1
|
Al-Eitan LN, Alahmad SZ, Khair IY. The Impact of Potent Addictive Substances on Angiogenic Behavior: A Comprehensive Review. Curr Neuropharmacol 2025; 23:511-523. [PMID: 39248059 DOI: 10.2174/1570159x23666240905125037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 09/10/2024] Open
Abstract
Angiogenesis, the formation of new vasculature from preexisting vasculature, is involved in the development of several diseases as well as various physiological processes. Strict cooperation of proangiogenic and antiangiogenic factors mediates the control of angiogenesis. The fundamental steps in angiogenesis include endothelial cell proliferation, migration, and invasion. Addictive substances, which are considered therapeutic candidates in research and medicine, are classified as natural substances, such as nicotine, or synthetic substances, such as synthetic cannabinoids. Addictive substances have been shown to either enhance or suppress angiogenesis. This review article provides an overview of recent studies concerning the effects of several addictive substances on the process of angiogenesis. Google Scholar and PubMed were used to collect the scientific literature used in this review. The addictive substances addressed in this review are nicotine, opioids such as morphine and heroin, alcohol, cocaine, methamphetamine, and cannabinoids. An accurate assessment of the influence of these substances on the angiogenic process may help to construct a potentially effective therapeutic protocol to control and treat several angiogenesis-related diseases.
Collapse
Affiliation(s)
- Laith Naser Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saif Zuhair Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
2
|
Gürbüzer N, Güler MC, Tör İH. Methamphetamine Use Disorder and Inflammation: A Case-Control Study. Psychiatry Investig 2024; 21:513-520. [PMID: 38811000 PMCID: PMC11136578 DOI: 10.30773/pi.2023.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 02/27/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE Methamphetamine use disorder (MUD) is a global health condition that impairs a person's health which may result in morbidity and mortality. Inflammation is a crucial process playing a vital role in MUD. For this reason, it is necessary to examine biochemical parameters for follow-up and treatment alternatives. METHODS We aimed to reveal the relationship between inflammatory response and MUD by evaluating peripheral hemogram parameters, leukocyte count, subtypes, and their ratios to each other, systemic immune inflammation index (SII), monocyte/high-density lipoprotein (HDL) ratio, and human C-reactive protein (CRP) in adult men with MUD. We included 76 adult male participants in the patient group and 70 adult male participants in the control group. We calculated the neutrophil/lymphocyte rate (NLR), monocyte/lymphocyte rate (MLR), platelet/lymphocyte rate (PLR), and basophil/lymphocyte rate (BLR). In addition, we obtained the SII and the monocyte/HDL rate. RESULTS The patients' leukocyte (p<0.001), platelet (p<0.001), plateletcrit (PCT) (p=0.002), neutrophil (p<0.001), monocyte (p=0.002), CRP (p<0.001), NLR (p=0.001), PLR (p=0.004), MLR (p=0.009), SII (p<0.001) and monocyte/HDL ratio (p<0.001) were higher than the control group. We observed a significant and positive relationship between the daily methamphetamine intake, and methamphetamine use duration (p=0.002), PCT (p=0.044), neutrophil (p=0.021), NLR (p=0.001), PLR (p=0.004), MLR (p=0.029), and SII (p<0.001). Daily methamphetamine intake had a significant and positive effect on SII. A one-unit increase in daily methamphetamine intake elevated SII by 165.53 units. CONCLUSION The results confirm the presence of peripheral subclinical inflammation and systemic immune inflammation in adult men with MUD.
Collapse
Affiliation(s)
- Nilifer Gürbüzer
- Department of Psychiatry, Regional Training and Research Hospital, University of Health Sciences, Erzurum, Turkey
| | - Mustafa Can Güler
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - İbrahim Hakkı Tör
- Department of Anesthesiology and Reanimation, Regional Training and Research Hospital, University of Health Sciences, Erzurum, Turkey
| |
Collapse
|
3
|
Karimi-Zandi L, Ghorbandaiepour T, Zahmatkesh M. The increment of annexin V-positive microvesicles versus annexin V-negative microvesicles in CSF of an animal model of Alzheimer's disease. Neurosci Lett 2023; 814:137446. [PMID: 37595881 DOI: 10.1016/j.neulet.2023.137446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Extracellular microvesicles (MVs) as a specific signaling molecule have received much attention in nervous system studies. Alterations in the tissue redox status in pathological conditions, such as Alzheimer's disease (AD), facilitate the translocation of cell membrane phosphatidylserine to the outer leaflet and lead to the MVs shedding. Annexin V binds with high affinity to phosphatidylserine. Some arguments exist about whether Annexin V-negative MVs should be considered in pathological conditions. MATERIAL AND METHOD We compared the kinetics of two phenotypes of Annexin V-positive and Annexin V-negative MVs in the cerebrospinal fluid (CSF) of amyloid-β (Aβ)-treated male Wistar rats with flow cytometry technique. The Aβ was injected bilaterally into the cerebral ventricles. Thioflavin T staining was used to confirm the presence of hippocampal Aβ fibrils two weeks post-Aβ injection. Levels of hippocampal interleukin-1β were assessed as an inflammatory index. The CSF malondialdehyde (MDA) concentration was determined. The cognitive impairment and anxiety behaviors were assessed by object recognition and elevated plus maze tests, respectively. RESULTS Elevation of MDA levels and a significant rise in the scoring of IL-1β staining were found in the Aβ group. The Aβ induced anxiogenic behavior, impaired novel object recognition memory, and increased the CSF levels of the total number of MVs. The number of Annexin V-positive MVs was significantly higher than Annexin V-negative MVs in all groups. CONCLUSION Data showed that Annexin V-positive MVs potentially have a significant contribution to the pathophysiology of the Aβ-induced cognitive impairment. To catch a clear image of microvesicle production in pathological conditions, both phenotypes of Annexin V-positive and Annexin V-negative MVs should be analyzed and reported.
Collapse
Affiliation(s)
- Leila Karimi-Zandi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Ghorbandaiepour
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zahmatkesh
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kolluru GK, Glawe JD, Pardue S, Kasabali A, Alam S, Rajendran S, Cannon AL, Abdullah CS, Traylor JG, Shackelford RE, Woolard MD, Orr AW, Goeders NE, Dominic P, Bhuiyan MSS, Kevil CG. Methamphetamine causes cardiovascular dysfunction via cystathionine gamma lyase and hydrogen sulfide depletion. Redox Biol 2022; 57:102480. [PMID: 36167027 PMCID: PMC9513700 DOI: 10.1016/j.redox.2022.102480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
Methamphetamine (METH) is an addictive illicit drug used worldwide that causes significant damage to blood vessels resulting in cardiovascular dysfunction. Recent studies highlight increased prevalence of cardiovascular disease (CVD) and associated complications including hypertension, vasospasm, left ventricular hypertrophy, and coronary artery disease in younger populations due to METH use. Here we report that METH administration in a mouse model of 'binge and crash' decreases cardiovascular function via cystathionine gamma lyase (CSE), hydrogen sulfide (H2S), nitric oxide (NO) (CSE/H2S/NO) dependent pathway. METH significantly reduced H2S and NO bioavailability in plasma and skeletal muscle tissues co-incident with a significant reduction in flow-mediated vasodilation (FMD) and blood flow velocity revealing endothelial dysfunction. METH administration also reduced cardiac ejection fraction (EF) and fractional shortening (FS) associated with increased tissue and perivascular fibrosis. Importantly, METH treatment selectively decreased CSE expression and sulfide bioavailability along with reduced eNOS phosphorylation and NO levels. Exogenous sulfide therapy or endothelial CSE transgenic overexpression corrected cardiovascular and associated pathological responses due to METH implicating a central molecular regulatory pathway for tissue pathology. These findings reveal that therapeutic intervention targeting CSE/H2S bioavailability may be useful in attenuating METH mediated cardiovascular disease.
Collapse
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | - John D Glawe
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | - Sibile Pardue
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | - Ahmad Kasabali
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | - Shafiul Alam
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | | | - Allison L Cannon
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | | | - James G Traylor
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA
| | | | - Matthew D Woolard
- Department of Microbiology and Immunology, LSU Health Sciences Center- Shreveport, USA
| | - A Wayne Orr
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA; Department of Cellular Biology and Anatomy, LSU Health Sciences Center- Shreveport, USA; Department of Molecular and Cellular Physiology, LSU Health Sciences Center- Shreveport, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center- Shreveport, USA
| | - Paari Dominic
- Division of Cardiology Department of Medicine, LSU Health Sciences Center- Shreveport, USA
| | | | - Christopher G Kevil
- Department of Pathology, LSU Health Sciences Center- Shreveport, USA; Department of Cellular Biology and Anatomy, LSU Health Sciences Center- Shreveport, USA; Department of Molecular and Cellular Physiology, LSU Health Sciences Center- Shreveport, USA.
| |
Collapse
|
5
|
Increment of CSF fractalkine-positive microvesicles preceded the spatial memory impairment in amyloid beta neurotoxicity. Cytokine 2022; 160:156050. [PMID: 36179535 DOI: 10.1016/j.cyto.2022.156050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Fractalkine (CX3CL1) is a key chemokine, affects neuronal cell communication and involves in Alzheimer's disease pathogenesis. Microvesicles (MVs) participate in neuronal cells' cross-talk in physiological and pathological states. Microvesicles released in cerebrospinal fluid (CSF) may provide a valuable footprint of brain changes. Little information is available regarding the release of fractalkine-positive MVs (CX3CL1+ -MVs) in the nervous system. METHODS We induced cognitive impairment by bilateral injection of amyloid-beta (Aβ) into the cerebral ventricles. We analyzed the CSF by flow cytometry in two experiments (trained and untrained) to elucidate the presence of CX3CL1+ -MVs. The hippocampal TNF-α as an inflammatory factor was assessed by immunohistochemistry. RESULTS The Aβ induced spatial memory impairment after two weeks, verified by a decrease in the escape latency in Morris water maze test. It caused an increase in the anxiety-like behaviors demonstrated by a decrease in entries into the open arms of elevated plus maze test. The Aβ increased the percent of the positive area for TNF-α staining. Histological evaluation of the hippocampus confirmed the tissue injuries. The CSF levels of CX3CL1+ -MVs, increased 2 and 7 days after Aβ injection. The Aβ increased the TNF-α staining and provided an inflammatory context to facilitate the MVs release. The rise of CX3CL1+ -MVs was transient and subsided after two weeks. Both trained and untrained experiments showed a similar rise pattern of CX3CL1+ -MVs. CONCLUSION Increase of fractalkine-positive microvesicles preceded the cognitive impairment, more studies are required to approve the CX3CL1+ -MVs as a potential biomarker in the early diagnosis of Alzheimer's disease.
Collapse
|
6
|
Ma X, Liao X, Liu J, Wang Y, Wang X, Chen Y, Yin X, Pan Q. Circulating endothelial microvesicles and their carried miR-125a-5p: potential biomarkers for ischaemic stroke. Stroke Vasc Neurol 2022; 8:89-102. [PMID: 36109098 PMCID: PMC10176997 DOI: 10.1136/svn-2021-001476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/02/2022] [Indexed: 11/04/2022] Open
Abstract
BackgroundEndothelial microvesicles (EMVs) are closely associated with the status of endothelial cells (ECs). Our earlier study has shown that EMVs could exert protective roles in ECs by transferring their carried miR-125a-5p. However, whether circulating EMVs and their carried miR-125a-5p can be used as biomarkers in ischaemic stroke (IS) are remain unknown.MethodsWe recruited 72 subjects with IS, 60 subjects with high stroke risk and 56 age-matched controls. The circulating EMVs and their carried miR-125a-5p (EMV-miR-125a-5p) levels were detected. We used microRNA (miR) array to study expression changes of miRs in plasma EMVs samples of three IS patients and three matched healthy controls. Transient middle cerebral artery occlusion (tMCAO) was used to establish IS mouse model.ResultsEMVs level was obviously elevated in IS patients, with the highest level in acute stage, and was positively related to carotid plaque, carotid intima–media thickness (IMT), National Institutes of Health Stroke Scale (NIHSS), infarct volume. On the contrary, we observed that EMV-miR-125a-5p level was obviously reduced in IS, with the lowest level in acute stage, and was negatively correlated with carotid plaque, IMT, NIHSS scores, infarct volume. EMVs and EMV-miR-125a-5p levels were closely related with large artery atherosclerosis subgroup. Importantly, EMVs and EMV-miR-125a-5p levels could serve as independent risk factors, and receiver operating characteristic curve achieved an area under curve (AUC) of 0.720 and 0.832 for IS, respectively, and elevated to 0.881 after their combination. In IS mouse model, control EMVs or n-EMVs administration could decrease the infarct volume and neurological deficit score, while increase the cerebral blood flow of IS mice compared with vehicle group, while IS EMVs or oxygen and glucose deprivation (OGD)-EMVs administration aggravated the tMCAO induced ischaemic injury. In addition, we observed that OGD EMVmiR-125a-5p could partially ameliorate the OGD EMVs induced brain injury after IS.ConclusionsThese findings demonstrate that circulating EMVs and EMV-miR-125a-5p are closely related with the occurrence, progress, subtypes and severity of IS, and they can serve as innovative biomarkers and therapeutic targets for IS, especially when they are combined.
Collapse
Affiliation(s)
- Xiaotang Ma
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Liao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiehong Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Wang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiang Wang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanfang Chen
- Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Xiaojian Yin
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qunwen Pan
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Kim B, Tag SH, Nam E, Ham S, Ahn S, Kim J, Cho DW, Lee S, Yang YS, Lee SE, Kim YS, Cho IJ, Kim KP, Han SC, Im HI. SYNCRIP controls miR-137 and striatal learning in animal models of methamphetamine abstinence. Acta Pharm Sin B 2022; 12:3281-3297. [PMID: 35967275 PMCID: PMC9366222 DOI: 10.1016/j.apsb.2022.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
Abstinence from prolonged psychostimulant use prompts stimulant withdrawal syndrome. Molecular adaptations within the dorsal striatum have been considered the main hallmark of stimulant abstinence. Here we explored striatal miRNA–target interaction and its impact on circulating miRNA marker as well as behavioral dysfunctions in methamphetamine (MA) abstinence. We conducted miRNA sequencing and profiling in the nonhuman primate model of MA abstinence, followed by miRNA qPCR, LC–MS/MS proteomics, immunoassays, and behavior tests in mice. In nonhuman primates, MA abstinence triggered a lasting upregulation of miR-137 in the dorsal striatum but a simultaneous downregulation of circulating miR-137. In mice, aberrant increase in striatal miR-137-dependent inhibition of SYNCRIP essentially mediated the MA abstinence-induced reduction of circulating miR-137. Pathway modeling through experimental deduction illustrated that the MA abstinence-mediated downregulation of circulating miR-137 was caused by reduction of SYNCRIP-dependent miRNA sorting into the exosomes in the dorsal striatum. Furthermore, diminished SYNCRIP in the dorsal striatum was necessary for MA abstinence-induced behavioral bias towards egocentric spatial learning. Taken together, our data revealed circulating miR-137 as a potential blood-based marker that could reflect MA abstinence-dependent changes in striatal miR-137/SYNCRIP axis, and striatal SYNCRIP as a potential therapeutic target for striatum-associated cognitive dysfunction by MA withdrawal syndrome.
Collapse
|
8
|
Nagot N, Hai VV, Dong TTT, Hai OKT, Rapoud D, Hoang GT, Quillet C, Minh KP, Vallo R, Nham TTT, Castellani J, Feelemyer J, Des Jarlais DC, Nguyen LP, Van Le H, Nguyen NV, Vo LNQ, Duong HT, Moles JP, Laureillard D. Alarming Tuberculosis Rate Among People Who Inject Drugs in Vietnam. Open Forum Infect Dis 2022; 9:ofab548. [PMID: 35106311 PMCID: PMC8801226 DOI: 10.1093/ofid/ofab548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The tuberculosis (TB) epidemic is not homogeneous in the general population but presents high-risk groups. People who inject drugs (PWID) are such a group. However, TB among PWID remains largely undocumented. Our goal was to assess the prevalence of TB and the risk factors associated with TB among PWID in Vietnam. METHODS We implemented a cross-sectional survey among 2 community-based cohorts of human immunodeficiency virus (HIV)-positive and HIV-negative PWID in Hai Phong. Participants were screened for TB using questions on TB symptoms. Those who reported any symptom were accompanied by peers to the TB clinic for chest x-ray. If the latter was abnormal, a sputum was collected to perform an Xpert MTB/RIF test. RESULTS A total of 885 PWID were screened for TB. For both cohorts, most PWID were male (>90.0%), with a median age of 42 years. Beside heroin injection, 52.5% of participants reported smoking methamphetamine, and 63.2% were on methadone. Among HIV-positive PWID (N = 451), 90.4% were on antiretroviral therapy and 81.6% had a viral load <1000 copies/mL. Using a complete-case analysis, the estimated TB prevalence was 2.3% (95% confidence interval [CI], 1.0-4.5) and 2.1% (95% CI, 0.8-4.2) among HIV-positive and HIV-negative people, respectively. Living as a couple, arrest over the past 6 months, homelessness, and smoking methamphetamine were independently associated with TB but not HIV infection. CONCLUSIONS In the context of very large antiretroviral therapy coverage, this extremely high rate of TB among PWID requires urgent actions.
Collapse
Affiliation(s)
- Nicolas Nagot
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
| | - Vinh Vu Hai
- Infectious and Tropical Diseases Department, Viet Tiep Hospital, Hai Phong, Vietnam
| | | | | | - Delphine Rapoud
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
| | - Giang Thi Hoang
- Department of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Catherine Quillet
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
| | - Khue Pham Minh
- Department of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Roselyne Vallo
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
| | | | - Joëlle Castellani
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
| | - Jonathan Feelemyer
- School of Global Public Health, New York University, New York, New York, USA
| | - Don C Des Jarlais
- School of Global Public Health, New York University, New York, New York, USA
| | | | - Hoi Van Le
- National TB control program, Hanoi, Vietnam
| | | | | | - Huong Thi Duong
- Department of Public Health, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Jean-Pierre Moles
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
| | - Didier Laureillard
- Pathogenesis and Control of Chronic & Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles-Guyane, Montpellier, France
- Infectious Diseases Department, Caremeau University Hospital, Nimes, France
| |
Collapse
|
9
|
Tan X, Cai D, Chen N, Du S, Qiao D, Yue X, Wang T, Li J, Xie W, Wang H. Methamphetamine mediates apoptosis of vascular smooth muscle cells via the chop-related endoplasmic reticulum stress pathway. Toxicol Lett 2021; 350:98-110. [PMID: 34214594 DOI: 10.1016/j.toxlet.2021.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022]
Abstract
Methamphetamine (METH) is a highly addictive amphetamine-type drug that has caused persistent harm to society and human health in recent years. Most studies have shown that METH severely damages the central nervous system, and this drug has been found to be toxic to the cardiovascular system in recent years. Therefore, we hypothesized that METH may also damage vascular smooth muscle. We examined the expression of the apoptosis-related proteins Caspase 3 and PARP after METH treatment in vivo and in vitro and detected the expression of endoplasmic reticulum stress-related proteins. After treatment with the endoplasmic reticulum stress inhibitor 4-PBA, changes in the above indicators were examined. C/EBP homologous protein (Chop) expression was also detected, and the relationship between endoplasmic reticulum stress and apoptosis was further determined by siRNA silencing of Chop. The results indicated that METH can induce apoptosis of vascular smooth muscle cells (VSMCs) and upregulate the expression of Chop and endoplasmic reticulum stress-related proteins. Chop inhibits protein kinase B phosphorylation and further inhibits forkhead box class O3a (Foxo3a) dephosphorylation, resulting in increased p53 upregulated molecular of apoptosis (PUMA) transcription. Increased PUMA induces apoptosis through the mitochondrial pathway. These results indicate that Chop is involved in the METH-induced endoplasmic reticulum stress and apoptosis in VSMCs and may be a potential therapeutic target for METH-induced VSMC injury.
Collapse
Affiliation(s)
- Xiaohui Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dunpeng Cai
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Na Chen
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Sihao Du
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Tao Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jia Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Weibing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China; Nanhai Hospital, Southern Medical University, Foshan, 528244, Guangdong, China.
| |
Collapse
|
10
|
Chivero ET, Dagur RS, Peeples ES, Sil S, Liao K, Ma R, Chen L, Gurumurthy CB, Buch S, Hu G. Biogenesis, physiological functions and potential applications of extracellular vesicles in substance use disorders. Cell Mol Life Sci 2021; 78:4849-4865. [PMID: 33821293 PMCID: PMC10563196 DOI: 10.1007/s00018-021-03824-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/02/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorder (SUD) is a growing health problem that affects several millions of people worldwide, resulting in negative socioeconomic impacts and increased health care costs. Emerging evidence suggests that extracellular vesicles (EVs) play a crucial role in SUD pathogenesis. EVs, including exosomes and microvesicles, are membrane-encapsulated particles that are released into the extracellular space by most types of cells. EVs are important players in mediating cell-to-cell communication through transfer of cargo such as proteins, lipids and nucleic acids. The EV cargo can alter the status of recipient cells, thereby contributing to both physiological and pathological processes; some of these play critical roles in SUD. Although the functions of EVs under several pathological conditions have been extensively reviewed, EV functions and potential applications in SUD remain less studied. In this review, we provide an overview of the current knowledge of the role of EVs in SUD, including alcohol, cocaine, heroin, marijuana, nicotine and opiate abuse. The review will focus on the biogenesis and cargo composition of EVs as well as the potential use of EVs as biomarkers of SUD or therapeutic targets in SUD.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Raghubendra Singh Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
- Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong, China
| | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
11
|
Dollard SC, Annambhotla P, Wong P, Meneses K, Amin MM, La Hoz RM, Lease ED, Budev M, Arrossi AV, Basavaraju SV, Thomas CP. Donor-derived human herpesvirus 8 and development of Kaposi sarcoma among 6 recipients of organs from donors with high-risk sexual and substance use behavior. Am J Transplant 2021; 21:681-688. [PMID: 32633035 PMCID: PMC7891580 DOI: 10.1111/ajt.16181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/25/2023]
Abstract
Kaposi sarcoma (KS) can develop following organ transplantation through reactivation of recipient human herpesvirus 8 (HHV-8) infection or through donor-derived HHV-8 transmission. We describe 6 cases of donor-derived HHV-8 infection and KS investigated from July 2018 to January 2020. Organs from 6 donors, retrospectively identified as HHV-8-positive, with a history of drug use disorder, were transplanted into 22 recipients. Four of 6 donors had risk factors for HHV-8 infection reported in donor history questionnaires. Fourteen of 22 organ recipients (64%) had evidence of posttransplant HHV-8 infection. Lung recipients were particularly susceptible to KS. Four of the 6 recipients who developed KS died from KS or associated complications. The US opioid crisis has resulted in an increasing number and proportion of organ donors with substance use disorder, and particularly injection drug use history, which may increase the risk of HHV-8 transmission to recipients. Better awareness of the risk of posttransplant KS for recipients of organs from donors with HHV-8 infection risk could be useful for recipient management. Testing donors and recipients for HHV-8 is currently challenging with no validated commercial serology kits available. Limited HHV-8 antibody testing is available through some US reference laboratories and the Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
| | | | - Phili Wong
- Centers for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Katherine Meneses
- Liver Transplant DepartmentUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Minal M. Amin
- Centers for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Ricardo M. La Hoz
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Erika D. Lease
- Division of Pulmonary Critical Care and Sleep MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Maria Budev
- Department of Pulmonary MedicineCleveland Clinic FoundationClevelandOhioUSA
| | | | | | - Christie P. Thomas
- Department of Internal MedicineUniversity of Iowa Carver College of MedicineIowa CityIowaUSA,Veterans Affairs Medical CenterIowa CityIowaUSA
| |
Collapse
|
12
|
Rodriguez EA, Yamamoto BK. Toxic Effects of Methamphetamine on Perivascular Health: Co-morbid Effects of Stress and Alcohol Use Disorders. Curr Neuropharmacol 2021; 19:2092-2107. [PMID: 34344290 PMCID: PMC9185763 DOI: 10.2174/1570159x19666210803150023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Methamphetamine (Meth) abuse presents a global problem and commonly occurs with stress and/or alcohol use disorders. Regardless, the biological causes and consequences of these comorbidities are unclear. Whereas the mechanisms of Meth, stress, and alcohol abuse have been examined individually and well-characterized, these processes overlap significantly and can impact the neural and peripheral consequences of Meth. This review focuses on the deleterious cardio- and cerebrovascular effects of Meth, stress, alcohol abuse, and their comorbid effects on the brain and periphery. Points of emphasis are on the composition of the blood-brain barrier and their effects on the heart and vasculature. The autonomic nervous system, inflammation, and oxidative stress are specifically highlighted as common mediators of the toxic consequences to vascular and perivascular health. A significant portion of the Meth abusing population also presents with stress and alcohol use disorders, prompting a need to understand the mechanisms underlying their comorbidities. Little is known about their possible convergent effects. Therefore, the purpose of this critical review is to identify shared mechanisms of Meth, chronic stress, and alcohol abuse that contributes to the dysfunction of vascular health and underscores the need for studies that directly address their interactions.
Collapse
Affiliation(s)
- Eric A. Rodriguez
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Zhang J, Zhu Y, Wu Y, Yan QG, Peng XY, Xiang XM, Xue MY, Li QH, Liu LM, Li T. Synergistic effects of EMPs and PMPs on pulmonary vascular leakage and lung injury after ischemia/reperfusion. Cell Commun Signal 2020; 18:184. [PMID: 33225929 PMCID: PMC7682096 DOI: 10.1186/s12964-020-00672-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
Background Vascular leakage is an important pathophysiological process of critical conditions such as shock and ischemia–reperfusion (I/R)-induced lung injury. Microparticles (MPs), including endothelial cell-derived microparticles (EMPs), platelet-derived microparticles (PMPs) and leukocyte-derived microparticles (LMPs), have been shown to participate in many diseases. Whether and which of these MPs take part in pulmonary vascular leakage and lung injury after I/R and whether these MPs have synergistic effect and the underlying mechanism are not known. Methods Using hemorrhage/transfusion (Hemo/Trans) and aorta abdominalis occlusion-induced I/R rat models, the role of EMPs, PMPs and LMPs and the mechanisms in pulmonary vascular leakage and lung injury were observed. Results The concentrations of EMPs, PMPs and LMPs were significantly increased after I/R. Intravenous administration of EMPs and PMPs but not LMPs induced pulmonary vascular leakage and lung injury. Furthermore, EMPs induced pulmonary sequestration of platelets and promoted more PMPs production, and played a synergistic effect on pulmonary vascular leakage. MiR-1, miR-155 and miR-542 in EMPs, and miR-126 and miR-29 in PMPs, were significantly increased after hypoxia/reoxygenation (H/R). Of which, inhibition of miR-155 in EMPs and miR-126 in PMPs alleviated the detrimental effects of EMPs and PMPs on vascular barrier function and lung injury. Overexpression of miR-155 in EMPs down-regulated the expression of tight junction related proteins such as ZO-1 and claudin-5, while overexpression of miR-126 up-regulated the expression of caveolin-1 (Cav-1), the trans-cellular transportation related protein such as caveolin-1 (Cav-1). Inhibiting EMPs and PMPs production with blebbistatin (BLE) and amitriptyline (AMI) alleviated I/R induced pulmonary vascular leakage and lung injury. Conclusions EMPs and PMPs contribute to the pulmonary vascular leakage and lung injury after I/R. EMPs mediate pulmonary sequestration of platelets, producing more PMPs to play synergistic effect. Mechanically, EMPs carrying miR-155 that down-regulates ZO-1 and claudin-5 and PMPs carrying miR-126 that up-regulates Cav-1, synergistically mediate pulmonary vascular leakage and lung injury after I/R. Graphic abstract ![]()
Video Abstract
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Qing-Guang Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Xiao-Yong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Xin-Ming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Ming-Ying Xue
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Qing-Hui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Liang-Ming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China.
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Army Medical University, Daping, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
14
|
Sandau US, Duggan E, Shi X, Smith SJ, Huckans M, Schutzer WE, Loftis JM, Janowsky A, Nolan JP, Saugstad JA. Methamphetamine use alters human plasma extracellular vesicles and their microRNA cargo: An exploratory study. J Extracell Vesicles 2020; 10:e12028. [PMID: 33613872 PMCID: PMC7890470 DOI: 10.1002/jev2.12028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 01/27/2023] Open
Abstract
Methamphetamine (MA) is the largest drug threat across the globe, with health effects including neurotoxicity and cardiovascular disease. Recent studies have begun to link microRNAs (miRNAs) to the processes related to MA use and addiction. Our studies are the first to analyse plasma EVs and their miRNA cargo in humans actively using MA (MA-ACT) and control participants (CTL). In this cohort we also assessed the effects of tobacco use on plasma EVs. We used vesicle flow cytometry to show that the MA-ACT group had an increased abundance of EV tetraspanin markers (CD9, CD63, CD81), but not pro-coagulant, platelet-, and red blood cell-derived EVs. We also found that of the 169 plasma EV miRNAs, eight were of interest in MA-ACT based on multiple statistical criteria. In smokers, we identified 15 miRNAs of interest, two that overlapped with the eight MA-ACT miRNAs. Three of the MA-ACT miRNAs significantly correlated with clinical features of MA use and target prediction with these miRNAs identified pathways implicated in MA use, including cardiovascular disease and neuroinflammation. Together our findings indicate that MA use regulates EVs and their miRNA cargo, and support that further studies are warranted to investigate their mechanistic role in addiction, recovery, and recidivism.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | | | - Xiao Shi
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Sierra J. Smith
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Marilyn Huckans
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Clinical Psychology ProgramOregon Health & Science UniversityPortlandOregonUSA
| | - William E. Schutzer
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Jennifer M. Loftis
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Clinical Psychology ProgramOregon Health & Science UniversityPortlandOregonUSA
| | - Aaron Janowsky
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | | | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
15
|
Odegaard KE, Chand S, Wheeler S, Tiwari S, Flores A, Hernandez J, Savine M, Gowen A, Pendyala G, Yelamanchili SV. Role of Extracellular Vesicles in Substance Abuse and HIV-Related Neurological Pathologies. Int J Mol Sci 2020; 21:E6765. [PMID: 32942668 PMCID: PMC7554956 DOI: 10.3390/ijms21186765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a broad, heterogeneous class of membranous lipid-bilayer vesicles that facilitate intercellular communication throughout the body. As important carriers of various types of cargo, including proteins, lipids, DNA fragments, and a variety of small noncoding RNAs, including miRNAs, mRNAs, and siRNAs, EVs may play an important role in the development of addiction and other neurological pathologies, particularly those related to HIV. In this review, we summarize the findings of EV studies in the context of methamphetamine (METH), cocaine, nicotine, opioid, and alcohol use disorders, highlighting important EV cargoes that may contribute to addiction. Additionally, as HIV and substance abuse are often comorbid, we discuss the potential role of EVs in the intersection of substance abuse and HIV. Taken together, the studies presented in this comprehensive review shed light on the potential role of EVs in the exacerbation of substance use and HIV. As a subject of growing interest, EVs may continue to provide information about mechanisms and pathogenesis in substance use disorders and CNS pathologies, perhaps allowing for exploration into potential therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.E.O.); (S.C.); (S.W.); (S.T.); (A.F.); (J.H.); (M.S.); (A.G.); (G.P.)
| |
Collapse
|
16
|
Fu SQ, Guo YJ, Song CL. [Expression and significance of endothelial microparticles in children with Henoch-Schönlein purpura]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:831-834. [PMID: 30369358 PMCID: PMC7389040 DOI: 10.7499/j.issn.1008-8830.2018.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To study the expression and significance of endothelial microparticles (EMPs) in children with Henoch-Schönlein purpura (HSP). METHODS A total of 100 previously untreated children with HSP were classified to Henoch-Schönlein purpura nephritis (HSPN) group (n=40) and non-nephritis group (n=60). Thirty healthy children who underwent physical examination were enrolled as control group. Serum levels of EMPs, T helper 17 cells (Th17), and interleukin-17 (IL-17) were compared between groups. RESULTS The HSPN and non-nephritis groups had significantly higher levels of Th17 and IL-17 than the control group, and the HSPN group had the highest levels (P<0.05). The HSPN and non-nephritis groups had a significantly higher level of EMPs than the control group, and the HSPN group had the highest level (P<0.05). In the HSPN group, the levels of Th17 and IL-17 were positively correlated with the level of EMPs (r=0.830 and 0.644 respectively; P<0.05). CONCLUSIONS EMPs play an important role in the pathogenesis of HSP. The increase in EMPs might be one of the reasons for renal involvement in children with HSP.
Collapse
Affiliation(s)
- Shu-Qin Fu
- Children's Hospital of Zhengzhou University/Children's Hospital of Henan Province/Zhengzhou Children's Hospital/Zhengzhou Children's Critical Medical Key Laboratory, Zhengzhou 450000, China.
| | | | | |
Collapse
|