(A) receptor-acting compounds and provide hints as to how drinking patterns are shifted. The ability of THIP to alter 10E drinking suggests that extrasynaptic GABA(A) receptors may be involved in the modulation of ethanol intake. Further, the consistent results with THIP to that seen previously with high doses of ALLO suggest that future studies should further examine the relationship between neurosteroids and extrasynaptic GABA(A) receptors, which could provide a better understanding of the mechanism by which neurosteroids influence ethanol intake.
Collapse
Affiliation(s)
- Marcia J Ramaker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA.
| | | | | | | |
Collapse
|
23
|
Besheer J, Lindsay TG, O'Buckley TK, Hodge CW, Morrow AL. Pregnenolone and ganaxolone reduce operant ethanol self-administration in alcohol-preferring p rats. Alcohol Clin Exp Res 2010; 34:2044-52. [PMID: 20946297 DOI: 10.1111/j.1530-0277.2010.01300.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neuroactive steroids modulate ethanol intake in several self-administration models with variable effects. The purpose of this work was to examine the effects of the long-acting synthetic GABAergic neurosteroid ganaxolone and the endogenous neurosteroid pregnenolone, a precursor of all GABAergic neuroactive steroids, on the maintenance of ethanol self-administration in an animal model of elevated drinking-the alcohol-preferring (P) rats. METHODS P rats were trained to self-administer ethanol (15% v/v) versus water on a concurrent schedule of reinforcement, and the effects of ganaxolone (0 to 30 mg/kg, subcutaneous [SC]) and pregnenolone (0 to 75 mg/kg, intraperitoneal [IP]) were evaluated on the maintenance of ethanol self-administration. After completion of self-administration testing, doses of the neuroactive steroids that altered ethanol self-administration were assessed on spontaneous locomotor activity. Finally, the effect of pregnenolone administration on cerebral cortical levels of the GABAergic neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone, 3α,5α-THP) was determined in both ethanol-experienced and ethanol-inexperienced P rats because pregnenolone is a precursor of these steroids. RESULTS Ganaxolone produced a dose-dependent biphasic effect on ethanol reinforcement, as the lowest dose (1 mg/kg) increased and the highest dose (30 mg/kg) decreased ethanol-reinforced responding. However, the highest ganaxolone dose also produced a nonspecific reduction in locomotor activity. Pregnenolone treatment significantly reduced ethanol self-administration (50 and 75 mg/kg), without altering locomotor activity. Pregnenolone (50 mg/kg) produced a significant increase in cerebral cortical allopregnanolone levels. This increase was observed in the self-administration trained animals, but not in ethanol-naïve P rats. CONCLUSIONS These results indicate that pregnenolone dose-dependently reduces operant ethanol self-administration in P rats without locomotor impairment, suggesting that it may have potential as a novel therapeutic for reducing chronic alcohol drinking in individuals that abuse alcohol.
Collapse
Affiliation(s)
- Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA
| | | | | | | | | |
Collapse
|
24
|
Pastor R, Kamens HM, McKinnon CS, Ford MM, Phillips TJ. Repeated ethanol administration modifies the temporal structure of sucrose intake patterns in mice: effects associated with behavioral sensitization. Addict Biol 2010; 15:324-35. [PMID: 20624153 DOI: 10.1111/j.1369-1600.2010.00229.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuroadaptations supporting behavioral sensitization to abused drugs are suggested to underlie pathological, excessive motivation toward drugs and drug-associated stimuli. Drug-induced sensitization has also been linked to increased appetitive responses for non-drug, natural reinforcers. The present research investigated whether ethanol (EtOH)-induced neural changes, inferred from psychomotor sensitization, can modify consumption and intake dynamics for the natural reinforcer, sucrose. The effects of EtOH-induced sensitization in mice on the temporal structure of sucrose intake patterns were measured using a lickometer system. After sensitization, sucrose intake dynamics were measured for 1 hour daily for 7 days and indicated more rapid initial approach and consumption of sucrose in EtOH-sensitized groups; animals showed a shorter latency to the first intake bout and an increased number of sucrose bottle licks during the initial 15 minutes of the 1-hour sessions. This effect was associated with increased frequency and size of bouts. For the total 1-hour session, sucrose intake and bout dynamics were not different between groups, indicating a change in patterns of sucrose intake but not total consumption. When sensitization was prevented by the gamma-aminobutyric acid B receptor agonist, baclofen, the increased rate of approach and consumption of sucrose were also prevented. Thus, EtOH-induced sensitization, and not the mere exposure to EtOH, was associated with changes in sucrose intake patterns. These data are consistent with current literature suggesting an enhancing effect of drug-induced sensitization on motivational processes involved in reinforcement.
Collapse
Affiliation(s)
- Raúl Pastor
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | |
Collapse
|
25
|
Strong MN, Yoneyama N, Fretwell AM, Snelling C, Tanchuck MA, Finn DA. "Binge" drinking experience in adolescent mice shows sex differences and elevated ethanol intake in adulthood. Horm Behav 2010; 58:82-90. [PMID: 19854195 PMCID: PMC2883674 DOI: 10.1016/j.yhbeh.2009.10.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 10/12/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
Abstract
Binge drinking, defined as achieving blood ethanol concentrations (BEC) of 80 mg%, has been increasing in adolescents and was reported to predispose later physical dependence. The present experiments utilized an animal model of binge drinking to compare the effect of ethanol "binge" experience during adolescence or adulthood on subsequent ethanol intake in male and female C57BL/6 mice. Adolescent and adult mice were initially exposed to the scheduled high alcohol consumption procedure, which produces BECs that exceed the levels for binge drinking following a 30-min ethanol session every third day. Ethanol intake and BECs were significantly higher in the adolescent ( approximately 3 g/kg, 199 mg%) versus adult ( approximately 2 g/kg, 135 mg%) mice during the first three ethanol sessions, but were more equivalent during the final two ethanol sessions (1.85-2.0 g/kg, 129-143 mg%). Then, separate groups of the ethanol-experienced mice were tested with ethanol naïve adolescent and adult mice for 2-h limited access (10% and 20% solutions) or 24-h (5%, 10% and 20% solutions) ethanol preference drinking. Limited access ethanol intake was significantly higher in female versus male mice, but was not altered by age or ethanol experience. In contrast, 24-h ethanol intake was significantly higher in the adolescent versus adult mice and in female versus male mice. Furthermore, binge drinking experience in the adolescent mice significantly increased subsequent ethanol intake, primarily due to intake in female mice. Thus, adolescent binge drinking significantly increased unlimited ethanol intake during adulthood, with female mice more susceptible to this effect.
Collapse
Affiliation(s)
- Moriah N. Strong
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Naomi Yoneyama
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Andrea M. Fretwell
- Portland Alcohol Research Center, VA Medical Research, Portland, Oregon 97239
| | - Chris Snelling
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Michelle A. Tanchuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Deborah A. Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Portland Alcohol Research Center, VA Medical Research, Portland, Oregon 97239
| |
Collapse
|
26
|
Leeman RF, Heilig M, Cunningham CL, Stephens DN, Duka T, O'Malley SS. Ethanol consumption: how should we measure it? Achieving consilience between human and animal phenotypes. Addict Biol 2010; 15:109-24. [PMID: 20148775 DOI: 10.1111/j.1369-1600.2009.00192.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is only modest overlap in the most common alcohol consumption phenotypes measured in animal studies and those typically studied in humans. To address this issue, we identified a number of alcohol consumption phenotypes of importance to the field that have potential for consilience between human and animal models. These phenotypes can be broken down into three categories: (1) abstinence/the decision to drink or abstain; (2) the actual amount of alcohol consumed; and (3) heavy drinking. A number of suggestions for human and animal researchers are made in order to address these phenotypes and enhance consilience. Laboratory studies of the decision to drink or to abstain are needed in both human and animal research. In human laboratory studies, heavy or binge drinking that meets cut-offs used in epidemiological and clinical studies should be reported. Greater attention to patterns of drinking over time is needed in both animal and human studies. Individual differences pertaining to all consumption phenotypes should be addressed in animal research. Lastly, improved biomarkers need to be developed in future research for use with both humans and animals. Greater precision in estimating blood alcohol levels in the field, together with consistent measurement of breath/blood alcohol levels in human laboratory and animal studies, provides one means of achieving greater consilience of alcohol consumption phenotypes.
Collapse
Affiliation(s)
- Robert F Leeman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | | | | | | | |
Collapse
|
27
|
Finn DA, Beckley EH, Kaufman KR, Ford MM. Manipulation of GABAergic steroids: Sex differences in the effects on alcohol drinking- and withdrawal-related behaviors. Horm Behav 2010; 57:12-22. [PMID: 19615369 PMCID: PMC2813380 DOI: 10.1016/j.yhbeh.2009.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 12/16/2022]
Abstract
Alcoholism is a complex disorder that represents an important contributor to health problems worldwide and that is difficult to encompass with a single preclinical model. Additionally, alcohol (ethanol) influences the function of many neurotransmitter systems, with the interaction at gamma-aminobutyric acid(A) (GABA(A)) receptors being integral for ethanol's reinforcing and several withdrawal-related effects. Given that some steroid derivatives exert rapid membrane actions as potent positive modulators of GABA(A) receptors and exhibit a similar pharmacological profile to that of ethanol, studies in the laboratory manipulated GABAergic steroid levels and determined the impact on ethanol's rewarding- and withdrawal-related effects. Manipulations focused on the progesterone metabolite allopregnanolone (ALLO), since it is the most potent endogenous GABAergic steroid identified. The underlying hypothesis is that fluctuations in GABAergic steroid levels (and the resultant change in GABAergic inhibitory tone) alter sensitivity to ethanol, leading to changes in the positive motivational or withdrawal-related effects of ethanol. This review describes results that emphasize sex differences in the effects of ALLO and the manipulation of its biosynthesis on alcohol reward-versus withdrawal-related behaviors, with females being less sensitive to the modulatory effects of ALLO on ethanol-drinking behaviors but more sensitive to some steroid manipulations on withdrawal-related behaviors. These findings imply the existence of sex differences in the sensitivity of GABA(A) receptors to GABAergic steroids within circuits relevant to alcohol reward versus withdrawal. Thus, sex differences in the modulation of GABAergic neurosteroids may be an important consideration in understanding and developing therapeutic interventions in alcoholics.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Veterans Affairs Medical Research, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
28
|
Sex differences in the self-administration of cannabinoids and other drugs of abuse. Psychoneuroendocrinology 2009; 34 Suppl 1:S227-36. [PMID: 19744795 DOI: 10.1016/j.psyneuen.2009.08.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 08/06/2009] [Accepted: 08/13/2009] [Indexed: 11/20/2022]
Abstract
Many studies have provided evidence for important sex-dependent differences in the origins, outcomes and treatment of drug abuse and dependence. Preclinical studies typically have employed animal models of addiction, such as oral or intravenous self-administration, to untangle the environmental, neurobiological and genetic factors that contribute to the shift from occasional, recreational use to compulsive, uncontrolled intake of drugs. Craving and relapse of drug seeking in abstinent individuals have also been found to differ between men and women. Identification of the neurobiological basis of craving and drug dependence continues to pose a challenge to addiction research. Significant sex differences are emerging in substance-abuse-related behavior, which has increased the demand for research on how drug consumption may have different causes, progression and consequences in men and women. In keeping with epidemiological data in humans, differences between the two sexes in drug seeking and intake have been well-documented in animal studies, with most recent findings related to abuse of cannabinoids. Clinical and preclinical findings indicate that sex and gonadal hormones may account for individual differences in susceptibility to the reinforcing effects of addictive substances, and that differences in vulnerability to drug abuse may be mediated by the same biological mechanisms. This review focuses on the differences between males and females in relation to drug self-administration and how such behavior may be affected by hormonal status.
Collapse
|