1
|
Xu N, Wang J, Liu L, Gong C. Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. CHINESE CHEM LETT 2024; 35:109225. [DOI: 10.1016/j.cclet.2023.109225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
3
|
Zhang Y, Zhang K, Jia H, Xia B, Zang C, Liu Y, Qian L, Dong J. IVIM-DWI and MRI-based radiomics in cervical cancer: Prediction of concurrent chemoradiotherapy sensitivity in combination with clinical prognostic factors. Magn Reson Imaging 2022; 91:37-44. [PMID: 35568271 DOI: 10.1016/j.mri.2022.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To identify the feasibility and value of intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) and magnetic resonance imaging (MRI)-based radiomics combined with clinical prognostic factors (CPF) in predicting concurrent chemoradiotherapy (CCRT) sensitivity of locally advanced cervical cancer (LACC). METHODS A retrospective analysis of 163 patients (assigned to training or test groups) who underwent conventional MRI and IVIM-DWI before CCRT were divided into sensitive and resistant groups according to their efficacy at 6 months after CCRT. Per-treatment IVIM-DWI parameters (ADC, D, D⁎ and f value), 3D texture features (from axial T2WI) and CPF were measured, analyzed and screened. The prediction model and its nomogram were developed by combining screened parameters and then validated internally and externally. RESULTS Clinical stage, f value, D value, InverseVariance, SizeZoneNonUniformity, and Minimum were selected to construct prediction model. All parameters except D value showed independent diagnostic value in multivariate Logistic regression analysis and composed prediction model, with AUCs of 0.987 and 0.984 for training and test groups, respectively. The calibration curve (Brier score of 0.042, C-index of 0.987), decision curve and clinical impact curve further demonstrated the reliability and clinical value of prediction model. CONCLUSION IVIM-DWI, MRI-based radiomics and CPF showed high clinical value in predicting CCRT sensitivity for LACC with better predictive performance when combined.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Anhui 230001, China
| | - Kaiyue Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Anhui 230001, China
| | - Haodong Jia
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Anhui 230001, China; Department of Radiology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China
| | - Bairong Xia
- Department of Radiology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China; Department of Radiation Oncology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China
| | - Chunbao Zang
- Department of Radiation Oncology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China
| | - Yunqin Liu
- Department of Radiation Oncology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Anhui 230001, China; Department of Radiation Oncology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China.
| | - Jiangning Dong
- Department of Radiology, West Branch of the First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, 107 Huanhu East Road, Hefei, Anhui 230031, China.
| |
Collapse
|
4
|
Dzobo K, Dandara C. Architecture of Cancer-Associated Fibroblasts in Tumor Microenvironment: Mapping Their Origins, Heterogeneity, and Role in Cancer Therapy Resistance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 24:314-339. [PMID: 32496970 DOI: 10.1089/omi.2020.0023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor stroma, a key component of the tumor microenvironment (TME), is a key determinant of response and resistance to cancer treatment. The stromal cells, extracellular matrix (ECM), and blood vessels influence cancer cell response to therapy and play key roles in tumor relapse and therapeutic outcomes. Of the stromal cells present in the TME, much attention has been given to cancer-associated fibroblasts (CAFs) as they are the most abundant and important in cancer initiation, progression, and therapy resistance. Besides releasing several factors, CAFs also synthesize the ECM, a key component of the tumor stroma. In this expert review, we examine the role of CAFs in the regulation of tumor cell behavior and reveal how CAF-derived factors and signaling influence tumor cell heterogeneity and development of novel strategies to combat cancer. Importantly, CAFs display both phenotypic and functional heterogeneity, with significant ramifications on CAF-directed therapies. Principal anti-cancer therapies targeting CAFs take the form of: (1) CAFs' ablation through use of immunotherapies, (2) re-education of CAFs to normalize the cells, (3) cellular therapies involving CAFs delivering drugs such as oncolytic adenoviruses, and (4) stromal depletion via targeting the ECM and its related signaling. The CAFs' heterogeneity could be a result of different cellular origins and the cancer-specific tumor microenvironmental effects, underscoring the need for further multiomics and biochemical studies on CAFs and the subsets. Lastly, we present recent advances in therapeutic targeting of CAFs and the success of such endeavors or their lack thereof. We recommend that to advance global public health and personalized medicine, treatments in the oncology clinic should be combinatorial in nature, strategically targeting both cancer cells and stromal cells, and their interactions.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Ferguson Bennit HR, Gonda A, Kabagwira J, Oppegard L, Chi D, Licero Campbell J, De Leon M, Wall NR. Natural Killer Cell Phenotype and Functionality Affected by Exposure to Extracellular Survivin and Lymphoma-Derived Exosomes. Int J Mol Sci 2021; 22:1255. [PMID: 33513976 PMCID: PMC7865330 DOI: 10.3390/ijms22031255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
The inherent abilities of natural killer (NK) cells to recognize and kill target cells place them among the first cells with the ability to recognize and destroy infected or transformed cells. Cancer cells, however, have mechanisms by which they can inhibit the surveillance and cytotoxic abilities of NK cells with one believed mechanism for this: their ability to release exosomes. Exosomes are vesicles that are found in abundance in the tumor microenvironment that can modulate intercellular communication and thus enhance tumor malignancy. Recently, our lab has found cancer cell exosomes to contain the inhibitor of apoptosis (IAP) protein survivin to be associated with decreased immune response in lymphocytes and cellular death. The purpose of this study was to explore the effect of survivin and lymphoma-derived survivin-containing exosomes on the immune functions of NK cells. NK cells were obtained from the peripheral blood of healthy donors and treated with pure survivin protein or exosomes from two lymphoma cell lines, DLCL2 and FSCCL. RNA was isolated from NK cell samples for measurement by PCR, and intracellular flow cytometry was used to determine protein expression. Degranulation capacity, cytotoxicity, and natural killer group 2D receptor (NKG2D) levels were also assessed. Lymphoma exosomes were examined for size and protein content. This study established that these lymphoma exosomes contained survivin and FasL but were negative for MHC class I-related chains (MIC)/B (MICA/B) and TGF-β. Treatment with exosomes did not significantly alter NK cell functionality, but extracellular survivin was seen to decrease natural killer group 2D receptor (NKG2D) levels and the intracellular protein levels of perforin, granzyme B, TNF-α, and IFN-γ.
Collapse
Affiliation(s)
- Heather R. Ferguson Bennit
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| | - Amber Gonda
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| | - Laura Oppegard
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
| | - David Chi
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
| | - Jenniffer Licero Campbell
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
- Division of Physiology, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Marino De Leon
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
- Division of Physiology, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Nathan R. Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| |
Collapse
|
6
|
Hu Y, Xie C, Yang H, Ho JWK, Wen J, Han L, Lam KO, Wong IYH, Law SYK, Chiu KWH, Vardhanabhuti V, Fu J. Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma. Radiother Oncol 2021; 154:6-13. [PMID: 32941954 DOI: 10.1016/j.radonc.2020.09.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/20/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Deep learning is promising to predict treatment response. We aimed to evaluate and validate the predictive performance of the CT-based model using deep learning features for predicting pathologic complete response to neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC). MATERIALS AND METHODS Patients were retrospectively enrolled between April 2007 and December 2018 from two institutions. We extracted deep learning features of six pre-trained convolutional neural networks, respectively, from pretreatment CT images in the training cohort (n = 161). Support vector machine was adopted as the classifier. Validation was performed in an external testing cohort (n = 70). We assessed the performance using the area under the receiver operating characteristics curve (AUC) and selected an optimal model, which was compared with a radiomics model developed from the training cohort. A clinical model consisting of clinical factors only was also built for baseline comparison. We further conducted a radiogenomics analysis using gene expression profiles to reveal underlying biology associated with radiological prediction. RESULTS The optimal model with features extracted from ResNet50 achieved an AUC and accuracy of 0.805 (95% CI, 0.696-0.913) and 77.1% (65.6%-86.3%) in the testing cohort, compared with 0.725 (0.605-0.846)) and 67.1% (54.9%-77.9%) for the radiomics model. All the radiological models showed better predictive performance than the clinical model. Radiogenomics analysis suggested a potential association mainly with WNT signaling pathway and tumor microenvironment. CONCLUSIONS The novel and noninvasive deep learning approach could provide efficient and accurate prediction of treatment response to nCRT in ESCC, and benefit clinical decision making of therapeutic strategy.
Collapse
Affiliation(s)
- Yihuai Hu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Chenyi Xie
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Hong Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Lujun Han
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ka-On Lam
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ian Y H Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Simon Y K Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Keith W H Chiu
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Jianhua Fu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Guangdong Esophageal Cancer Institute, Guangzhou, China.
| |
Collapse
|
7
|
Krisnawan VE, Stanley JA, Schwarz JK, DeNardo DG. Tumor Microenvironment as a Regulator of Radiation Therapy: New Insights into Stromal-Mediated Radioresistance. Cancers (Basel) 2020; 12:cancers12102916. [PMID: 33050580 PMCID: PMC7600316 DOI: 10.3390/cancers12102916] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer is multifaceted and consists of more than just a collection of mutated cells. These cancerous cells reside along with other non-mutated cells in an extracellular matrix which together make up the tumor microenvironment or tumor stroma. The composition of the tumor microenvironment plays an integral role in cancer initiation, progression, and response to treatments. In this review, we discuss how the tumor microenvironment regulates the response and resistance to radiation therapy and what targeted agents have been used to combat stromal-mediated radiation resistance. Abstract A tumor is a complex “organ” composed of malignant cancer cells harboring genetic aberrations surrounded by a stroma comprised of non-malignant cells and an extracellular matrix. Considerable evidence has demonstrated that components of the genetically “normal” tumor stroma contribute to tumor progression and resistance to a wide array of treatment modalities, including radiotherapy. Cancer-associated fibroblasts can promote radioresistance through their secreted factors, contact-mediated signaling, downstream pro-survival signaling pathways, immunomodulatory effects, and cancer stem cell-generating role. The extracellular matrix can govern radiation responsiveness by influencing oxygen availability and controlling the stability and bioavailability of growth factors and cytokines. Immune status regarding the presence of pro- and anti-tumor immune cells can regulate how tumors respond to radiation therapy. Furthermore, stromal cells including endothelial cells and adipocytes can modulate radiosensitivity through their roles in angiogenesis and vasculogenesis, and their secreted adipokines, respectively. Thus, to successfully eradicate cancers, it is important to consider how tumor stroma components interact with and regulate the response to radiation. Detailed knowledge of these interactions will help build a preclinical rationale to support the use of stromal-targeting agents in combination with radiotherapy to increase radiosensitivity.
Collapse
Affiliation(s)
- Varintra E. Krisnawan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer A. Stanley
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.S.); (J.K.S.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julie K. Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.S.); (J.K.S.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
8
|
Liu Y, Yang M, Luo J, Zhou H. Radiotherapy targeting cancer stem cells "awakens" them to induce tumour relapse and metastasis in oral cancer. Int J Oral Sci 2020; 12:19. [PMID: 32576817 PMCID: PMC7311531 DOI: 10.1038/s41368-020-00087-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy is one of the most common treatments for oral cancer. However, in the clinic, recurrence and metastasis of oral cancer occur after radiotherapy, and the underlying mechanism remains unclear. Cancer stem cells (CSCs), considered the “seeds” of cancer, have been confirmed to be in a quiescent state in most established tumours, with their innate radioresistance helping them survive more easily when exposed to radiation than differentiated cancer cells. There is increasing evidence that CSCs play an important role in recurrence and metastasis post-radiotherapy in many cancers. However, little is known about how oral CSCs cause tumour recurrence and metastasis post-radiotherapy. In this review article, we will first summarise methods for the identification of oral CSCs and then focus on the characteristics of a CSC subpopulation induced by radiation, hereafter referred to as “awakened” CSCs, to highlight their response to radiotherapy and potential role in tumour recurrence and metastasis post-radiotherapy as well as potential therapeutics targeting CSCs. In addition, we explore potential therapeutic strategies targeting these “awakened” CSCs to solve the serious clinical challenges of recurrence and metastasis in oral cancer after radiotherapy.
Collapse
Affiliation(s)
- Yangfan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Peng L, Wang Y, Fei S, Wei C, Tong F, Wu G, Ma H, Dong X. The effect of combining Endostar with radiotherapy on blood vessels, tumor-associated macrophages, and T cells in brain metastases of Lewis lung cancer. Transl Lung Cancer Res 2020; 9:745-760. [PMID: 32676336 PMCID: PMC7354151 DOI: 10.21037/tlcr-20-500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Combining Endostar (ES) with radiotherapy (RT) has shown a promising therapeutic effect on non-small cell lung carcinoma with brain metastases (BMs) in clinical practice. However, the specific mechanism is not yet fully understood. The present study aimed to investigate the effects of ES on blood vessels, tumor-associated macrophages (TAMs), and T cells in a tumor microenvironment treated with RT. Methods BM models were established by stereotactic and intracarotid injection of luciferase-Lewis lung cancer (LLC) cells into female C57BL mice. The animals were randomly divided into 4 groups: normal saline (NS), ES, RT, and ES plus radiotherapy (ES + RT) groups. Tumor size was determined with the IVIS imaging system. Tumor specimens were stained with CD34 and α-SMA to investigate tumor vascular changes. The proportions of TAMs, CD4+ T cells, and CD8+ T cells in tumor tissues were determined by flow cytometry and immunofluorescence. The expressions of hypoxia-inducible factor 1α (HIF-1α) and CXCR4 were deduced using western blotting and immunohistochemistry (IHC). Results ES + RT significantly suppressed tumor growth compared to the other 3 groups. RT decreased M1 and increased M2 in microglial cells and bone marrow-derived macrophages (BMDMs) relative to NS, while ES had the opposite effect. The ratio of CD8+T/CD4+T was increased in the ES + RT group compared to the other 3 groups. Tumor vascular maturity (α-SMA+/CD34+) was increased while HIF-1α was significantly suppressed in the ES + RT group. CXCR4 expression, which is involved in TAM recruitment, increased following RT, whereas, ES attenuated its expression. Conclusions Our findings suggest that ES can promote the normalization of tumor blood vessels and increase the anti-tumor immune-related immune cells infiltrating the tumor following RT treatment.
Collapse
Affiliation(s)
- Ling Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shihong Fei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunhua Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Epithelial to Mesenchymal Transition: A Mechanism that Fuels Cancer Radio/Chemoresistance. Cells 2020; 9:cells9020428. [PMID: 32059478 PMCID: PMC7072371 DOI: 10.3390/cells9020428] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) contributes to tumor progression, cancer cell invasion, and therapy resistance. EMT is regulated by transcription factors such as the protein products of the SNAI gene family, which inhibits the expression of epithelial genes. Several signaling pathways, such as TGF-beta1, IL-6, Akt, and Erk1/2, trigger EMT responses. Besides regulatory transcription factors, RNA molecules without protein translation, micro RNAs, and long non-coding RNAs also assist in the initialization of the EMT gene cluster. A challenging novel aspect of EMT research is the investigation of the interplay between tumor microenvironments and EMT. Several microenvironmental factors, including fibroblasts and myofibroblasts, as well as inflammatory, immune, and endothelial cells, induce EMT in tumor cells. EMT tumor cells change their adverse microenvironment into a tumor friendly neighborhood, loaded with stromal regulatory T cells, exhausted CD8+ T cells, and M2 (protumor) macrophages. Several EMT inhibitory mechanisms are instrumental in reversing EMT or targeting EMT cells. Currently, these mechanisms are also significant for clinical use.
Collapse
|
11
|
Abstract
Cancers are not composed merely of cancer cells alone; instead, they are complex 'ecosystems' comprising many different cell types and noncellular factors. The tumour stroma is a critical component of the tumour microenvironment, where it has crucial roles in tumour initiation, progression, and metastasis. Most anticancer therapies target cancer cells specifically, but the tumour stroma can promote the resistance of cancer cells to such therapies, eventually resulting in fatal disease. Therefore, novel treatment strategies should combine anticancer and antistromal agents. Herein, we provide an overview of the advances in understanding the complex cancer cell-tumour stroma interactions and discuss how this knowledge can result in more effective therapeutic strategies, which might ultimately improve patient outcomes.
Collapse
|
12
|
Li Q, Zong Y, Li K, Jie X, Hong J, Zhou X, Wu B, Li Z, Zhang S, Wu G, Meng R. Involvement of endothelial CK2 in the radiation induced perivascular resistant niche (PVRN) and the induction of radioresistance for non-small cell lung cancer (NSCLC) cells. Biol Res 2019; 52:22. [PMID: 30992075 PMCID: PMC6466699 DOI: 10.1186/s40659-019-0231-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/06/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Tumor microenvironment (TME) plays a vital role in determining the outcomes of radiotherapy. As an important component of TME, vascular endothelial cells are involved in the perivascular resistance niche (PVRN), which is formed by inflammation or cytokine production induced by ionizing radiation (IR). Protein kinase CK2 is a constitutively active serine/threonine kinase which plays a vital role in cell proliferation and inflammation. In this study, we investigated the potential role of CK2 in PVRN after IR exposure. RESULT Specific CK2 inhibitors, Quinalizarin and CX-4945, were employed to effectively suppressed the kinase activity of CK2 in human umbilical vein endothelial cells (HUVECs) without affecting their viability. Results showing that conditioned medium from IR-exposed HUVECs increased cell viability of A549 and H460 cells, and the pretreatment of CK2 inhibitors slowed down such increment. The secretion of IL-8 and IL-6 in HUVECs was induced after exposure with IR, but significantly inhibited by the addition of CK2 inhibitors. Furthermore, IR exposure elevated the nuclear phosphorylated factor-κB (NF-κB) p65 expression in HUVECs, which was a master factor regulating cytokine production. But when pretreated with CK2 inhibitors, such elevation was significantly suppressed. CONCLUSION This study indicated that protein kinase CK2 is involved in the key process of the IR induced perivascular resistant niche, namely cytokine production, by endothelial cells, which finally led to radioresistance of non-small cell lung cancer cells. Thus, the inhibition of CK2 may be a promising way to improve the outcomes of radiation in non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Li
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaxin Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoshu Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Radiobiology of brachytherapy: The historical view based on linear quadratic model and perspectives for optimization. Cancer Radiother 2018; 22:312-318. [PMID: 29858137 DOI: 10.1016/j.canrad.2017.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
Most preclinical studies examining the radiobiology of brachytherapy have focused on dose rate effects. Scarcer data are available on other major parameters of therapeutic index, such as cell cycle distribution, repopulation or reoxygenation. The linear quadratic model describes the effect of radiotherapy in terms of normal tissue or tumour response. It allows some comparisons between various irradiation schemes. This model should be applied cautiously for brachytherapy, because it relies on cell death analysis only, and therefore partially reflects the biological effects of an irradiation. Moreover, the linear quadratic model validity has not been demonstrated for very high doses per fraction. A more thorough analysis of mechanisms involved in radiation response is required to better understand the true effect of brachytherapy on normal tissue. The modulation of immune response is one promising strategy to be tested with brachytherapy. A translational approach applied to brachytherapy should lead to design trials testing pharmacological agents modulating radiation response, in order to improve not only local control, but also decrease the risk of distant failure. Here we review the radiobiology of brachytherapy, from the historical view based on linear quadratic model to recent perspectives for biological optimization.
Collapse
|
14
|
Abstract
Radiotherapy remains one of the corner stones in the treatment of various malignancies and often leads to an improvement in overall survival. Nonetheless, pre-clinical evidence indicates that radiation can entail pro-metastatic effects via multiple pathways. Via direct actions on cancer cells and indirect actions on the tumor microenvironment, radiation has the potential to enhance epithelial-to-mesenchymal transition, invasion, migration, angiogenesis and metastasis. However, the data remains ambiguous and clinical observations that unequivocally prove these findings are lacking. In this review we discuss the pre-clinical and clinical data on the local and systemic effect of irradiation on the metastatic process with an emphasis on the molecular pathways involved.
Collapse
|
15
|
A TRACER 3D Co-Culture tumour model for head and neck cancer. Biomaterials 2018; 164:54-69. [PMID: 29490260 DOI: 10.1016/j.biomaterials.2018.01.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/09/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment and have been shown to play an important role in the progression of cancer. To probe these tumour-stroma interactions, we incorporated CAFs derived from head and neck cancer patients and squamous carcinoma cells of the hypopharynx (FaDu) into the Tissue Roll for the Analysis of Cellular Environment and Response (TRACER) platform to establish a co-culture platform that simulates the CAF-tumour microenvironmental interactions in head and neck tumours. TRACER culture involves infiltrating cells into a thin fibrous scaffold and then rolling the resulting biocomposite around a mandrel to generate a 3D and layered structure. Patterning the fibrous scaffold biocomposite during fabrication enables control over the specific location of different cell populations in the rolled configuration. Here, we optimized the seeding densities and configurations of the CAF and FaDu cell tissue sections to enable a robust 3D co-culture system under normoxic conditions. Co-culture of CAFs with FaDu cells produced negligible effects on radiation resistance, but did produce increases in proliferation rate and invasive cell migration at 24 and 48 h of culture. Our study provides the basis for use of our in vitro co-culture TRACER model to investigate the tumour-stroma interactions, and to bridge the translational gap between preclinical and clinical studies.
Collapse
|
16
|
Ueno H, Sekine S, Oshiro T, Kanemitsu Y, Hamaguchi T, Shida D, Takashima A, Ishiguro M, Ito E, Hashiguchi Y, Kondo F, Shimazaki H, Mochizuki S, Kajiwara Y, Shinto E, Yamamoto J, Shimada Y. Disentangling the prognostic heterogeneity of stage III colorectal cancer through histologic stromal categorization. Surgery 2017; 163:777-783. [PMID: 29162344 DOI: 10.1016/j.surg.2017.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/23/2017] [Accepted: 09/24/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Growing evidence suggests the importance of stroma in determining cancer biology and recent studies have identified that genes closely associated with poor prognosis subtypes of colorectal cancer are expressed by the stroma rather than epithelial cancer cells. We aimed to clarify the prognostic value of the novel histologic classification of desmoplastic reaction in stage III colorectal cancer. METHODS A pathologic review was conducted for 466 stage III colorectal cancer patients in a single Japanese institution (1999-2006). Desmoplastic reaction was classified as mature, intermediate, or immature according to existence of hyalinized collagen bundles and myxoid stroma, both appear exclusively at the desmoplastic front. An additional 432 patients treated at four independent institutions (2007-2008) were examined as a second cohort to validate the results. RESULTS According to desmoplastic reaction, 164, 133, and 169 patients were classified as mature, intermediate, and immature, respectively. Five-year relapse-free survival rates were highest in the mature group (86.0%), followed by the intermediate (73.7%) and immature (50.9%) groups. An adverse prognostic impact of desmoplastic reaction was invariably observed in stage IIIB, which contained 71% of stage III cases. Harrell's concordance index for relapse-free survival was greater in desmoplastic reaction (0.66) than any conventional tumor-associated prognostic factors including tumor node metastasis substage (0.62) and tumor grade (0.53). Similar results were observed in the second cohort, wherein desmoplastic reaction categorization was the most influential prognostic factor. CONCLUSION Histologic desmoplastic reaction categorization could be a key to solve the issue of prognostic heterogeneity in stage III colorectal cancer, thereby enhancing the value of tumor node metastasis stage.
Collapse
Affiliation(s)
- Hideki Ueno
- Department of Surgery, National Defense Medical College, Saitama.
| | - Shigeki Sekine
- Molecular Pathology Division, National Cancer Center Research Institute, Tokyo
| | - Taihei Oshiro
- Colorectal Surgery Division, National Cancer Center Central Hospital, Tokyo
| | - Yukihide Kanemitsu
- Colorectal Surgery Division, National Cancer Center Central Hospital, Tokyo
| | - Tetsuya Hamaguchi
- Gastrointestinal Medical Oncology Division, National Cancer Center Central Hospital, Tokyo
| | - Dai Shida
- Colorectal Surgery Division, National Cancer Center Central Hospital, Tokyo
| | - Atsuo Takashima
- Gastrointestinal Medical Oncology Division, National Cancer Center Central Hospital, Tokyo
| | - Megumi Ishiguro
- Department of Translational Oncology, Tokyo Medical and Dental University, Tokyo
| | - Eisaku Ito
- Department of Pathology, Tokyo Medical and Dental University, Tokyo
| | | | - Fukuo Kondo
- Department of Pathology, Teikyo University Hospital, Tokyo
| | - Hideyuki Shimazaki
- Department of Laboratory Medicine, National Defense Medical College, Saitama
| | | | - Yoshiki Kajiwara
- Department of Surgery, National Defense Medical College, Saitama
| | - Eiji Shinto
- Department of Surgery, National Defense Medical College, Saitama
| | - Junji Yamamoto
- Department of Surgery, National Defense Medical College, Saitama
| | - Yasuhiro Shimada
- Gastrointestinal Medical Oncology Division, National Cancer Center Central Hospital, Tokyo
| |
Collapse
|
17
|
Gandhi S, Chandna S. Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies. Cancer Metastasis Rev 2017; 36:375-393. [DOI: 10.1007/s10555-017-9669-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Grinde MT, Vik J, Camilio KA, Martinez-Zubiaurre I, Hellevik T. Ionizing radiation abrogates the pro-tumorigenic capacity of cancer-associated fibroblasts co-implanted in xenografts. Sci Rep 2017; 7:46714. [PMID: 28440285 PMCID: PMC5404232 DOI: 10.1038/srep46714] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/28/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are abundantly present in solid tumors and affect tumorigenesis and therapeutic responses. In the context of clinical radiotherapy, the impact of irradiated CAFs to treatment outcomes is largely unexplored. Aiming at improving radiotherapy efficacy, we have here explored the effect of radiation on the inherent pro-tumorigenic capacity of CAFs in animals. Ionizing radiation was delivered to cultured CAFs as single-high or fractionated doses. Tumor development was compared in mice receiving A549 lung tumor cells admixed with irradiated or control CAFs. Biological mechanisms behind tumor growth regulation were investigated by quantitative histology and immunohistochemistry. Viability assessments confirmed that irradiated CAFs are fully functional prior to implantation. However, the enhanced tumorigenic effect observed in tumors co-implanted with control CAFs was abrogated in tumors established with irradiated CAFs. Experiments to ascertain fate of implanted fibroblasts showed that exogenously administered CAFs reside at the implantation site for few days, suggesting that tumor growth regulation from admixed CAFs take place during initial tumor formation. Our work demonstrate that irradiated CAFs lose their pro-tumorigenic potential in vivo, affecting angiogenesis and tumor engraftment. This finding propose a previously unknown advantageous effect induced by radiotherapy, adding to the direct cytotoxic effects on transformed epithelial cells.
Collapse
Affiliation(s)
- Maria Tunset Grinde
- Department of Radiology, University Hospital of Northern-Norway, Tromsø, Norway.,Molecular &Clinical Inflammation Research Group, Department of Clinical Medicine, University of Tromsø, Norway
| | - Jørg Vik
- Molecular &Clinical Inflammation Research Group, Department of Clinical Medicine, University of Tromsø, Norway
| | | | - Inigo Martinez-Zubiaurre
- Molecular &Clinical Inflammation Research Group, Department of Clinical Medicine, University of Tromsø, Norway
| | - Turid Hellevik
- Molecular &Clinical Inflammation Research Group, Department of Clinical Medicine, University of Tromsø, Norway.,Department of Radiation Oncology, University Hospital of Northern-Norway, Tromsø, Norway
| |
Collapse
|
19
|
Schmitz S, Bindea G, Albu RI, Mlecnik B, Machiels JP. Cetuximab promotes epithelial to mesenchymal transition and cancer associated fibroblasts in patients with head and neck cancer. Oncotarget 2016; 6:34288-99. [PMID: 26437222 PMCID: PMC4741452 DOI: 10.18632/oncotarget.5924] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 01/11/2023] Open
Abstract
Purpose To investigate if cetuximab induces epithelial to mesenchymal transition (EMT) and activation of cancer associated fibroblast (CAF) in the tumors of patients with squamous cell carcinoma of the head and neck (SCCHN). Methods Cetuximab was administered for two weeks prior to surgery to 20 treatment-naïve patients. Five untreated patients were included as controls. Tumor biopsies were performed at baseline and before surgery. Gene expression profiles and quantitative real-time PCR (qRT-PCR) analysis of the pre-and post-treatment biopsies were compared. To further investigate EMT and CAF, correlations between previously described EMT and CAF markers and our microarray data set were calculated. Results Gene expression profile analyses and qRT-PCR showed that some of the genes modified by cetuximab were related to CAFs and EMT (ZNF521, CXCL12, ASPN, OLFML3, OLFM1, TWIST1, LEF1, ZEB1, FAP). We identified 2 patient clusters with different EMT and CAF characteristics. Whereas one cluster showed clear upregulation of expression of genes implicated in CAF and EMT including markers of embryologic pathways like NOTCH and Wnt, the other did not. Conclusion Even if EMT and CAFs are implicated in cetuximab resistance in pre-clinical models, we demonstrate for the first time that these molecular processes may occur clinically early on.
Collapse
Affiliation(s)
- Sandra Schmitz
- Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain, Brussels, Belgium.,Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Gabriela Bindea
- INSERM UMRS1138, Laboratory of Integrative Cancer Immunology, Paris, France.,Université Paris Descartes, Rue de l'Ecole de Médecine, Paris, France.,Cordeliers Research Centre, Université Pierre et Marie Curie Paris, Paris, France
| | - Roxana Irina Albu
- Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain, Brussels, Belgium
| | - Bernhard Mlecnik
- INSERM UMRS1138, Laboratory of Integrative Cancer Immunology, Paris, France.,Université Paris Descartes, Rue de l'Ecole de Médecine, Paris, France.,Cordeliers Research Centre, Université Pierre et Marie Curie Paris, Paris, France
| | - Jean-Pascal Machiels
- Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain, Brussels, Belgium.,Department of Head and Neck Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
20
|
Vilalta M, Rafat M, Graves EE. Effects of radiation on metastasis and tumor cell migration. Cell Mol Life Sci 2016; 73:2999-3007. [PMID: 27022944 PMCID: PMC4956569 DOI: 10.1007/s00018-016-2210-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/25/2016] [Accepted: 03/22/2016] [Indexed: 12/25/2022]
Abstract
It is well known that tumor cells migrate from the primary lesion to distant sites to form metastases and that these lesions limit patient outcome in a majority of cases. However, the extent to which radiation influences this process and to which migration in turn alters radiation response remains controversial. There are preclinical and clinical reports showing that focal radiotherapy can both increase the development of distant metastasis, as well as that it can induce the regression of established metastases through the abscopal effect. More recently, preclinical studies have suggested that radiation can attract migrating tumor cells and may, thereby, facilitate tumor recurrence. In this review, we summarize these phenomena and their potential mechanisms of action, and evaluate their significance for modern radiation therapy strategies.
Collapse
Affiliation(s)
- Marta Vilalta
- Department of Radiation Oncology, Stanford University, 269 Campus Dr., CCSR South Rm. 1255A, Stanford, CA, 94305-5152, USA
| | - Marjan Rafat
- Department of Radiation Oncology, Stanford University, 269 Campus Dr., CCSR South Rm. 1255A, Stanford, CA, 94305-5152, USA
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University, 269 Campus Dr., CCSR South Rm. 1255A, Stanford, CA, 94305-5152, USA.
| |
Collapse
|
21
|
Chargari C, Magne N, Guy JB, Rancoule C, Levy A, Goodman KA, Deutsch E. Optimize and refine therapeutic index in radiation therapy: Overview of a century. Cancer Treat Rev 2016; 45:58-67. [DOI: 10.1016/j.ctrv.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
|
22
|
Maeda A, Kulbatski I, DaCosta RS. Emerging Applications for Optically Enabled Intravital Microscopic Imaging in Radiobiology. Mol Imaging 2015. [DOI: 10.2310/7290.2015.00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Azusa Maeda
- From the Princess Margaret Cancer Centre, University Health Network, MaRS Centre; Techna Institute for Advancement of Technologies for Health; and Department of Medical Biophysics, University of Toronto, MaRS Centre, Toronto, ON
| | - Iris Kulbatski
- From the Princess Margaret Cancer Centre, University Health Network, MaRS Centre; Techna Institute for Advancement of Technologies for Health; and Department of Medical Biophysics, University of Toronto, MaRS Centre, Toronto, ON
| | - Ralph S. DaCosta
- From the Princess Margaret Cancer Centre, University Health Network, MaRS Centre; Techna Institute for Advancement of Technologies for Health; and Department of Medical Biophysics, University of Toronto, MaRS Centre, Toronto, ON
| |
Collapse
|
23
|
[Radiation therapy and immunomodulation: Focus on experimental data]. Cancer Radiother 2015; 19:515-8. [PMID: 26293415 DOI: 10.1016/j.canrad.2015.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/13/2022]
Abstract
The immunosuppressive effects of radiation therapy have long been the only ones considered. It has been demonstrated that exposure to ionizing radiation induces the release of tumour antigens which activates both the innate immune system and the adaptive immune response of the host. The purpose of tumour immunotherapy is based on the principle that reversal of tolerance to immunogenic tumours would be able to activate an immune response against tumour cells. Preclinical data and clinical studies early phase suggest a potential therapeutic benefit of immunotherapy combined with radiation therapy. The objective of this article is to review how tumour cells interact with the immune system and how ionizing radiation modulate this interaction and finally the combination of perspectives of immunotherapy and ionizing radiation by focusing on existing clinical data.
Collapse
|
24
|
Günes-Bayir A, Kiziltan HS. Palliative Vitamin C Application in Patients with Radiotherapy-Resistant Bone Metastases: A Retrospective Study. Nutr Cancer 2015; 67:921-5. [PMID: 26168394 DOI: 10.1080/01635581.2015.1055366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to observe effects of ascorbic acid application on pain, performance status, and survival time in cancer patients. A retrospective cohort of 39 patients with bone metastases treated with radiotherapy was identified. All patients were radiotherapy-resistant. Fifteen patients who received chemotherapy, and 15 patients who received an infusion of 2.5 g ascorbic acid were included in the study. Nine control patients were treated with neither chemotherapy nor vitamin C. Eastern Cooperative Oncology Group Performance Status Scale and Visual Analog Scale were used to determine performance status and pain assessments. Survival time and rate in patients were defined. Statistical analyses were performed to compare the results of groups. Performance status was increased in 4 patients of vitamin C group and 1 patient of chemotherapy group, whereas performance status in control group was decreased. A median reduction of 50% in pain was observed among the patients in the vitamin C group. Median survival time was 10 mo in patients receiving ascorbic acid, whereas the chemotherapy and control groups had a median survival of 2 mo. Intravenous vitamin C application seems to reduce pain in patients in comparison to other patients who did not receive it. Patient performance status and survival rate were increased using vitamin C.
Collapse
Affiliation(s)
- Ayse Günes-Bayir
- a Department of Nutrition and Dietetics , Faculty of Health Sciences, Bezmialem Vakif University , Fatih , Istanbul , Turkey
| | | |
Collapse
|
25
|
Gorchs L, Hellevik T, Bruun JA, Camilio KA, Al-Saad S, Stuge TB, Martinez-Zubiaurre I. Cancer-associated fibroblasts from lung tumors maintain their immunosuppressive abilities after high-dose irradiation. Front Oncol 2015; 5:87. [PMID: 26029659 PMCID: PMC4429237 DOI: 10.3389/fonc.2015.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/24/2015] [Indexed: 01/02/2023] Open
Abstract
Accumulating evidence supports the notion that high-dose (>5 Gy) radiotherapy (RT) regimens are triggering stronger pro-immunogenic effects than standard low-dose (2 Gy) regimens. However, the effects of RT on certain immunoregulatory elements in tumors remain unexplored. In this study, we have investigated the effects of high-dose radiotherapy (HD-RT) on the immunomodulating functions of cancer-associated fibroblasts (CAFs). Primary CAF cultures were established from lung cancer specimens derived from patients diagnosed for non-small cell lung cancer. Irradiated and non-irradiated CAFs were examined for immunomodulation in experiments with peripheral blood mononuclear cells from random, healthy donors. Regulation of lymphocytes behavior was checked by lymphocyte proliferation assays, lymphocyte migration assays, and T-cell cytokine production. Additionally, CAF-secreted immunoregulatory factors were studied by multiplex protein arrays, ELISAs, and by LC-MS/MS proteomics. In all functional assays, we observed a powerful immunosuppressive effect exerted by CAF-conditioned medium on activated T-cells (p > 0.001), and this effect was sustained after a single radiation dose of 18 Gy. Relevant immunosuppressive molecules such as prostaglandin E2, interleukin-6, and -10, or transforming growth factor-β were found in CAF-conditioned medium, but their secretion was unchanged after irradiation. Finally, immunogenic cell death responses in CAFs were studied by exploring the release of high motility group box-1 and ATP. Both alarmins remained undetectable before and after irradiation. In conclusion, CAFs play a powerful immunosuppressive effect over activated T-cells, and this effect remains unchanged after HD-RT. Importantly, CAFs do not switch on immunogenic cell death responses after exposure to HD-RT.
Collapse
Affiliation(s)
- Laia Gorchs
- Department of Clinical Medicine, University of Tromsø , Tromsø , Norway
| | - Turid Hellevik
- Department of Oncology and Radiotherapy, University Hospital of Northen Norway , Tromsø , Norway
| | - Jack-Ansgar Bruun
- Department of Medical Biology, University of Tromsø , Tromsø , Norway
| | | | - Samer Al-Saad
- Department of Medical Biology, University of Tromsø , Tromsø , Norway ; Department of Pathology, University Hospital of Northern Norway , Tromsø , Norway
| | - Tor-Brynjar Stuge
- Department of Medical Biology, University of Tromsø , Tromsø , Norway
| | | |
Collapse
|
26
|
Buchwald ZS, Efstathiou JA. Immunotherapy and Radiation - A New Combined Treatment Approach for Bladder Cancer? Bladder Cancer 2015; 1:15-27. [PMID: 30561443 PMCID: PMC6218185 DOI: 10.3233/blc-150014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, immunotherapy with checkpoint inhibitors has been showing promise in clinical trials for stage IV bladder cancer. Herein, we review the literature regarding the role for radiation therapy, the role for immunotherapy, and the potential synergy of these treatments combined in bladder cancer. There is ample pre-clinical data in a number of different tumor models, coupled with a growing body of clinical evidence in melanoma and other malignancies to suggest combining radiation and immunotherapy could lead to substantial advances in treatment outcomes for bladder cancer. Yet, these data for bladder cancer remain at the pre-clinical stage, and further study is needed.
Collapse
Affiliation(s)
| | - Jason A. Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
In rectal cancer, the type of desmoplastic response after preoperative chemoradiotherapy is associated with prognosis. Virchows Arch 2015; 466:655-63. [DOI: 10.1007/s00428-015-1756-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 01/30/2015] [Accepted: 03/10/2015] [Indexed: 01/02/2023]
|
28
|
Pezzolo E, Modena Y, Corso B, Giusti P, Gusella M. Germ line polymorphisms as predictive markers for pre-surgical radiochemotherapy in locally advanced rectal cancer: a 5-year literature update and critical review. Eur J Clin Pharmacol 2015; 71:529-39. [PMID: 25740678 DOI: 10.1007/s00228-015-1824-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/11/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Locally advanced rectal cancer is currently treated with pre-surgical radiotherapy and chemotherapy. Approximately one-half of patients obtain a relevant shrinkage/disappearance of tumour, with major clinical advantages. The remaining patients, in contrast, show no benefit and possibly need alternative treatment. To provide the best therapeutic option for each individual patient, predictive markers have been widely researched. This review was undertaken to evaluate recent progress made in this field. METHODS A systematic literature search was performed using PubMed and Scopus database, focused on germ line gene polymorphisms as biomarkers and response and toxicity as outcomes. Because an exhaustive previous review was available describing findings up to 2008, we restricted our analysis to the last 5 years. RESULTS Ten original research articles were found, reporting promising results for some candidate genes in drug metabolism (TYMS, MTHFR), DNA repair (XRCC1, OGG1, CCND1) and inflammation (SOD2, TGFB1)/immunity (IL13) pathways, but with no firm conclusion. All the studies had small sample size and were defined as exploratory. This review highlights pivotal molecular, clinical, genetic and statistical issues in the investigation of genetic polymorphisms as outcome predictors for rectal cancer and offers suggestions for future development. CONCLUSIONS What emerges is a clear need for new proposals, especially in view of the increasing evidence for tumour-host and gene-gene interactions during anticancer treatment, together with stronger adherence to proper methodological requirements.
Collapse
Affiliation(s)
- Elisa Pezzolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy,
| | | | | | | | | |
Collapse
|
29
|
Isella C, Terrasi A, Bellomo SE, Petti C, Galatola G, Muratore A, Mellano A, Senetta R, Cassenti A, Sonetto C, Inghirami G, Trusolino L, Fekete Z, De Ridder M, Cassoni P, Storme G, Bertotti A, Medico E. Stromal contribution to the colorectal cancer transcriptome. Nat Genet 2015; 47:312-9. [PMID: 25706627 DOI: 10.1038/ng.3224] [Citation(s) in RCA: 473] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022]
Abstract
Recent studies identified a poor-prognosis stem/serrated/mesenchymal (SSM) transcriptional subtype of colorectal cancer (CRC). We noted that genes upregulated in this subtype are also prominently expressed by stromal cells, suggesting that SSM transcripts could derive from stromal rather than epithelial cancer cells. To test this hypothesis, we analyzed CRC expression data from patient-derived xenografts, where mouse stroma supports human cancer cells. Species-specific expression analysis showed that the mRNA levels of SSM genes were mostly due to stromal expression. Transcriptional signatures built to specifically report the abundance of cancer-associated fibroblasts (CAFs), leukocytes or endothelial cells all had significantly higher expression in human CRC samples of the SSM subtype. High expression of the CAF signature was associated with poor prognosis in untreated CRC, and joint high expression of the stromal signatures predicted resistance to radiotherapy in rectal cancer. These data show that the distinctive transcriptional and clinical features of the SSM subtype can be ascribed to its particularly abundant stromal component.
Collapse
Affiliation(s)
- Claudio Isella
- 1] Candiolo Cancer Institute, Fondazione Piemontese per l'Oncologia'Istituto di Ricovero e Cura a Carattere Scientifico (FRO-IRCCS), Candiolo, Italy. [2] Department of Oncology, University of Torino, Candiolo, Italy
| | - Andrea Terrasi
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Sara Erika Bellomo
- 1] Candiolo Cancer Institute, Fondazione Piemontese per l'Oncologia'Istituto di Ricovero e Cura a Carattere Scientifico (FRO-IRCCS), Candiolo, Italy. [2] Department of Oncology, University of Torino, Candiolo, Italy
| | - Consalvo Petti
- Candiolo Cancer Institute, Fondazione Piemontese per l'Oncologia'Istituto di Ricovero e Cura a Carattere Scientifico (FRO-IRCCS), Candiolo, Italy
| | - Giovanni Galatola
- Candiolo Cancer Institute, Fondazione Piemontese per l'Oncologia'Istituto di Ricovero e Cura a Carattere Scientifico (FRO-IRCCS), Candiolo, Italy
| | - Andrea Muratore
- Candiolo Cancer Institute, Fondazione Piemontese per l'Oncologia'Istituto di Ricovero e Cura a Carattere Scientifico (FRO-IRCCS), Candiolo, Italy
| | - Alfredo Mellano
- Candiolo Cancer Institute, Fondazione Piemontese per l'Oncologia'Istituto di Ricovero e Cura a Carattere Scientifico (FRO-IRCCS), Candiolo, Italy
| | - Rebecca Senetta
- Department of Medical Science, University of Torino, Torino, Italy
| | - Adele Cassenti
- Department of Medical Science, University of Torino, Torino, Italy
| | | | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science, Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy
| | - Livio Trusolino
- 1] Candiolo Cancer Institute, Fondazione Piemontese per l'Oncologia'Istituto di Ricovero e Cura a Carattere Scientifico (FRO-IRCCS), Candiolo, Italy. [2] Department of Oncology, University of Torino, Candiolo, Italy
| | - Zsolt Fekete
- Institute of Oncology Prof. Dr. Ion Chiricuta, Cluj, Romania
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Paola Cassoni
- Department of Medical Science, University of Torino, Torino, Italy
| | - Guy Storme
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrea Bertotti
- 1] Candiolo Cancer Institute, Fondazione Piemontese per l'Oncologia'Istituto di Ricovero e Cura a Carattere Scientifico (FRO-IRCCS), Candiolo, Italy. [2] Department of Oncology, University of Torino, Candiolo, Italy
| | - Enzo Medico
- 1] Candiolo Cancer Institute, Fondazione Piemontese per l'Oncologia'Istituto di Ricovero e Cura a Carattere Scientifico (FRO-IRCCS), Candiolo, Italy. [2] Department of Oncology, University of Torino, Candiolo, Italy
| |
Collapse
|
30
|
Bao CH, Wang XT, Ma W, Wang NN, Un Nesa E, Wang JB, Wang C, Jia YB, Wang K, Tian H, Cheng YF. Irradiated fibroblasts promote epithelial-mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma. Biochem Biophys Res Commun 2015; 458:441-7. [PMID: 25677618 DOI: 10.1016/j.bbrc.2015.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/01/2015] [Indexed: 12/31/2022]
Abstract
Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial-mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiated fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC.
Collapse
Affiliation(s)
- Ci-Hang Bao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xin-Tong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Wei Ma
- Department of Radiation Oncology, Cancer Hospital, Genaral Hospital of Ningxia Medical University, Yinchuan 750000, China
| | - Na-Na Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Effat Un Nesa
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jian-Bo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yi-Bin Jia
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Kai Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu-Feng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
31
|
Radiation oncology in vitro: trends to improve radiotherapy through molecular targets. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461687. [PMID: 25302298 PMCID: PMC4180203 DOI: 10.1155/2014/461687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/16/2014] [Indexed: 12/17/2022]
Abstract
Much has been investigated to improve the beneficial effects of radiotherapy especially in that case where radioresistant behavior is observed. Beyond simple identification of resistant phenotype the discovery and development of specific molecular targets have demonstrated therapeutic potential in cancer treatment including radiotherapy. Alterations on transduction signaling pathway related with MAPK cascade are the main axis in cancer cellular proliferation even as cell migration and invasiveness in irradiated tumor cell lines; then, for that reason, more studies are in course focusing on, among others, DNA damage enhancement, apoptosis stimulation, and growth factors receptor blockages, showing promising in vitro results highlighting molecular targets associated with ionizing radiation as a new radiotherapy strategy to improve clinical outcome. In this review we discuss some of the main molecular targets related with tumor cell proliferation and migration as well as their potential contributions to radiation oncology improvements.
Collapse
|
32
|
Aryankalayil MJ, Makinde AY, Gameiro SR, Hodge JW, Rivera-Solis PP, Palayoor ST, Ahmed MM, Coleman CN. Defining molecular signature of pro-immunogenic radiotherapy targets in human prostate cancer cells. Radiat Res 2014; 182:139-48. [PMID: 25003313 DOI: 10.1667/rr13731.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To understand the impact of clinically relevant radiation therapy (RT) on tumor immune gene expression and to utilize the changes that occur during treatment to improve cancer treatment outcome, we examined how immune response genes are modulated in prostate cancer cells of varying p53 status. LNCaP (p53 wild-type), PC3 (p53 null) and DU145 (p53 mutant) cells received a 10 Gy single dose or 1 Gy × 10 multifractionated radiation dose to simulate hypofractionated and conventionally fractionated prostate radiotherapy. Total RNA was isolated 24 h after multifractionated radiation treatment and single-dose treatments and subjected to microarray analysis and later validated by RT-PCR. RT-PCR was utilized to identify total-dose inflection points for significantly upregulated genes in response to multifractionated radiation therapy. Radiation-induced damage-associated molecular pattern molecules (DAMPs) and cytokine analyses were performed using bioluminescence and ELISA. Multifractionated doses activated immune response genes more robustly than single-dose treatment, with a relatively larger number of immune genes upregulated in PC3 compared to DU145 and LNCaP cells. The inflection point of multifractionated radiation-induced immune genes in PC3 cells was observed in the range of 8-10 Gy total radiation dose. Although both multifractionated and single-dose radiation-induced proinflammatory DAMPs and positively modulated the cytokine environment, the changes were of higher magnitude with multifractionated therapy. The findings of this study together with the gene expression data suggest that cells subjected to multifractionated radiation treatment would promote productive immune cell-tumor cell interactions.
Collapse
Affiliation(s)
- Molykutty J Aryankalayil
- a Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hellevik T, Martinez-Zubiaurre I. Radiotherapy and the tumor stroma: the importance of dose and fractionation. Front Oncol 2014; 4:1. [PMID: 24478982 PMCID: PMC3896881 DOI: 10.3389/fonc.2014.00001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/03/2014] [Indexed: 01/04/2023] Open
Abstract
Ionizing radiation is a non-specific but highly effective way to kill malignant cells. However, tumor recurrence sustained by a minor fraction of surviving tumor cells is a commonplace phenomenon caused by the activation of both cancer cell intrinsic resistance mechanisms, and also extrinsic intermediaries of therapy resistance, represented by non-malignant cells and structural components of the tumor stroma. The improved accuracy offered by advanced radiotherapy (RT)-technology permits reduced volume of healthy tissue in the irradiated field, and has been triggering an increase in the prescription of high-dose oligo-fractionated regimens in the clinics. Given the remarkable clinical success of high-dose RT and the current therapeutic shift occurring in the field, in this review we revise the existing knowledge on the effects that different radiation regimens exert on the different compartments of the tumor microenvironment, and highlight the importance of anti-tumor immunity and other tumor cell extrinsic mechanisms influencing therapeutic responses to high-dose radiation.
Collapse
Affiliation(s)
- Turid Hellevik
- Department of Oncology, University Hospital of Northern-Norway , Tromsø , Norway ; Translational Cancer Research Group, Department of Clinical Medicine, University of Tromsø , Tromsø , Norway
| | - Iñigo Martinez-Zubiaurre
- Translational Cancer Research Group, Department of Clinical Medicine, University of Tromsø , Tromsø , Norway
| |
Collapse
|
34
|
Abstract
Approximately one third of patients with non-small cell lung cancer have unresectable stage IIIA or stage IIIB disease; combined cytotoxic chemotherapy and radiation therapy delivered concurrently has been established as the standard treatment for such patients. Despite many clinical trials that tested several different radiochemotherapy combinations, it seems that a plateau of efficiencies at the acceptable risk of complications has been reached. Clinical studies indicate that the improved efficacy of radiochemotherapy is associated with the radiosensitizing effects of chemotherapy. Improvement of outcomes of this combined modality by developing novel radiosensitizers is a viable therapeutic strategy. In addition to causing cell death, ionizing radiation also induces a many-faceted signaling response, which activates numerous prosurvival pathways that lead to enhanced proliferation in the endothelial cells and increased vascularization in tumors. Radiation at doses used in the clinic activates cytoplasmic phospholipase A2, leading to increased production of arachidonic acid and lysophosphatidylcholine. The former is the initial step in the generation of eicosanoids, while the later is the initial step in the formation of lysophosphatidic acid, leading to the activation of inflammatory pathways. The echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) is member of the insulin superfamily of receptor tyrosine kinases. The EML4-ALK fusion gene appears unique to lung cancer and signals through extracellular signal regulated kinase and phosphoinositide 3-kinase. Heat shock protein 90 (Hsp90) is often overexpressed and present in an activated multichaperone complex in cancer cells, and it is now regarded as essential for malignant transformation and progression. In this review we focus on radiosensitizing strategies involving the targeting of membrane phospholipids, EML4-ALK, and Hsp90 with specific inhibitors and briefly discuss the combination of radiation with antivascular agents.
Collapse
|