1
|
Mueller C, Gambarotti M, Benini S, Picci P, Righi A, Stevanin M, Hombach-Klonisch S, Henderson D, Liotta L, Espina V. Unlocking bone for proteomic analysis and FISH. J Transl Med 2019; 99:708-721. [PMID: 30659273 PMCID: PMC10752433 DOI: 10.1038/s41374-018-0168-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 11/08/2022] Open
Abstract
Bone tissue is critically lagging behind soft tissues and biofluids in our effort to advance precision medicine. The main challenges have been accessibility and the requirement for deleterious decalcification processes that impact the fidelity of diagnostic histomorphology and hinder downstream analyses such as fluorescence in-situ hybridization (FISH). We have developed an alternative fixation chemistry that simultaneously fixes and decalcifies bone tissue. We compared tissue morphology, immunohistochemistry (IHC), cell signal phosphoprotein analysis, and FISH in 50 patient matched primary bone cancer cases that were either formalin fixed and decalcified, or theralin fixed with and without decalcification. Use of theralin improved tissue histomorphology, whereas overall IHC was comparable to formalin fixed, decalcified samples. Theralin-fixed samples showed a significant increase in protein and DNA extractability, supporting technologies such as laser-capture microdissection and reverse phase protein microarrays. Formalin-fixed bone samples suffered from a fixation artifact where protein quantification of β-actin directly correlated with fixation time. Theralin-fixed samples were not affected by this artifact. Moreover, theralin fixation enabled standard FISH staining in bone cancer samples, whereas no FISH staining was observed in formalin-fixed samples. We conclude that the use of theralin fixation unlocks the molecular archive within bone tissue allowing bone to enter the standard tissue analysis pipeline. This will have significant implications for bone cancer patients, in whom personalized medicine has yet to be implemented.
Collapse
Affiliation(s)
- Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Marco Gambarotti
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefania Benini
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Piero Picci
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Monica Stevanin
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, Canada
| | - Dana Henderson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, Canada
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA.
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
2
|
Winkler GC, Barle EL, Galati G, Kluwe WM. Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics. Regul Toxicol Pharmacol 2014; 70:46-53. [PMID: 24956585 DOI: 10.1016/j.yrtph.2014.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/05/2014] [Accepted: 06/15/2014] [Indexed: 11/16/2022]
Abstract
There is no nationally or internationally binding definition of the term "cytotoxic drug" although this term is used in a variety of regulations for pharmaceutical development and manufacturing of drugs as well as in regulations for protecting medical personnel from occupational exposure in pharmacy, hospital, and other healthcare settings. The term "cytotoxic drug" is frequently used as a synonym for any and all oncology or antineoplastic drugs. Pharmaceutical companies generate and receive requests for assessments of the potential hazards of drugs regularly - including cytotoxicity. This publication is intended to provide functional definitions that help to differentiate between generically-cytotoxic cancer drugs of significant risk to normal human tissues, and targeted cancer therapeutics that pose much lesser risks. Together with specific assessments, it provides comprehensible guidance on how to assess the relevant properties of cancer drugs, and how targeted therapeutics discriminate between cancer and normal cells. The position of several regulatory agencies in the long-term is clearly to regulate all drugs regardless of classification, according to scientific risk based data. Despite ongoing discussions on how to replace the term "cytotoxic drugs" in current regulations, it is expected that its use will continue for the near future.
Collapse
Affiliation(s)
- Gian C Winkler
- Novartis Pharma AG NIBR, Postfach, CH-4002 Basel, Switzerland.
| | | | - Giuseppe Galati
- Patheon Inc., 2100 Syntex Court, Mississauga, Ontario L5N 7K9, Canada.
| | - William M Kluwe
- Novartis Pharmaceuticals Corporation, NIBR, One Health Plaza, East Hanover, NJ 07936-1080, USA.
| |
Collapse
|
3
|
The PAXgene(®) tissue system preserves phosphoproteins in human tissue specimens and enables comprehensive protein biomarker research. PLoS One 2013; 8:e60638. [PMID: 23555997 PMCID: PMC3612043 DOI: 10.1371/journal.pone.0060638] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 03/01/2013] [Indexed: 11/19/2022] Open
Abstract
Precise quantitation of protein biomarkers in clinical tissue specimens is a prerequisite for accurate and effective diagnosis, prognosis, and personalized medicine. Although progress is being made, protein analysis from formalin-fixed and paraffin-embedded tissues is still challenging. In previous reports, we showed that the novel formalin-free tissue preservation technology, the PAXgene Tissue System, allows the extraction of intact and immunoreactive proteins from PAXgene-fixed and paraffin-embedded (PFPE) tissues. In the current study, we focused on the analysis of phosphoproteins and the applicability of two-dimensional gel electrophoresis (2D-PAGE) and enzyme-linked immunosorbent assay (ELISA) to the analysis of a variety of malignant and non-malignant human tissues. Using western blot analysis, we found that phosphoproteins are quantitatively preserved in PFPE tissues, and signal intensities are comparable to that in paired, frozen tissues. Furthermore, proteins extracted from PFPE samples are suitable for 2D-PAGE and can be quantified by ELISA specific for denatured proteins. In summary, the PAXgene Tissue System reliably preserves phosphoproteins in human tissue samples, even after prolonged fixation or stabilization times, and is compatible with methods for protein analysis such as 2D-PAGE and ELISA. We conclude that the PAXgene Tissue System has the potential to serve as a versatile tissue fixative for modern pathology.
Collapse
|
4
|
Metodiev M, Alldridge L. Phosphoproteomics: A possible route to novel biomarkers of breast cancer. Proteomics Clin Appl 2012; 2:181-94. [PMID: 21136824 DOI: 10.1002/prca.200780011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proteomics is rapidly transforming the way that cancer and other pathologies are investigated. The ability to identify hundreds of proteins and to compare their abundance in different clinical samples presents a unique opportunity for direct identification of novel disease markers. Furthermore, recent advances allow us to analyse and compare PTMs. This gives an additional dimension for defining a new class of protein biomarker based not only on abundance and expression but also on the occurrence of covalent modifications specific to a disease state or therapy response. Such modifications are often a consequence of the activation/inactivation of a particular disease related pathway. In this review we evaluate the available information on breast cancer related protein-phosphorylation events, illustrating the rationale for investigating this PTM as a target for breast cancer research with eventual clinical relevance. We present a critical survey of the published experimental strategies to study protein phosphorylation on a system wide scale and highlight recent specific advances in breast cancer phosphoproteomics. Finally we discuss the feasibility of establishing novel biomarkers for breast cancer based on the detection of patterns of specific protein phosphorylation events.
Collapse
Affiliation(s)
- Metodi Metodiev
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | | |
Collapse
|
5
|
Naresh R, Nazeer Y, Palani S. In silico evaluation of modes of action of anticancer compounds on molecular targets for cancer. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0198-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Mueller C, Edmiston KH, Carpenter C, Gaffney E, Ryan C, Ward R, White S, Memeo L, Colarossi C, Petricoin EF, Liotta LA, Espina V. One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens. PLoS One 2011; 6:e23780. [PMID: 21858221 PMCID: PMC3157466 DOI: 10.1371/journal.pone.0023780] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/27/2011] [Indexed: 12/31/2022] Open
Abstract
Background There is an urgent need to measure phosphorylated cell signaling proteins in cancer tissue for the individualization of molecular targeted kinase inhibitor therapy. However, phosphoproteins fluctuate rapidly following tissue procurement. Snap-freezing preserves phosphoproteins, but is unavailable in most clinics and compromises diagnostic morphology. Formalin fixation preserves tissue histomorphology, but penetrates tissue slowly, and is unsuitable for stabilizing phosphoproteins. We originated and evaluated a novel one-step biomarker and histology preservative (BHP) chemistry that stabilizes signaling protein phosphorylation and retains formalin-like tissue histomorphology with equivalent immunohistochemistry in a single paraffin block. Results Total protein yield extracted from BHP-fixed, routine paraffin-embedded mouse liver was 100% compared to snap-frozen tissue. The abundance of 14 phosphorylated proteins was found to be stable over extended fixation times in BHP fixed paraffin embedded human colon mucosa. Compared to matched snap-frozen tissue, 8 phosphoproteins were equally preserved in mouse liver, while AMPKβ1 Ser108 was slightly elevated after BHP fixation. More than 25 tissues from mouse, cat and human specimens were evaluated for preservation of histomorphology. Selected tissues were evaluated in a multi-site, independent pathology review. Tissue fixed with BHP showed equivalent preservation of cytoplasmic and membrane cytomorphology, with significantly better nuclear chromatin preservation by BHP compared to formalin. Immunohistochemical staining of 13 non-phosphorylated proteins, including estrogen receptor alpha, progesterone receptor, Ki-67 and Her2, was equal to or stronger in BHP compared to formalin. BHP demonstrated significantly improved immunohistochemical detection of phosphorylated proteins ERK Thr202/Tyr204, GSK3-α/β Ser21/Ser9, p38-MAPK Thr180/Tyr182, eIF4G Ser1108 and Acetyl-CoA Carboxylase Ser79. Conclusion In a single paraffin block BHP preserved the phosphorylation state of several signaling proteins at a level comparable to snap-freezing, while maintaining the full diagnostic immunohistochemical and histomorphologic detail of formalin fixation. This new tissue fixative has the potential to greatly facilitate personalized medicine, biobanking, and phospho-proteomic research.
Collapse
Affiliation(s)
- Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lei H, Cao P, Miao G, Lin Z, Diao Z. Expression and functional characterization of tumor-targeted fusion protein composed of NGR peptide and 15-kDa actin fragment. Appl Biochem Biotechnol 2010; 162:988-95. [PMID: 20119635 DOI: 10.1007/s12010-009-8901-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 12/28/2009] [Indexed: 10/19/2022]
Abstract
To induce tumor cell apoptosis, a modified 15 kDa actin linked with a peptide NGR "homing" into tumor or tumor vessels was expressed in Escherichia coli. After refolding and purification, this fusion protein NGR-15actin was labeled with FITC to testify whether NGR-15actin could integrate into the cytoskeleton. It was found that this targeted peptide could induce HepG2 and HeLa cells apoptosis through its effect on the cytoskeleton function by binding to cytoskeleton protein. Thus, targeted NGR-15actin could be a candidate molecule for the therapy of cancer.
Collapse
Affiliation(s)
- Huanzong Lei
- Department of Biology, School of Chemistry and Life Sciences, Lishui University, Lishui, 323000 Zhejiang, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Harris CS, Hennequin LF, Willerval O. Three-point variation of a gefinitib quinazoline core. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.01.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Broxterman HJ, Georgopapadakou NH. Anticancer therapeutics: A surge of new developments increasingly target tumor and stroma. Drug Resist Updat 2007; 10:182-93. [PMID: 17855157 DOI: 10.1016/j.drup.2007.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/10/2007] [Accepted: 07/31/2007] [Indexed: 12/30/2022]
Abstract
The Annual Meeting of the American Association for Cancer Research (AACR) brings together research in fundamental biology, translational science, drug development and clinical testing of emerging anticancer therapies. Among the highlights of the 2007 Annual Meeting were major research themes on drug action, drug resistance and new drug development. Instead of striving for a comprehensive overview, we showcase several trends, concepts and research areas that exemplify the complexity of drug resistance and its reversal as we currently understand it. Many of the studies discussed here deal with the interaction of tumor cells with their stromal microenvironment; structural proteins as well as cellular components, fibroblasts as well as inflammatory cells. Target identification, target validation and dealing with the challenge of resistance are recurring themes. Specific classes of molecules discussed are the taxanes, tyrosine kinase inhibitors, anti-angiogenic, anti-stromal and anti-metastatic agents. In the latter three categories, targets reviewed are delta-like ligand 4 (DLL4), integrins, nodal, galectins, lysyl oxidases and thrombospondins, several of which belong to the p53-tumor suppressor repertoire of secreted proteins. Finally, developments in other inhibitor classes such as PI3K/Akt and Rho GTPase inhibitors and thoughts on possible novel combination therapies are briefly summarized. The report also includes relevant publications to July 2007.
Collapse
Affiliation(s)
- Henk J Broxterman
- Department of Medical Oncology, Vrije Universiteit Medical Center, Cancer Centre Amsterdam (CCA 1-38), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
10
|
Zhang H, Solomon VR, Hu C, Ulibarri G, Lee H. Synthesis and in vitro cytotoxicity evaluation of 4-aminoquinoline derivatives. Biomed Pharmacother 2007; 62:65-9. [PMID: 17555912 PMCID: PMC7125724 DOI: 10.1016/j.biopha.2007.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Indexed: 11/15/2022] Open
Abstract
A series of 4-aminoquinoline derivatives were synthesized by the reaction of 4-chloro-7-substituted-quinolines with the corresponding mono/dialkyl amines. The structures of the synthesized compounds were confirmed by NMR and FAB-MS spectral and elemental analyses. Subsequently, the compounds were examined for their cytotoxic effects on two different human breast tumor cell lines: MCF7 and MDA-MB468. Although all compounds examined were quite effective on both cell lines, the compound N'-(7-chloro-quinolin-4-yl)-N,N-dimethyl-ethane-1,2-diamine emerged as the most active compound of the series. It was particularly potent against MDA-MB 468 cells when compared to chloroquine and amodiaquine. The compound butyl-(7-fluoro-quinolin-4-yl)-amine showed more potent effects on MCF-7 cells when compared to chloroquine. Therefore, 4-aminoquinoline can serve as the prototype molecule for further development of a new class of anticancer agents.
Collapse
Affiliation(s)
- Haiwen Zhang
- Tumour Biology Group, Northeastern Ontario Regional Cancer Program at the Sudbury Regional Hospital, 41 Ramsey Lake Road, Sudbury, Ontario P3E 5J1, Canada
| | - V. Raja Solomon
- Tumour Biology Group, Northeastern Ontario Regional Cancer Program at the Sudbury Regional Hospital, 41 Ramsey Lake Road, Sudbury, Ontario P3E 5J1, Canada
| | - Changkun Hu
- Tumour Biology Group, Northeastern Ontario Regional Cancer Program at the Sudbury Regional Hospital, 41 Ramsey Lake Road, Sudbury, Ontario P3E 5J1, Canada
| | - Gerardo Ulibarri
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Hoyun Lee
- Tumour Biology Group, Northeastern Ontario Regional Cancer Program at the Sudbury Regional Hospital, 41 Ramsey Lake Road, Sudbury, Ontario P3E 5J1, Canada
- Corresponding author. Tel.: +1 705 5226237x2703; fax: +1 705 523 7326.
| |
Collapse
|
11
|
Cassinelli G, Lanzi C, Petrangolini G, Tortoreto M, Pratesi G, Cuccuru G, Laccabue D, Supino R, Belluco S, Favini E, Poletti A, Zunino F. Inhibition of c-Met and prevention of spontaneous metastatic spreading by the 2-indolinone RPI-1. Mol Cancer Ther 2006; 5:2388-97. [PMID: 16985073 DOI: 10.1158/1535-7163.mct-06-0245] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocyte growth factor (HGF) and its tyrosine kinase receptor Met play a pivotal role in the tumor metastatic phenotype and represent attractive therapeutic targets. We investigated the biochemical and biological effects of the tyrosine kinase inhibitor RPI-1 on the human lung cancer cell lines H460 and N592, which express constitutively active Met. RPI-1-treated cells showed down-regulation of Met activation and expression, inhibition of HGF/Met-dependent downstream signaling involving AKT, signal transducers and activators of transcription 3 and paxillin, as well as a reduced expression of the proangiogenic factors vascular endothelial growth factor and basic fibroblast growth factor. Cell growth in soft agar of H460 cells was strongly reduced in the presence of the drug. Furthermore, RPI-1 inhibited both spontaneous and HGF-induced motility/invasiveness of both H460 and human endothelial cells. Targeting of Met signaling by alternative methods (Met small interfering RNA and anti-phosphorylated Met antibody intracellular transfer) produced comparable biochemical and biological effects. Using the spontaneously metastasizing lung carcinoma xenograft H460, daily oral treatment with well-tolerated doses of RPI-1 produced a significant reduction of spontaneous lung metastases (-75%; P < 0.001, compared with control mice). In addition, a significant inhibition of angiogenesis in primary s.c. tumors of treated mice was observed, possibly contributing to limit the development of metastases. The results provide preclinical evidence in support of Met targeting pharmacologic approach as a new option for the control of tumor metastatic dissemination.
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Department of Experimental Oncology and Laboratories, Preclinical Chemotherapy and Pharmacology Unit, Istituto Nazionale Tumori, via Venezian 1, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Cools J, Maertens C, Marynen P. Resistance to tyrosine kinase inhibitors: calling on extra forces. Drug Resist Updat 2005; 8:119-29. [PMID: 15869901 DOI: 10.1016/j.drup.2005.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2005] [Revised: 04/06/2005] [Accepted: 04/06/2005] [Indexed: 11/18/2022]
Abstract
Over the past 5 years, small molecule tyrosine kinase inhibitors have been successfully introduced as new cancer therapeutics. The pioneering work with the ABL inhibitor imatinib (Glivec, Gleevec) was rapidly extended to other types of leukemias as well as solid tumors, which stimulated the development of a variety of new tyrosine kinase inhibitors. Unfortunately, oncogenic tyrosine kinases seem to have little problem to develop resistance to these inhibitors, and there is good evidence that this is not limited to imatinib, but also occurs with other inhibitors, such as FLT3 and EGFR inhibitors. Based on studies with imatinib, mutation and amplification of the target kinase seem to be the most important mechanisms for the development of resistance, but these mechanisms alone cannot explain all cases of resistance. A better understanding of the resistance mechanisms will be required to design improved treatment strategies in the future. In this review, we summarize the current insights in the different mechanisms of resistance to small molecule tyrosine kinase inhibitors, and discuss future improvements that might limit or even overcome resistance.
Collapse
Affiliation(s)
- Jan Cools
- Department of Human Genetics, University of Leuven, Flanders Interuniversity Institute for Biotechnology (VIB), B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
14
|
Harris CS, Hennequin LF, Kettle JG, Willerval OA. Selective alkylation of a 6,7-dihydroxyquinazoline. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Zhang J, Tian Q, Chan SY, Duan W, Zhou S. Insights into oxazaphosphorine resistance and possible approaches to its circumvention. Drug Resist Updat 2005; 8:271-97. [PMID: 16154799 DOI: 10.1016/j.drup.2005.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 07/29/2005] [Accepted: 08/10/2005] [Indexed: 11/30/2022]
Abstract
The oxazaphosphorines cyclophosphamide, ifosfamide and trofosfamide remain a clinically useful class of anticancer drugs with substantial antitumour activity against a variety of solid tumors and hematological malignancies. A major limitation to their use is tumour resistance, which is due to multiple mechanisms that include increased DNA repair, increased cellular thiol levels, glutathione S-transferase and aldehyde dehydrogenase activities, and altered cell-death response to DNA damage. These mechanisms have been recently re-examined with the aid of sensitive analytical techniques, high-throughput proteomic and genomic approaches, and powerful pharmacogenetic tools. Oxazaphosphorine resistance, together with dose-limiting toxicity (mainly neutropenia and neurotoxicity), significantly hinders chemotherapy in patients, and hence, there is compelling need to find ways to overcome it. Four major approaches are currently being explored in preclinical models, some also in patients: combination with agents that modulate cellular response and disposition of oxazaphosphorines; antisense oligonucleotides directed against specific target genes; introduction of an activating gene (CYP3A4) into tumor tissue; and modification of dosing regimens. Of these approaches, antisense oligonucleotides and gene therapy are perhaps more speculative, requiring detailed safety and efficacy studies in preclinical models and in patients. A fifth approach is the design of novel oxazaphosphorines that have favourable pharmacokinetic and pharmacodynamic properties and are less vulnerable to resistance. Oxazaphosphorines not requiring hepatic CYP-mediated activation (for example, NSC 613060 and mafosfamide) or having additional targets (for example, glufosfamide that also targets glucose transport) have been synthesized and are being evaluated for safety and efficacy. Characterization of the molecular targets associated with oxazaphosphorine resistance may lead to a deeper understanding of the factors critical to the optimal use of these agents in chemotherapy and may allow the development of strategies to overcome resistance.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | | | |
Collapse
|
16
|
Facile synthesis of 7-amino anilinoquinazolines via direct amination of the quinazoline core. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.08.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|