1
|
Jacuńska W, Biel W, Tokarczyk G, Biernacka P, Bienkiewicz G, Janda-Milczarek K. Fatty Acid Composition and Bioactive Profiles in the Aerial Parts of Cannabis sativa. Molecules 2025; 30:1947. [PMID: 40363754 PMCID: PMC12073161 DOI: 10.3390/molecules30091947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
The interest in Cannabis sativa L. has been on the rise recently, driven by its potential applications in various sectors, including the food industry, the medical sector, and other key areas. This crop possesses a diverse profile of essential fatty acids and a range of bioactive compounds, which exhibit properties that are highly significant for functional food ingredients and nutraceutical purposes. The objective of this study was to investigate the characteristic lipid and bioactive profiles of different plant parts (e.g., inflorescences and leaves) to ascertain their possible uses in nutritional and therapeutic fields. The fat content of the plant material was determined by the Soxhlet method, and gas chromatography was employed for the assessment of the fatty acids and selected bioactive compounds profile. In addition, some lipid quality indices were calculated with the purpose of providing a more in-depth discussion of these aspects beyond the traditional n-6/n-3 ratio. A distinct lipid composition was evident among the various plant parts. Compared to inflorescence samples, leaves typically contain higher proportions of SFAs, MUFAs, PUFAs, and n-3 fatty acids, along with a more favorable n-6/n-3 ratio, which may significantly impact nutritional value. Phytol-rich leaves can suggest its potential application as a functional feed or even a nutraceutical. Furthermore, the occurrence of hexacosane and related antimicrobial and antifungal compounds serves to enhance the practical utility of the leaves. Notably, hemp leaves are not merely a by-product, but rather offer significant practical applications.
Collapse
Affiliation(s)
- Weronika Jacuńska
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego Street, 71-270 Szczecin, Poland;
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego Street, 71-270 Szczecin, Poland;
| | - Grzegorz Tokarczyk
- Department of Fish, Plant and Gastronomy Technology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 4 Papieża Pawła VI Street, 71-459 Szczecin, Poland; (G.T.); (P.B.)
| | - Patrycja Biernacka
- Department of Fish, Plant and Gastronomy Technology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 4 Papieża Pawła VI Street, 71-459 Szczecin, Poland; (G.T.); (P.B.)
| | - Grzegorz Bienkiewicz
- Department of Commodity Science, Quality Assessment, Process Engineering and Human Nutrition, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 4 Papieża Pawła VI Street, 71-459 Szczecin, Poland;
| | - Katarzyna Janda-Milczarek
- Department of Biology, Parasitology and Pharmaceutical Botany, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich Street, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Reck AM, Siderovski DP, Kinsey SG. The synthetic cannabinoid agonist WIN 55,212-2 reduces experimental pruritus via CB 2 receptor activation. Neuropharmacology 2025; 264:110216. [PMID: 39551242 PMCID: PMC11922163 DOI: 10.1016/j.neuropharm.2024.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Pruritus (i.e., the experience that evokes a desire to scratch) is an adaptive process that can become maladaptive, leading to a persistent scratch-itch cycle that potentiates pruritus and increases the risk of infection. Cannabinoid drugs have been reported to decrease pruritus, but often at doses that also decrease locomotor activity, which confounds assessments of utility. To determine the utility of cannabinoids in treating pruritus without undesirable adverse effects, the current preclinical study investigated a range of doses of the synthetic cannabinoid agonist, WIN 55,212-2, and two minor Cannabis phytoconstituents, Δ8-tetrahydrocannabinol and β-caryophyllene, in experimentally induced pruritus in male and female C57BL/6J adult mice. WIN 55,212-2 reduced compound 48/80-induced scratching, and this antipruritic effect was prevented by either chemically blocking (via SR144528 antagonism) or genetically deleting the CB2 cannabinoid receptor. The CB2 receptor selective agonist, JWH-133, also attenuated compound 48/80-induced scratching, while the CB1 positive allosteric modulator, ZCZ011, had no effect. Similarly, the minor phytocannabinoid Δ8-tetrahydrocannabinol reduced scratching at doses that did not affect locomotor activity. In contrast, the sesquiterpene cannabis constituent β-caryophyllene induced scratching, acting as a pruritogen. These preclinical data support the continuing investigation of cannabinoid receptor modulation as a potential therapeutic strategy for pruritus.
Collapse
Affiliation(s)
- Antonio Matt Reck
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - David P Siderovski
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| | - Steven G Kinsey
- School of Nursing, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
3
|
Vanegas SO, Zaki A, Dealy CN, Kinsey SG. The Minor Phytocannabinoid Delta-8-Tetrahydrocannabinol Attenuates Collagen-Induced Arthritic Inflammation and Pain-Depressed Behaviors. J Pharmacol Exp Ther 2024; 391:222-230. [PMID: 38834355 PMCID: PMC11493440 DOI: 10.1124/jpet.124.002189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024] Open
Abstract
Patients with arthritis report using cannabis for pain management, and the major cannabinoid delta-9-tetrahydrocannabinol (Δ9-THC) has anti-inflammatory properties, yet the effects of minor cannabinoids on arthritis are largely unknown. The goal of the present study was to determine the antiarthritic potential of the minor cannabinoid delta-8-tetrahydrocannabinol (Δ8-THC) using the collagen-induced arthritis (CIA) mouse model. Adult male DBA/1J mice were immunized and boosted 21 days later with an emulsion of collagen and complete Freund's adjuvant. Beginning on the day of the booster, mice were administered twice-daily injections of Δ8-THC (3 or 30 mg/kg), the steroid dexamethasone (2 mg/kg), or vehicle for two weeks. Dorsal-ventral paw thickness and qualitative measures of arthritis were recorded daily, and latency to fall from an inverted grid was measured on alternating days, to determine arthritis severity and functional impairment. On the final day of testing, spontaneous wire-climbing behavior and temperature preference in a thermal gradient ring were measured to assess CIA-depressed behavior. The Δ8-THC treatment (30 mg/kg) reduced paw swelling and qualitative signs of arthritis. Δ8-THC also blocked CIA-depressed climbing and CIA-induced preference for a heated floor without producing locomotor effects but did not affect latency to fall from a wire grid. In alignment with the morphologic and behavioral assessments in vivo, histology revealed that Δ8-THC reduced synovial inflammation, proteoglycan loss and cartilage and bone erosion in the foot joints in a dose-dependent manner. Together, these findings suggest that Δ8-THC not only blocked morphologic changes but also prevented functional loss caused by collagen-induced arthritis. SIGNIFICANCE STATEMENT: Despite increasing use of cannabis products, the potential effects of minor cannabinoids are largely unknown. Here, the minor cannabinoid delta-8-tetrahydrocannabinol blocked the development of experimentally induced arthritis by preventing both pathophysiological as well as functional effects of the disease model. These data support the development of novel cannabinoid treatments for inflammatory arthritis.
Collapse
Affiliation(s)
- S Olivia Vanegas
- School of Nursing (S.O.V., S.G.K.) and Department of Psychological Sciences (S.O.V.), University of Connecticut, Storrs, Connecticut; Department of Orthodontics (A.Z., C.N.D.) and Department of Biomedical Engineering (C.N.D.), School of Dental Medicine, University of Connecticut, Farmington, Connecticut; and Department of Orthopedic Surgery and Department of Cell Biology, School of Medicine, University of Connecticut, Farmington, Connecticut (C.N.D.)
| | - Arsalan Zaki
- School of Nursing (S.O.V., S.G.K.) and Department of Psychological Sciences (S.O.V.), University of Connecticut, Storrs, Connecticut; Department of Orthodontics (A.Z., C.N.D.) and Department of Biomedical Engineering (C.N.D.), School of Dental Medicine, University of Connecticut, Farmington, Connecticut; and Department of Orthopedic Surgery and Department of Cell Biology, School of Medicine, University of Connecticut, Farmington, Connecticut (C.N.D.)
| | - Caroline N Dealy
- School of Nursing (S.O.V., S.G.K.) and Department of Psychological Sciences (S.O.V.), University of Connecticut, Storrs, Connecticut; Department of Orthodontics (A.Z., C.N.D.) and Department of Biomedical Engineering (C.N.D.), School of Dental Medicine, University of Connecticut, Farmington, Connecticut; and Department of Orthopedic Surgery and Department of Cell Biology, School of Medicine, University of Connecticut, Farmington, Connecticut (C.N.D.)
| | - Steven G Kinsey
- School of Nursing (S.O.V., S.G.K.) and Department of Psychological Sciences (S.O.V.), University of Connecticut, Storrs, Connecticut; Department of Orthodontics (A.Z., C.N.D.) and Department of Biomedical Engineering (C.N.D.), School of Dental Medicine, University of Connecticut, Farmington, Connecticut; and Department of Orthopedic Surgery and Department of Cell Biology, School of Medicine, University of Connecticut, Farmington, Connecticut (C.N.D.)
| |
Collapse
|
4
|
Heal DJ, Gosden J, Smith SL. A critical assessment of the abuse, dependence and associated safety risks of naturally occurring and synthetic cannabinoids. Front Psychiatry 2024; 15:1322434. [PMID: 38915848 PMCID: PMC11194422 DOI: 10.3389/fpsyt.2024.1322434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Various countries and US States have legalized cannabis, and the use of the psychoactive1 and non-psychoactive cannabinoids is steadily increasing. In this review, we have collated evidence from published non-clinical and clinical sources to evaluate the abuse, dependence and associated safety risks of the individual cannabinoids present in cannabis. As context, we also evaluated various synthetic cannabinoids. The evidence shows that delta-9 tetrahydrocannabinol (Δ9-THC) and other psychoactive cannabinoids in cannabis have moderate reinforcing effects. Although they rapidly induce pharmacological tolerance, the withdrawal syndrome produced by the psychoactive cannabinoids in cannabis is of moderate severity and lasts from 2 to 6 days. The evidence overwhelmingly shows that non-psychoactive cannabinoids do not produce intoxicating, cognitive or rewarding properties in humans. There has been much speculation whether cannabidiol (CBD) influences the psychoactive and potentially harmful effects of Δ9-THC. Although most non-clinical and clinical investigations have shown that CBD does not attenuate the CNS effects of Δ9-THC or synthetic psychoactive cannabinoids, there is sufficient uncertainty to warrant further research. Based on the analysis, our assessment is cannabis has moderate levels of abuse and dependence risk. While the risks and harms are substantially lower than those posed by many illegal and legal substances of abuse, including tobacco and alcohol, they are far from negligible. In contrast, potent synthetic cannabinoid (CB1/CB2) receptor agonists are more reinforcing and highly intoxicating and pose a substantial risk for abuse and harm. 1 "Psychoactive" is defined as a substance that when taken or administered affects mental processes, e.g., perception, consciousness, cognition or mood and emotions.
Collapse
Affiliation(s)
- David J. Heal
- DevelRx Limited, Nottingham, United Kingdom
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | | | | |
Collapse
|
5
|
Wiley JL, Marusich JA, Blough BE, Namjoshi O, Brackeen M, Akinfiresoye LR, Walker TD, Prioleau C, Barrus DG, Gamage TF. Evaluation of cannabimimetic effects of selected minor cannabinoids and Terpenoids in mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110984. [PMID: 38417478 PMCID: PMC11015967 DOI: 10.1016/j.pnpbp.2024.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND The cannabis plant contains several cannabinoids, and many terpenoids that give cannabis its distinctive flavoring and aroma. Δ9-Tetrahydrocannabinol (Δ9-THC) is the plant's primary psychoactive constituent. Given the abuse liability of Δ9-THC, assessment of the psychoactive effects of minor cannabinoids and other plant constituents is important, especially for compounds that may be used medicinally. This study sought to evaluate select minor cannabinoids and terpenes for Δ9-THC-like psychoactivity in mouse Δ9-THC drug discrimination and determine their binding affinities at CB1 and CB2 receptors. METHODS Δ9-THC, cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC), cannabichromenevarin (CBCV), Δ8-tetrahydrocannabinol (Δ8-THC), (6aR,9R)-Δ10-tetrahydrocannabinol [(6aR,9R)-Δ10-THC], Δ9-tetrahydrocannabinol varin (THCV), β-caryophyllene (BC), and β-caryophyllene oxide (BCO) were examined. RESULTS All minor cannabinoids showed measurable cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor binding, with CBC, CBCV, and CBD, showing the weakest CB1 receptor binding affinity. BC and BCO exhibited negligible affinity for both CB1 and CB2 receptors. In drug discrimination, only Δ8-THC fully substituted for Δ9-THC, while CBN and (6aR,9R)-Δ10-THC partially substituted for Δ9-THC. THCV and BCO did not alter the discriminative stimulus effects of Δ9-THC. CONCLUSION In summary, only some of myriad cannabinoids and other chemicals found in the cannabis plant bind potently to the identified cannabinoid receptors. Further, only four of the compounds tested herein [Δ9-THC, Δ8-THC, (6aR,9R)-Δ10-THC, and CBN] produced Δ9-THC-like discriminative stimulus effects, suggesting they may possess cannabimimetic subjective effects. Given that the medicinal properties of phytocannabinoids and terpenoids are being investigated scientifically, delineation of their potential adverse effects, including their ability to produce Δ9-THC-like intoxication, is crucial.
Collapse
Affiliation(s)
| | | | | | | | | | - Luli R Akinfiresoye
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA, USA
| | - Teneille D Walker
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA, USA
| | - Cassandra Prioleau
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA, USA
| | | | - Thomas F Gamage
- RTI International, Research Triangle Park, NC, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
6
|
Durbin DJ, King JM, Stairs DJ. Behavioral Effects of Vaporized Delta-8 Tetrahydrocannabinol, Cannabidiol, and Mixtures in Male Rats. Cannabis Cannabinoid Res 2024; 9:601-611. [PMID: 36802211 DOI: 10.1089/can.2022.0257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Background: The popularity of delta-8 tetrahydrocannabinol (THC) and cannabidiol (CBD) products has seen a sharp increase in use during recent years. Despite the rise in use of these minor cannabinoids, there are little to no pre-clinical behavioral data on their effects, with most pre-clinical cannabis research focusing on the behavioral effects of delta-9 THC. The current experiments aimed to characterize the behavioral effects of delta-8 THC, CBD, and mixtures of these two drugs using a whole-body vapor exposure route of administration in male rats. Methods: Rats were exposed to vapor that contained different concentrations of delta-8 THC, CBD, or CBD/delta-8 THC mixtures during 10 min of exposure. Following 10 min of vapor exposure, locomotor behavior was monitored, or the warm-water tail withdrawal assay was conducted to measure the acute analgesic effects of the vapor exposure. Results: CBD and CBD/delta-8 THC mixtures resulted in a significant increase in locomotion across the entire session. Although delta-8 THC alone had no significant effect on locomotion across the session, the 10 mg concentration of delta-8 THC had a hyperlocomotion effect in the first 30 min of the session followed by a hypolocomotor effect later in the session. In the tail withdrawal assay, a 3/1 mixture of CBD/delta-8 THC resulted in an immediate analgesic effect compared to vehicle vapor. Finally, immediately following vapor exposure, all drugs had a hypothermic effect on body temperature compared to vehicle. Conclusion: This experiment is the first to characterize the behavioral effects of vaporized delta-8 THC, CBD, and CBD/delta-8 THC in male rats. While data were generally congruent with previous research investigating delta-9 THC, future studies should explore abuse liability and validate plasma blood concentrations of these drugs following administration through whole-body vapor exposure.
Collapse
Affiliation(s)
- Darby J Durbin
- Department of Psychological Science, Creighton University, Omaha, Nebraska, USA
| | - Julia M King
- Department of Psychological Science, Creighton University, Omaha, Nebraska, USA
| | - Dustin J Stairs
- Department of Psychological Science, Creighton University, Omaha, Nebraska, USA
| |
Collapse
|
7
|
Eckard ML, Kinsey SG. Differential disruption of response alternation by precipitated Δ 9-THC withdrawal and subsequent Δ 9-THC abstinence in mice. Pharmacol Biochem Behav 2024; 236:173718. [PMID: 38272272 PMCID: PMC10955601 DOI: 10.1016/j.pbb.2024.173718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/01/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
In addition to overt somatic symptoms, cannabinoid withdrawal can also manifest as disruptions in motivation and attention. Experimental animal models using operant-conditioning approaches reveal these differences, in either antagonist-precipitated or spontaneous withdrawal models. However, these processes have yet to be characterized in the same subjects simultaneously. To differentiate between motivational and attentional processes disrupted in cannabinoid withdrawal, the current study used a response alternation task in which a fixed-ratio (FR) schedule repeatedly alternated between two spatially distinct response options throughout daily training sessions. This task yielded traditional measures of motivation (e.g., response latency) as well as attention (e.g., responses to the incorrect side). After two weeks of training, male and female C57BL/6 J mice either received vehicle or Δ9-THC (10 mg/kg, s.c.) twice daily for 5 days. On the 6th day, all mice received their final injection of vehicle or Δ9-THC followed 30 min later by injection of the CB1 receptor selective inverse agonist rimonabant (2 mg/kg, i.p.) to precipitate withdrawal. Testing continued for 3 days post-rimonabant to assess how THC abstinence impacted task performance. Whereas rimonabant decreased response rates to equal degrees in THC-treated and vehicle-treated mice, THC-treated mice showed longer session times, longer response latencies, and more errors per reinforcer. Only THC-treated mice showed a longer latency to switch after committing an error reflecting that precipitated withdrawal impacted measures of both motivation and attention. During the 3-day abstinence window, performance of vehicle-treated mice returned to baseline, but THC-treated mice continued to show disruptions in motivational measures. Importantly, attentional measures (errors and latency to switch after an error) were unaffected by THC abstinence. These data suggest that precipitated and "spontaneous" cannabinoid withdrawal may be qualitatively and quantitatively distinct withdrawal conditions with precipitated withdrawal disrupting both attentional and motivational processes, while abstinence may only affect motivation.
Collapse
Affiliation(s)
| | - Steven G Kinsey
- School of Nursing, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
8
|
Moore CF, Weerts EM, Kulpa J, Schwotzer D, Dye W, Jantzi J, McDonald JD, Lefever TW, Bonn-Miller MO. Pharmacokinetics of Oral Minor Cannabinoids in Blood and Brain. Cannabis Cannabinoid Res 2023; 8:S51-S61. [PMID: 37721988 DOI: 10.1089/can.2023.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Introduction: Minor cannabinoids are increasingly being consumed in oral formulations (i.e., edibles, tinctures) for medical and nonmedical purposes. This study examined the pharmacokinetics (PKs) of cannabinoids tetrahydrocannabivarin (THCV), cannabichromene (CBC), cannabinol (CBN), and delta-8-tetrahydrocannabinol (D8-THC) after the first and last oral dose during a 14-day administration period. Materials and Methods: Sprague-Dawley rats (N=6 animals/dose, 50% female) were given an assigned dose of one of four cannabinoids (THCV=3.2-100 mg/kg, CBC=3.2-100 mg/kg, CBN=1-100 mg/kg, or D8-THC=0.32-10 mg/kg) or vehicle (medium-chain triglyceride oil) through oral gavage once daily for 14 days. Blood was collected 45 min and 1.5, 3, and 24 h following the first dose (day 1) and the last dose (day 14) of repeated oral cannabinoid treatment for PK analysis. Outcomes of interest included time to maximum concentration (Tmax), maximum concentration (Cmax), and area under the concentration versus time curve (AUClast). Dose-normalized (DN) Cmax and DN AUClast were also calculated. Brain tissue was collected 24 h post-administration of the first (day 1) and the last (day 14) dose of each cannabinoid to determine concentrations in brain. Results: All cannabinoids tested were detectable in plasma after single and 14-day repeated dosing. DN Cmax and DN AUClast were highest for D8-THC, followed by CBC, CBN, and THCV. There was no sex difference observed in cannabinoid kinetics. Accumulation of D8-THC in plasma was observed after 14 days of administration. THCV levels in plasma were lower on day 14 compared to day 1, indicating potential adaptation of metabolic pathways and increased drug elimination. Cannabinoids were detected in brain tissue 24 h post-administration of the first and the last dose of 17-100 mg/kg THCV, 3.2-100 mg/kg CBC, 10-100 mg/kg CBN, and 10 mg/kg D8-THC. Conclusions: THCV, CBC, CBN, and D8-THC produced detectable levels in plasma and translocated to brain tissue after the first dose (day 1) and the last dose (day 14) of repeated oral dosing. Examination of PKs of these minor cannabinoids in blood and brain provides a critical step for informing target dose ranges and dosing schedules in future studies that evaluate the potential effects of these compounds.
Collapse
Affiliation(s)
- Catherine F Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elise M Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justyna Kulpa
- Canopy Growth Corporation, Smiths Falls, Ontario, Canada
| | | | - Wendy Dye
- Lovelace Biomedical, Albuquerque, New Mexico, USA
| | - Jacob Jantzi
- Lovelace Biomedical, Albuquerque, New Mexico, USA
| | | | | | | |
Collapse
|
9
|
Jenkins BW, Moore CF, Covey D, McDonald JD, Lefever TW, Bonn-Miller MO, Weerts EM. Evaluating Potential Anxiolytic Effects of Minor Cannabinoids and Terpenes After Acute and Chronic Oral Administration in Rats. Cannabis Cannabinoid Res 2023; 8:S11-S24. [PMID: 37721993 DOI: 10.1089/can.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Background: Cannabis and its primary psychoactive constituent delta-9-tetrahydrocannabinol (D9-THC) produce biphasic, dose-dependent effects on anxiety. In addition to D9-THC, cannabis contains other "minor" cannabinoids and terpenes with purported therapeutic potential for the treatment of anxiety. Empirical data on potential therapeutic effects of these compounds is limited. The current study evaluated the effects of selected minor cannabinoids and terpenes in a battery of tests sensitive to anxiolytic and anxiogenic drugs. Methods: In Experiment 1, adult male Sprague Dawley rats (N=7-8/group) were administered acute oral doses of one of five minor cannabinoids: delta-8-tetrahydrocannabinol (D8-THC; 10 mg/kg), tetrahydrocannabivarin (32 mg/kg), cannabidiolic acid (32 mg/kg), cannabidivarin (32 mg/kg), and cannabigerol (100 mg/kg), or one of five terpenes: D-limonene (17 mg/kg), ⍺-pinene (100 mg/kg), ⍺-terpineol (10 mg/kg), bisabolol (100 mg/kg), and β-caryophyllene (17 mg/kg), or vehicle (medium-chain triglycerides [MCT] oil). Ethyl alcohol was tested as an active comparator. Thirty minutes post-administration, the marble burying test, the three-chamber social interaction test, and the novelty-induced hypophagia test were completed; motor activity was assessed throughout testing. Experiment 2 examined the potential anxiolytic effects of minor cannabinoids when administered chronically; rats administered MCT oil or minor cannabinoids in Experiment 1 continued receiving once-daily doses for 21 days and were assessed using the same test battery after 7, 14, and 21 days of administration. Results and Conclusions: When compared to vehicle, acute administration of bisabolol and D-limonene increased the amount of food consumed and bisabolol-, D-limonene-, ⍺-pinene-, and β-caryophyllene decreased percent time spent in the outer zone in the novelty-induced hypophagia test, suggestive of an anxiolytic effect. Only ethanol increased social interaction. After acute administration, anxiogenic effects in the marble burying test were observed for D8-THC, but not for other minor cannabinoids and terpenes. Throughout chronic administration, only D8-THC displayed anxiogenic effects in the novelty-induced hypophagia test. The other cannabinoids did not show anxiolytic or anxiogenic effects in any of the tests at the doses or times tested. The minor cannabinoids and terpenes did not impair or stimulate general motor activity. These data provide a foundation for future studies investigating cannabinoid/terpene interactions.
Collapse
Affiliation(s)
- Bryan W Jenkins
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Catherine F Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dan Covey
- Lovelace Biomedical, Albuquerque, New Mexico, USA
| | | | | | | | - Elise M Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Nachnani R, Raup-Konsavage WM, Vrana KE. The Rise and Risk of Delta-8 THC (Delta-8-Tetrahydrocannabinol). CURRENT ADDICTION REPORTS 2022. [DOI: 10.1007/s40429-022-00456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|