1
|
Guo W, Wang H, Chen P, Shen X, Zhang B, Liu J, Peng H, Xiao X. Identification and Characterization of Multiple Myeloma Stem Cell-Like Cells. Cancers (Basel) 2021; 13:3523. [PMID: 34298738 PMCID: PMC8306148 DOI: 10.3390/cancers13143523] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell tumor of the blood system with high incidence and poor prognosis. With a further understanding of the pathogenesis of MM and the bone marrow microenvironment, a variety of adjuvant cell therapies and new drugs have been developed. However, the drug resistance and high relapse rate of MM have not been fundamentally resolved. Studies have shown that, in patients with MM, there is a type of poorly differentiated progenitor cell (MM stem cell-like cells, MMSCs). Although there is no recognized standard for identification and classification, it is confirmed that they are closely related to the drug resistance and relapse of MM. This article therefore systematically summarizes the latest developments in MMSCs with possible markers of MMSCs, introduces the mechanism of how MMSCs work in MM resistance and recurrence, and discusses the active pathways that related to stemness of MM.
Collapse
Affiliation(s)
- Wancheng Guo
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Haiqin Wang
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
| | - Peng Chen
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Xiaokai Shen
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Boxin Zhang
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
| | - Xiaojuan Xiao
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
| |
Collapse
|
2
|
Sabol HM, Delgado-Calle J. The multifunctional role of Notch signaling in multiple myeloma. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7:20. [PMID: 34778567 PMCID: PMC8589324 DOI: 10.20517/2394-4722.2021.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by uncontrolled growth of malignant plasma cells in the bone marrow and currently is incurable. The bone marrow microenvironment plays a critical role in MM. MM cells reside in specialized niches where they interact with multiple marrow cell types, transforming the bone/bone marrow compartment into an ideal microenvironment for the migration, proliferation, and survival of MM cells. In addition, MM cells interact with bone cells to stimulate bone destruction and promote the development of bone lesions that rarely heal. In this review, we discuss how Notch signals facilitate the communication between adjacent MM cells and between MM cells and bone/bone marrow cells and shape the microenvironment to favor MM progression and bone disease. We also address the potential and therapeutic approaches used to target Notch signaling in MM.
Collapse
Affiliation(s)
- Hayley M Sabol
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Luszczak S, Kumar C, Sathyadevan VK, Simpson BS, Gately KA, Whitaker HC, Heavey S. PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer. Signal Transduct Target Ther 2020; 5:7. [PMID: 32296034 PMCID: PMC6992635 DOI: 10.1038/s41392-020-0109-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023] Open
Abstract
PIM kinases have been shown to play a role in prostate cancer development and progression, as well as in some of the hallmarks of cancer, especially proliferation and apoptosis. Their upregulation in prostate cancer has been correlated with decreased patient overall survival and therapy resistance. Initial efforts to inhibit PIM with monotherapies have been hampered by compensatory upregulation of other pathways and drug toxicity, and as such, it has been suggested that co-targeting PIM with other treatment approaches may permit lower doses and be a more viable option in the clinic. Here, we present the rationale and basis for co-targeting PIM with inhibitors of PI3K/mTOR/AKT, JAK/STAT, MYC, stemness, and RNA Polymerase I transcription, along with other therapies, including androgen deprivation, radiotherapy, chemotherapy, and immunotherapy. Such combined approaches could potentially be used as neoadjuvant therapies, limiting the development of resistance to treatments or sensitizing cells to other therapeutics. To determine which drugs should be combined with PIM inhibitors for each patient, it will be key to develop companion diagnostics that predict response to each co-targeted option, hopefully providing a personalized medicine pathway for subsets of prostate cancer patients in the future.
Collapse
Affiliation(s)
- Sabina Luszczak
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Christopher Kumar
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | | | - Benjamin S Simpson
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Kathy A Gately
- Trinity Translational Medicine Institute, St. James's Hospital Dublin, Dublin 8, Dublin, Ireland
| | - Hayley C Whitaker
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK.
| |
Collapse
|
4
|
Patrad E, Niapour A, Farassati F, Amani M. Combination treatment of all-trans retinoic acid (ATRA) and γ-secretase inhibitor (DAPT) cause growth inhibition and apoptosis induction in the human gastric cancer cell line. Cytotechnology 2018; 70:865-877. [PMID: 29417442 PMCID: PMC5851978 DOI: 10.1007/s10616-018-0199-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/24/2018] [Indexed: 01/26/2023] Open
Abstract
Current medication for gastric cancer patients has a low success rate with resistance and side effects. According to recent studies, γ-secretase inhibitors is used as therapeutic drugs in cancer. Moreover, all-trans retinoic acid (ATRA) is a natural compound proposed for the treatment/chemo-prevention of cancers. The aim of this study was to explore the effects of ATRA in combination with N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT) as γ-secretase inhibitor on viability and apoptosis of the AGS and MKN-45 derived from human gastric cancer. AGS and MKN-45 gastric cancer cell lines were treated with different concentrations of ATRA or DAPT alone or ATRA plus DAPT. The viability, death detection and apoptosis of cells was examined by MTT assay and Ethidium bromide/acridine orange staining. The distribution of cells in different phases of cell cycle was also evaluated through flow cytometry analyses. In addition, caspase 3/7 activity and the expression of caspase-3 and bcl-2 were examined. DAPT and ATRA alone decreased gastric cancer cells viability in a concentration dependent manner. The combination of DAPT and ATRA exhibited significant synergistic inhibitory effects. The greater percentage of cells were accumulated in G0/G1 phase of cell cycle in combination treatment. The combination of DAPT and ATRA effectively increased the proportion of apoptotic cells and the level of caspase 3/7 activities compared to single treatment. Moreover, augmented caspase-3 up-regulation and bcl-2 down-regulation were found following combined application of DAPT and ATRA. The combination of DAPT and ATRA led to more reduction in viability and apoptosis in respect to DAPT or ATRA alone in the investigated cell lines.
Collapse
Affiliation(s)
- Elham Patrad
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Faris Farassati
- Molecular Medicine Laboratory, Department of Medicine, The University of Kansas Medical School (KUMC), Kansas City, KS, USA
| | - Mojtaba Amani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
5
|
Pan E, Supko JG, Kaley TJ, Butowski NA, Cloughesy T, Jung J, Desideri S, Grossman S, Ye X, Park DM. Phase I study of RO4929097 with bevacizumab in patients with recurrent malignant glioma. J Neurooncol 2016; 130:571-579. [PMID: 27826680 DOI: 10.1007/s11060-016-2263-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/27/2016] [Indexed: 12/15/2022]
Abstract
Antiangiogenic therapies for malignant gliomas often result in transient response, and recurrent disease is characterized by adoption of invasive and hypoxic phenotype. The notch signaling pathway is activated in gliomas, and augments cell migration and hypoxic response. Here we report a clinical study of the combination of bevacizumab and RO4929097, an inhibitor of the notch signaling cascade. A phase I clinical trial was conducted through the Adult Brain Tumor Consortium in subjects with recurrent malignant glioma. Primary objectives were to assess safety and to define the maximum tolerated dose of RO4929097 in combination with bevacizumab. Secondary objectives were to determine overall survival, progression free survival, radiographic response, pharmacokinetic evaluation, and tissue biomarker analysis. Thirteen subjects were enrolled. Of the three subjects treated with the highest dose of RO4929097, one grade 3 toxicity and one grade 2 toxicity were observed. Definitive maximum tolerated dose of RO4929097 in combination with bevacizumab was not identified due to manufacturer's decision to halt drug production. 2 of 12 evaluable subjects demonstrated radiographic response; one subject experienced CR and the second PR. The median overall survival was 10.9 months with a median progression-free survival of 3.7 months. Two subjects remained free of disease progression at 6 months from treatment initiation. PK evaluation did not identify clinically significant drug-drug interactions. All analyzed tissue specimens revealed activation of notch signaling. Combination of RO4929097 and bevacizumab was well-tolerated. Given the compelling scientific rationale, additional studies of antiangiogenic and notch signaling inhibitors should be considered.
Collapse
Affiliation(s)
- Edward Pan
- Department of Medicine, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Jeffrey G Supko
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas J Kaley
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Timothy Cloughesy
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Jinkyu Jung
- Neuro-Oncology Branch, CCR, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Serena Desideri
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Stuart Grossman
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Xiaobu Ye
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Deric M Park
- Neuro-Oncology Branch, CCR, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Amin ARMR, Karpowicz PA, Carey TE, Arbiser J, Nahta R, Chen ZG, Dong JT, Kucuk O, Khan GN, Huang GS, Mi S, Lee HY, Reichrath J, Honoki K, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Keith WN, Bhakta D, Halicka D, Niccolai E, Fujii H, Aquilano K, Ashraf SS, Nowsheen S, Yang X, Bilsland A, Shin DM. Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol 2015; 35 Suppl:S55-S77. [PMID: 25749195 PMCID: PMC4561219 DOI: 10.1016/j.semcancer.2015.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting.
Collapse
Affiliation(s)
| | - Phillip A Karpowicz
- Department of Biological Sciences, University of Windsor, 401 Sunset Ave., Room 327, Windsor, Ontario, N9B 3P4, Canada
| | | | - Jack Arbiser
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Atlanta Veterans Administration Health Center, Atlanta, GA, USA
| | - Rita Nahta
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Zhuo G Chen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Jin-Tang Dong
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | | | - Shijun Mi
- Albert Einstein College of Medicine, New York, NY, USA
| | - Ho-Young Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | | | | | | | - Amr Amin
- UAE University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana Champaign, IL, USA
| | | | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Laboratory, Guildford, Surrey, United Kingdom
| | | | | | | | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | | | | | | | | | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Medical School, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana Champaign, IL, USA
| | | | - Dong M Shin
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Martowicz A, Kern J, Gunsilius E, Untergasser G. Establishment of a human multiple myeloma xenograft model in the chicken to study tumor growth, invasion and angiogenesis. J Vis Exp 2015:e52665. [PMID: 25993267 DOI: 10.3791/52665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM), a malignant plasma cell disease, remains incurable and novel drugs are required to improve the prognosis of patients. Due to the lack of the bone microenvironment and auto/paracrine growth factors human MM cells are difficult to cultivate. Therefore, there is an urgent need to establish proper in vitro and in vivo culture systems to study the action of novel therapeutics on human MM cells. Here we present a model to grow human multiple myeloma cells in a complex 3D environment in vitro and in vivo. MM cell lines OPM-2 and RPMI-8226 were transfected to express the transgene GFP and were cultivated in the presence of human mesenchymal cells and collagen type-I matrix as three-dimensional spheroids. In addition, spheroids were grafted on the chorioallantoic membrane (CAM) of chicken embryos and tumor growth was monitored by stereo fluorescence microscopy. Both models allow the study of novel therapeutic drugs in a complex 3D environment and the quantification of the tumor cell mass after homogenization of grafts in a transgene-specific GFP-ELISA. Moreover, angiogenic responses of the host and invasion of tumor cells into the subjacent host tissue can be monitored daily by a stereo microscope and analyzed by immunohistochemical staining against human tumor cells (Ki-67, CD138, Vimentin) or host mural cells covering blood vessels (desmin/ASMA). In conclusion, the onplant system allows studying MM cell growth and angiogenesis in a complex 3D environment and enables screening for novel therapeutic compounds targeting survival and proliferation of MM cells.
Collapse
Affiliation(s)
- Agnieszka Martowicz
- Department of Internal Medicine V, Innsbruck Medical University; Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute
| | - Johann Kern
- Department of Internal Medicine V, Innsbruck Medical University; Oncotyrol GmbH
| | | | - Gerold Untergasser
- Department of Internal Medicine V, Innsbruck Medical University; Tyrolean Cancer Research Institute;
| |
Collapse
|
8
|
Zhang X, Shi Y, Weng Y, Lai Q, Luo T, Zhao J, Ren G, Li W, Pan H, Ke Y, Zhang W, He Q, Wang Q, Zhou R. The truncate mutation of Notch2 enhances cell proliferation through activating the NF-κB signal pathway in the diffuse large B-cell lymphomas. PLoS One 2014; 9:e108747. [PMID: 25314575 PMCID: PMC4196756 DOI: 10.1371/journal.pone.0108747] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/25/2014] [Indexed: 12/13/2022] Open
Abstract
The Notch2 is a critical membrane receptor for B-cell functions, and also displays various biological roles in lymphoma pathogenesis. In this article, we reported that 3 of 69 (4.3%) diffuse large B-cell lymphomas (DLBCLs) exhibited a truncate NOTCH2 mutation at the nucleotide 7605 (G/A) in the cDNA sequence, which led to partial deletion of the C-terminal of PEST (proline-, glutamic acid-, serine- and threonine-rich) domain. The truncate Notch2 activated both the Notch2 and the NF-κB signals and promoted the proliferation of B-cell lymphoma cell lines, including DLBCL and Burkitt's lymphoma cell lines. Moreover, the ectopic proliferation was completely inhibited by ammonium pyrrolidinedithiocarbamate (PDTC), an NF-κB inhibitor. Simultaneously, PDTC also reduced the expression level of Notch2. Based on these results, we conclude that the Notch2 receptor with PEST domain truncation enhances cell proliferation which may be associated with the activation of the Notch2 and the NF-κB signaling. Our results are expected to provide a possible target for new DLBCL therapies by suppressing the Notch2 and the NF-κB signaling.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Base Sequence
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Exons
- HEK293 Cells
- Humans
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mutagenesis, Site-Directed
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Protein Structure, Tertiary
- Pyrrolidines/pharmacology
- Receptor, Notch2/chemistry
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Signal Transduction
- Thiocarbamates/pharmacology
Collapse
Affiliation(s)
- Xinxia Zhang
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaoyao Shi
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Weng
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Lai
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Taobo Luo
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhao
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wande Li
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Hongyang Pan
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Epitomics (Hangzhou) Inc., Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhang
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang He
- Zhejiang Province People's Hospital, Hangzhou, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ren Zhou
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
9
|
Sands WA, Copland M, Wheadon H. Targeting self-renewal pathways in myeloid malignancies. Cell Commun Signal 2013; 11:33. [PMID: 23675967 PMCID: PMC3665484 DOI: 10.1186/1478-811x-11-33] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/22/2013] [Indexed: 12/23/2022] Open
Abstract
A fundamental property of hematopoietic stem cells (HSCs) is the ability to self-renew. This is a complex process involving multiple signal transduction cascades which control the fine balance between self-renewal and differentiation through transcriptional networks. Key activators/regulators of self-renewal include chemokines, cytokines and morphogens which are expressed in the bone marrow niche, either in a paracrine or autocrine fashion, and modulate stem cell behaviour. Increasing evidence suggests that the downstream signaling pathways induced by these ligands converge at multiple levels providing a degree of redundancy in steady state hematopoiesis. Here we will focus on how these pathways cross-talk to regulate HSC self-renewal highlighting potential therapeutic windows which could be targeted to prevent leukemic stem cell self-renewal in myeloid malignancies.
Collapse
Affiliation(s)
- William A Sands
- Paul O’Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0ZD, UK
| | - Mhairi Copland
- Paul O’Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0ZD, UK
| | - Helen Wheadon
- Paul O’Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0ZD, UK
| |
Collapse
|
10
|
Aguirre SA, Liu L, Hosea NA, Scott W, May JR, Burns-Naas LA, Randolph S, Denlinger RH, Han B. Intermittent oral coadministration of a gamma secretase inhibitor with dexamethasone mitigates intestinal goblet cell hyperplasia in rats. Toxicol Pathol 2013; 42:422-34. [PMID: 23651588 DOI: 10.1177/0192623313486315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dexamethasone was given in 2 oral dosing regimens with repeat dose oral administration of the gamma secretase inhibitor (GSI), PF-03084014, in Sprague-Dawley (SD) rats in order to evaluate the effects of coadministration of dexamethasone on GSI-induced goblet cell hyperplasia (GCH) in the intestinal tract. Safety end points were evaluated in 1 week and 1 month studies. The dosing regimens tested in the 1-month studies included a 1-week pretreatment with 1.0 mg/kg dexamethasone followed by a 3-week repeat dose treatment with 100 mg/kg GSI or concurrent intermittent treatment with 1.0 mg/kg dexamethasone on weeks 1 and 3 and repeat dose treatment with 100 mg/kg GSI for 4 weeks. Pretreatment with dexamethasone for 1 week transiently mitigated the severity of intestinal GCH for up to 1 week. Intermittent coadministration of dexamethasone on weeks 1 and 3 with GSI repeat dosing for 4 weeks mitigated intestinal GCH for up to 4 weeks post treatment. Treatment-related morbidity and mortality occurred on day 7 with 150 mg/kg GSI and 5 mg/kg dexamethasone coadministration, and on days 13, 14, and 23 with 100 mg/kg GSI and 1 mg/kg dexamethasone coadministration.
Collapse
Affiliation(s)
- Shirley A Aguirre
- 1Drug Safety Research & Development, Pfizer Global Research and Development, La Jolla Laboratories, San Diego, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu J, Fan H, Ma Y, Liang D, Huang R, Wang J, Zhou F, Kan Q, Ming L, Li H, Giercksky KE, Nesland JM, Suo Z. Notch1 is a 5-fluorouracil resistant and poor survival marker in human esophagus squamous cell carcinomas. PLoS One 2013; 8:e56141. [PMID: 23409141 PMCID: PMC3567068 DOI: 10.1371/journal.pone.0056141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 01/07/2013] [Indexed: 12/15/2022] Open
Abstract
Notch signaling involves the processes that govern cell proliferation, cell fate decision, cell differentiation and stem cell maintenance. Due to its fundamental role in stem cells, it has been speculated during the recent years that Notch family may have critical functions in cancer stem cells or cancer cells with a stem cell phenotype, therefore playing an important role in the process of oncogenesis. In this study, expression of Notch family in KYSE70, KYSE140 and KYSE450 squamous esophageal cancer cell lines and virus transformed squamous esophageal epithelial cell line Het-1A was examined by quantitative RT-PCR. Compared to the Het-1A cells, higher levels of Nocth1 and Notch3 expression in the cancer cell lines were identified. Due to the finding that NOTCH3 mainly mediates squamous cell differentiation, NOTCH1 expression was further studied in these cell lines. By Western blot analyses, the KYSE70 cell line which derived from a poorly differentiated tumor highly expressed Notch1, and the Notch1 expression in this cell line was hypoxia inducible, while the KYSE450 cell line which derived from a well differentiated tumor was always negative for Notch1, even in hypoxia. Additional studies demonstrated that the KYSE70 cell line was more 5-FU resistant than the KYSE450 cell line and such 5-FU resistance is correlated to Notch1 expression verified by Notch1 knockdown experiments. In clinical samples, Notch1 protein expression was detected in the basal cells of human esophagus epithelia, and its expression in squamous cell carcinomas was significantly associated with higher pathological grade and shorter overall survival. We conclude that Notch1 expression is associated with cell aggressiveness and 5-FU drug resistance in human esophageal squamous cell carcinoma cell lines in vitro and is significantly associated with a poor survival in human esophageal squamous cell carcinomas.
Collapse
Affiliation(s)
- Jian Liu
- Department of Pathology, The First Teaching Hospital of Zhengzhou University, Basic Medical College, Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Huijie Fan
- Department of Oncology, The First Teaching Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuanyuan Ma
- Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dongming Liang
- Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ruixia Huang
- Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Junsheng Wang
- Department of Oncology, Anyang Tumor Hospital, Anyang, Henan Province, China
| | - Fuyou Zhou
- Department of Surgery, Anyang Tumor Hospital, Anyang, Henan Province, China
| | - Quancheng Kan
- Department of Pharmacology, The First Teaching Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Liang Ming
- Department of Medical Laboratory, The First Teaching Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huixiang Li
- Department of Pathology, The First Teaching Hospital of Zhengzhou University, Basic Medical College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Karl-Erik Giercksky
- Department of Surgery, Institute for Cancer Research, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jahn Martin Nesland
- Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhenhe Suo
- Department of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Oncology, The First Teaching Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Pathology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
12
|
Notch-directed microenvironment reprogramming in myeloma: a single path to multiple outcomes. Leukemia 2013; 27:1009-18. [PMID: 23307030 DOI: 10.1038/leu.2013.6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple myeloma is a deadly hematopoietic malignancy. Despite therapeutic advances such as autologous stem cell transplantation and novel chemotherapeutics, multiple myeloma remains incurable. Multiple myeloma cell localization in the bone marrow and the cross-talk with the bone niche trigger dramatic alterations in the bone marrow microenvironment critical for tumor progression, resistance to therapies and osteolytic bone destruction. It does not surprise that the molecular bases of such fatal interaction are under examination as source of novel potential pharmacological targets. Among these, the Notch family of receptors and ligands has gained growing interest in the recent years because of their early deregulation in multiple myeloma and their ability to affect multiple features of the disease, including tumor cell growth, drug resistance, angiogenesis and bone lesions. This review will explore the evidences of Notch deregulation in multiple myeloma, the state of the art of the currently known roles of its signaling in the fatal interaction between multiple myeloma cells, extracellular matrix and cells in the bone marrow stroma. Finally, we will present recent findings concerning the arguments for or against a therapy addressed to Notch signaling inhibition in the cure of multiple myeloma.
Collapse
|
13
|
Rosati E, Sabatini R, De Falco F, Del Papa B, Falzetti F, Di Ianni M, Cavalli L, Fettucciari K, Bartoli A, Screpanti I, Marconi P. γ-Secretase inhibitor I induces apoptosis in chronic lymphocytic leukemia cells by proteasome inhibition, endoplasmic reticulum stress increase and notch down-regulation. Int J Cancer 2012; 132:1940-53. [DOI: 10.1002/ijc.27863] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 12/27/2022]
|
14
|
Strosberg JR, Yeatman T, Weber J, Coppola D, Schell MJ, Han G, Almhanna K, Kim R, Valone T, Jump H, Sullivan D. A phase II study of RO4929097 in metastatic colorectal cancer. Eur J Cancer 2012; 48:997-1003. [PMID: 22445247 PMCID: PMC4522922 DOI: 10.1016/j.ejca.2012.02.056] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/13/2011] [Accepted: 02/19/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND The Notch signalling pathway is activated in a variety of malignancies and has been implicated in colorectal cancer progression. One of the first steps in the Notch pathway activation is mediated by γ-secretase, a proteolytic enzyme which produces an activated intracellular Notch (ICN). RO4929097 is a selective inhibitor of γ-secretase. We tested the activity of RO4929097 in patients with metastatic, refractory colorectal cancer. PATIENTS AND METHODS Patients with metastatic colorectal cancer who had received at least two prior lines of systemic chemotherapy were enrolled on the study. Patients were treated with RO4929097 at its recommended phase II dose of 20mg daily, 3 days on and 4 days off continuously. Cycle length was 28 days. Imaging was performed every two cycles. Archival tissue specimens were stained immunohistochemically for components of the notch pathway: Notch1, ICN and the downstream target HES1. RESULTS Thirty-seven patients were enrolled of whom 33 were evaluable for toxicity and response. Immunohistochemical analysis of archival tissues demonstrated positive staining for the notch receptor as well as intracellular notch and the downstream gene HES1 in the majority of patients. Nevertheless, no objective radiographic responses were observed in this group and only six patients had stable disease as their best response. Median PFS was 1.8 months and median overall survival (OS) was 6.0 months. CONCLUSION In this study of RO4929097 in patients with refractory metastatic colorectal cancer, no radiographic responses were seen and time to progression was short, which suggests that RO4929097 at the study dose and schedule has minimal single agent activity in this malignancy.
Collapse
Affiliation(s)
- Jonathan R Strosberg
- Dept of GI Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen F, Pisklakova A, Li M, Baz R, Sullivan DM, Nefedova Y. Gamma-secretase inhibitor enhances the cytotoxic effect of bortezomib in multiple myeloma. Cell Oncol (Dordr) 2011; 34:545-51. [PMID: 21965140 DOI: 10.1007/s13402-011-0060-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Targeting of Notch signaling with γ-secretase inhibitors (GSIs) has been considered a promising strategy for the treatment of hematological malignancies including multiple myeloma (MM). Here we investigated whether the cytotoxic effect of bortezomib, an agent commonly used in MM, could be enhanced by the addition of a GSI. METHODS MM cells were treated with GSI, bortezomib or the combination thereof. Apoptosis of MM cells, proteasome activity and Notch signaling activation were determined. The effect of the drug combination was also evaluated in MM cells transfected with the active domain of Notch-1. RESULTS Using MM cell lines and primary MM cells isolated from the bone marrow of patients with MM we found a strong synergistic effect of bortezomib in combination with one of the GSIs studied. We next investigated the mechanism underlying this synergistic effect and determined that the effect of the drug combination was mainly dependent on the ability of the selected GSI to inhibit proteasome activity in MM cells. CONCLUSION Our study demonstrates that selected GSIs that inhibit proteasome activity may be successfully used in combination with bortezomib enhancing its anti-MM effect.
Collapse
Affiliation(s)
- Feng Chen
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
16
|
Li M, Chen F, Clifton N, Sullivan DM, Dalton WS, Gabrilovich DI, Nefedova Y. Combined inhibition of Notch signaling and Bcl-2/Bcl-xL results in synergistic antimyeloma effect. Mol Cancer Ther 2011; 9:3200-9. [PMID: 21159606 DOI: 10.1158/1535-7163.mct-10-0372] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling through the receptor/transcriptional regulator Notch plays an important role in tumor cell survival. Recent studies have demonstrated that pharmacological inhibition of the Notch pathway with γ-secretase inhibitor (GSI) induces apoptosis of multiple myeloma (MM) cells via upregulation of the proapoptotic protein Noxa. ABT-737, a novel BH3 mimetic, was shown to block Bcl-2 and Bcl-xL and induce MM cell apoptosis. Here, we investigated whether the inhibition of Notch signaling could enhance the proapoptotic effect of ABT-737. The antimyeloma effect of ABT-737 on MM cell lines or primary cells was substantially increased by the addition of Notch inhibitor. The synergistic effect of the GSI+ABT-737 combination was mediated by activation of Bak and Bax and release of cytochrome c. While toxic for MM cells, the combination of GSI and ABT-737 did not affect survival of peripheral blood mononuclear cells isolated from healthy donors. In vivo experiments using xenograft and SCID-hu models of MM demonstrated a significant antitumor effect of the GSI/ABT-737 combination as compared to the effect of Notch or Bcl-2/Bcl-xL inhibitors alone. Thus, this drug combination may be therapeutically beneficial for patients with MM.
Collapse
Affiliation(s)
- Ming Li
- H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 2010; 51:1968-2005. [PMID: 20849387 DOI: 10.3109/10428194.2010.506570] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are integral components in the treatment protocols of acute lymphoblastic leukemia, multiple myeloma, and non-Hodgkin lymphoma owing to their ability to induce apoptosis of these malignant cells. Resistance to GC therapy is associated with poor prognosis. Although they have been used in clinics for decades, the signal transduction pathways involved in GC-induced apoptosis have only partly been resolved. Accumulating evidence shows that this cell death process is mediated by a communication between nuclear GR affecting gene transcription of pro-apoptotic genes such as Bim, mitochondrial GR affecting the physiology of the mitochondria, and the protein kinase glycogen synthase kinase-3 (GSK3), which interacts with Bim following exposure to GCs. Prevention of Bim up-regulation, mitochondrial GR translocation, and/or GSK3 activation are common causes leading to GC therapy failure. Various protein kinases positively regulating the pro-survival Src-PI3K-Akt-mTOR and Raf-Ras-MEK-ERK signal cascades have been shown to be activated in malignant leukemic cells and antagonize GC-induced apoptosis by inhibiting GSK3 activation and Bim expression. Targeting these protein kinases has proven effective in sensitizing GR-positive malignant lymphoid cells to GC-induced apoptosis. Thus, intervening with the pro-survival kinase network in GC-resistant cells should be a good means of improving GC therapy of hematopoietic malignancies.
Collapse
Affiliation(s)
- Shlomit Kfir-Erenfeld
- The Lautenberg Center of Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
18
|
Yassin ER, Abdul-Nabi AM, Takeda A, Yaseen NR. Effects of the NUP98-DDX10 oncogene on primary human CD34+ cells: role of a conserved helicase motif. Leukemia 2010; 24:1001-11. [PMID: 20339440 PMCID: PMC2868946 DOI: 10.1038/leu.2010.42] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
NUP98 gene rearrangements occur in acute myeloid leukemia and result in the expression of fusion proteins. One of the most frequent is NUP98-DDX10 that fuses a portion of NUP98 to a portion of DDX10, a putative DEAD-box RNA helicase. Here we show that NUP98-DDX10 dramatically increases proliferation and self-renewal of primary human CD34+ cells, and disrupts their erythroid and myeloid differentiation. It localizes to their nuclei and extensively deregulates gene expression. Comparison to another leukemogenic NUP98 fusion, NUP98-HOXA9, reveals a number of genes deregulated by both oncoproteins, including HOX genes, COX-2, MYCN, ANGPT1, REN, HEY1, SOX4, and others. These genes may account for the similar leukemogenic properties of NUP98 fusion oncogenes. The YIHRAGRTAR sequence in the DDX10 portion of NUP98-DDX10 represents a major motif shared by DEAD-box RNA helicases that is required for ATP binding, RNA-binding, and helicase functions. Mutating this motif diminished the in vitro transforming ability of NUP98-DDX10, indicating that it plays a role in leukemogenesis. These data demonstrate for the first time the in vitro transforming ability of NUP98-DDX10 and show that it is partially dependent on one of the consensus helicase motifs of DDX10. They also point to common pathways that may underlie leukemogenesis by different NUP98 fusions.
Collapse
Affiliation(s)
- E R Yassin
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Mats Ljungman
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
20
|
Yassin ER, Sarma NJ, Abdul-Nabi AM, Dombrowski J, Han Y, Takeda A, Yaseen NR. Dissection of the transformation of primary human hematopoietic cells by the oncogene NUP98-HOXA9. PLoS One 2009; 4:e6719. [PMID: 19696924 PMCID: PMC2725295 DOI: 10.1371/journal.pone.0006719] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 07/28/2009] [Indexed: 11/18/2022] Open
Abstract
NUP98-HOXA9 is the prototype of a group of oncoproteins associated with acute myeloid leukemia. It consists of an N-terminal portion of NUP98 fused to the homeodomain of HOXA9 and is believed to act as an aberrant transcription factor that binds DNA through the homeodomain. Here we show that NUP98-HOXA9 can regulate transcription without binding to DNA. In order to determine the relative contributions of the NUP98 and HOXA9 portions to the transforming ability of NUP98-HOXA9, the effects of NUP98-HOXA9 on primary human CD34+ cells were dissected and compared to those of wild-type HOXA9. In contrast to previous findings in mouse cells, HOXA9 had only mild effects on the differentiation and proliferation of primary human hematopoietic cells. The ability of NUP98-HOXA9 to disrupt the differentiation of primary human CD34+ cells was found to depend primarily on the NUP98 portion, whereas induction of long-term proliferation required both the NUP98 moiety and an intact homeodomain. Using oligonucleotide microarrays in primary human CD34+ cells, a group of genes was identified whose dysregulation by NUP98-HOXA9 is attributable primarily to the NUP98 portion. These include RAP1A, HEY1, and PTGS2 (COX-2). Their functions may reflect the contribution of the NUP98 moiety of NUP98-HOXA9 to leukemic transformation. Taken together, these results suggest that the effects of NUP98-HOXA9 on gene transcription and cell transformation are mediated by at least two distinct mechanisms: one that involves promoter binding through the homeodomain with direct transcriptional activation, and another that depends predominantly on the NUP98 moiety and does not involve direct DNA binding.
Collapse
Affiliation(s)
- Enas R. Yassin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nayan J. Sarma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Anmaar M. Abdul-Nabi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - James Dombrowski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ye Han
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Akiko Takeda
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nabeel R. Yaseen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Broxterman HJ, Gotink KJ, Verheul HMW. Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib. Drug Resist Updat 2009; 12:114-26. [PMID: 19648052 DOI: 10.1016/j.drup.2009.07.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 12/22/2022]
Abstract
Multiple molecular, cellular, micro-environmental and systemic causes of anticancer drug resistance have been identified during the last 25 years. At the same time, genome-wide analysis of human tumor tissues has made it possible in principle to assess the expression of critical genes or mutations that determine the response of an individual patient's tumor to drug treatment. Why then do we, with a few exceptions, such as mutation analysis of the EGFR to guide the use of EGFR inhibitors, have no predictive tests to assess a patient's drug sensitivity profile. The problem urges the more with the expanding choice of drugs, which may be beneficial for a fraction of patients only. In this review we discuss recent studies and insights on mechanisms of anticancer drug resistance and try to answer the question: do we understand why a patient responds or fails to respond to therapy? We focus on doxorubicin as example of a classical cytotoxic, DNA damaging agent and on sunitinib, as example of the new generation of (receptor) tyrosine kinase-targeted agents. For both drugs, classical tumor cell autonomous resistance mechanisms, such as drug efflux transporters and mutations in the tumor cell's survival signaling pathways, as well as micro-environment-related resistance mechanisms, such as changes in tumor stromal cell composition, matrix proteins, vascularity, oxygenation and energy metabolism may play a role. Novel agents that target specific mutations in the tumor cell's damage repair (e.g. PARP inhibitors) or that target tumor survival pathways, such as Akt inhibitors, glycolysis inhibitors or mTOR inhibitors, are of high interest. In order to increase the therapeutic index of treatments, fine-tuned synergistic combinations of new and/or classical cytotoxic agents will be designed. More quantitative assessment of potential resistance mechanisms in real tumors and in real time, such as by kinase profiling methodology, will be developed to allow more precise prediction of the optimal drug combination to treat each patient.
Collapse
Affiliation(s)
- Henk J Broxterman
- Department of Medical Oncology, CCA 1-38, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
22
|
Sampath D, Gandhi V. Dialing resistance up a Notch. Leuk Lymphoma 2009; 50:158-9. [PMID: 19235014 DOI: 10.1080/10428190802699381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Deepa Sampath
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|