1
|
Gui B, Jiang N, Pu H, Zhong F, Huang X, Wang Z, Liu Q, Wang H, Zhou Y, Zhou Q, Deng Q. Multifunctional targeted nanosystem based on aggregation-induced emission: Enhanced synergistic mild-photothermal chemotherapy of prostate cancer via downregulation of heat shock protein 70 under NIR-II imaging. Colloids Surf B Biointerfaces 2025; 252:114667. [PMID: 40188651 DOI: 10.1016/j.colsurfb.2025.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 05/18/2025]
Abstract
Prostate cancer is the second most common malignancy in men, often presents at advanced stages, where treatment options are limited due to surgical intolerance and resistance to androgen deprivation therapy. Mild photothermal therapy (PTT) at 42-49°C selectively eliminates tumors while sparing normal tissues, but its efficacy is reduced by heat shock protein (HSP70) upregulation, which inhibits apoptosis. To address these limitations, we developed 2TToD@NPs, a multifunctional nanosystem combining second near-infrared (NIR-II) fluorescence imaging, mild PTT, and chemotherapy. The nanosystem, comprising an aggregation-induced emission agent (2TT-oC26B) and doxorubicin (DOX), targets prostate cancer cells via folic acid modification. Upon laser irradiation, 2TT-oC26B generates strong NIR-II fluorescence and thermal energy for imaging and mild PTT. Concurrently, DOX enhances tumor sensitivity to PTT by downregulating HSP70, reduces thermal resistance, induces DNA damage, and generates reactive oxygen species, triggering apoptosis. This synergistic approach overcomes the limitations of single-modality therapies. Our findings suggest that the multifunctional nanosystem effectively integrate precise imaging and targeted therapy, offering a promising strategy for advanced prostate cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Bin Gui
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Nan Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Huan Pu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Fanglu Zhong
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Xin Huang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Zhiwen Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qianhui Liu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Hao Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yanxiang Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| | - Qing Deng
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
2
|
Sahane P, Puri N, Khairnar P, Phatale V, Shukla S, Priyadarshinee A, Srivastava S. Harnessing Folate Receptors: A Comprehensive Review on the Applications of Folate-Adorned Nanocarriers for the Management of Melanoma. ACS APPLIED BIO MATERIALS 2025; 8:3623-3656. [PMID: 40275606 DOI: 10.1021/acsabm.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The advancement in exclusively tailored therapeutic delivery systems has escalated a great deal of interest in targeted delivery to augment therapeutic efficacy and to lessen adverse effects. The targeted delivery approach promisingly helps to surmount the unmet clinical needs of conventional therapies, including chemoresistance, limited penetration, and side effects. In the case of melanoma, various receptors were overexpressed on the tumor site, among which folate receptor (FR) targeting is considered to be a progressive approach for managing melanoma. FRs are the macromolecules of the glycosyl phosphatidylinositol-attached protein that possess globular assembly with a greater affinity toward specific ligands. So, the functional ligands can be utilized to design targeted nanocarriers (NCs) that can effectively bind to overexpressed FRs. Hence, folate-adorned NCs (FNCs) offer various benefits such as site-specific targeting, cargo protection, and minimizing toxicity. This review focuses on the insights and implications of FRs, targeting FRs, and mechanisms, challenges, and advantages of FNCs. Further, the applications of various FNCs, such as liposomes, polymeric NCs, albumin nanoparticles, inorganic NCs, liquid crystalline nanoparticles, and nanogels, have been elaborated for melanoma therapy. Likewise, the potential of FNCs in immunotherapy, photodynamic therapy, chemotherapy, gene therapy, photothermal therapy, and tumor imaging has been exhaustively discussed. Furthermore, translational hurdles and potential solutions are discussed in detail. The present review is expected to give thoughtful ideas to researchers, industry stakeholders, and formulation scientists for the efficacious development of FNCs.
Collapse
Affiliation(s)
- Prajakta Sahane
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Niharika Puri
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Abhipsa Priyadarshinee
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| |
Collapse
|
3
|
Hu C, Nong S, Ke Q, Wu Z, Jiang Y, Wang Y, Chen Y, Wu Z, Zhang Q, Liao C, Wu M. Simultaneous co-delivery of Ginsenoside Rg3 and imiquimod from PLGA nanoparticles for effective breast cancer immunotherapy. iScience 2025; 28:112274. [PMID: 40256328 PMCID: PMC12008673 DOI: 10.1016/j.isci.2025.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Breast cancer is a fatal malignancy facing human health, with most patients experiencing recurrence and resistance to chemotherapy. The immunosuppressive tumor microenvironment (TME) greatly limits the actual outcome of immunotherapy. This study aimed to develop a modality of theranostics nanoparticles for breast cancer based on a near-infrared light-triggered nanoparticle for the targeted delivery of ginsenoside Rg3 and immune adjuvants imiquimod (R837) for effective breast cancer immunotherapy. Folate-receptor (FA) targeting IR780-R837/ginsenoside Rg3-perfluorohexane (PFH) @ polyethylene glycol (PEG)-poly (lactide-co-glycolic acid) (PLGA) nanoparticles (FA-NPs) can be activated by near-infrared laser irradiation in tumors, which leads to rapid release of ginsenoside Rg3 and R837 in the regions with high expression of folate receptors and glucose transporter 1 (GLUT1). Meanwhile, the nanoparticles can be used as dual-mode contrast agents for photoacoustic and ultrasound imaging. This strategy provides a strong immune memory effect, which can prevent tumor recurrence after eliminating the initial tumor.
Collapse
Affiliation(s)
- Cong Hu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Shuxiong Nong
- Department of Cardiology, Baise People’s Hospital. Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Qianqian Ke
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ziming Wu
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuancheng Jiang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ying Wang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yixin Chen
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ziling Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Qi Zhang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Chilin Liao
- Department of Cardiology, Baise People’s Hospital. Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
4
|
Naz Z, Fareed M, Chaudhary ARH, Snigdha NT, Zafar A, Alsaidan OA, Mangu K, Ahmad S, Aslam M, Rizwanullah M. Exploring the therapeutic potential of ligand-decorated nanostructured lipid carriers for targeted solid tumor therapy. Int J Pharm 2025; 678:125687. [PMID: 40348302 DOI: 10.1016/j.ijpharm.2025.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/19/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Solid tumors present significant therapeutic challenges due to their complex pathophysiology, including poor vascularization, dense extracellular matrix, multidrug resistance, and immune evasion. Conventional treatment strategies, such as chemotherapy, radiotherapy, and surgical interventions, are often associated with systemic toxicity, suboptimal drug accumulation at the tumor site, and chemoresistance. Nanostructured lipid carriers (NLCs) have emerged as a promising approach to enhance anticancer therapy. NLCs offer several advantages, including high drug loading capacity, improved bioavailability, controlled release, and enhanced stability. Recent advancements in active targeting strategies have led to the development of ligand-decorated NLCs, which exhibit selective tumor targeting, improved cellular uptake, and reduced systemic toxicity. By functionalizing NLCs with different targeting ligands, site-specific drug delivery can be achieved for better therapeutic efficacy. This review comprehensively explores the potential of ligand-decorated NLCs in solid tumor therapy, highlights their design principles, and mechanisms of tumor targeting. Furthermore, it discusses various receptor-targeted NLCs for the effective treatment of solid tumors. The potential of ligand-decorated NLCs in combination therapy, gene therapy, photothermal therapy, and photodynamic therapy is also explored. Overall, ligand-decorated NLCs represent a versatile and effective strategy to achieve better therapeutic outcomes in solid tumor therapy.
Collapse
Affiliation(s)
- Zrien Naz
- Department of Pharmaceutics, College of Pharmacy, Al Asmarya University, Zliten 218521, Libya
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | | | - Niher Tabassum Snigdha
- Department of Dental Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105 Tamil Nadu, India
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka-72341, Al-Jouf, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka-72341, Al-Jouf, Saudi Arabia
| | - Karthik Mangu
- Kogniverse Education and Research, Bionest, Avishkaran (NIPER), Hyderabad-500037, Telangana, India
| | - Shahnawaz Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed Aslam
- Pharmacy Department, Tishk International University, Erbil 44001 Kurdistan Region, Iraq
| | - Md Rizwanullah
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401 Punjab, India.
| |
Collapse
|
5
|
Saraei P, Ghasemi M, Talebi A, Vafaeinezhad A, Saberzadeh J. Nutritional Strategies in Oncology: A Narrative Review of Advances in Folate-Targeted Therapeutic Approaches for Cancer Treatment. Nutr Cancer 2025:1-23. [PMID: 40295145 DOI: 10.1080/01635581.2025.2497096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Folate, a water-soluble B vitamin crucial for DNA synthesis and repair, is internalized by cells through specific folate receptors (FRs), which are frequently overexpressed in various types of cancers. In this comprehensive study, we conducted a review of the literature from Google Scholar, PubMed, and Science Direct, focusing on research published between 1980 and 2024 to evaluate folate-targeted therapeutic strategies in oncology. Our study design involved a rigorous review of both preclinical and clinical research, emphasizing strategies such as folate-drug conjugates, antibody-drug conjugates, and folate-targeted nanoparticles. Key findings indicate that targeting FRs in cancers such as ovarian, breast, cervical, renal, and colorectal enhances drug delivery specificity to tumors, increases therapeutic efficacy, and decreases systemic toxicity compared to traditional chemotherapy. Several clinical trials reported improved progression-free survival and overall response rates among patients receiving folate-targeted therapies. In conclusion, our review highlights the significant potential of folate-targeted strategies in advancing precision oncology while these approaches provide substantial benefits in terms of efficacy and safety, further research is essential to refine drug design and expand clinical applications. Such initiatives will facilitate the development of more personalized cancer treatment protocols that maximize therapeutic outcomes while minimizing adverse effects.
Collapse
Affiliation(s)
- Pouya Saraei
- Student Research Committee, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Ghasemi
- Comprehensive Medical Research Center, Center for Basic Medical Sciences, Physiology Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Arefe Vafaeinezhad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Jamileh Saberzadeh
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Zhang Y, Dantsu Y, Zhang W. Construction of a Mirror-Image RNA Nanostructure for Enhanced Biostability and Drug Delivery Efficiency. ACS Biomater Sci Eng 2025; 11:2408-2421. [PMID: 40033796 DOI: 10.1021/acsbiomaterials.4c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The development of stable and efficient drug delivery systems is essential for advancing therapeutic applications. Here, we present an innovative approach using a mirror-image RNA (l-RNA) nanostructure to enhance the biostability and drug delivery efficiency. We engineered an l-RNA three-way junction structure conjugated with both small interfering RNA (siRNA) targeting MCL1 and the chemotherapeutic agent doxorubicin for targeted and synergistic drug delivery. This codelivery strategy leverages the combined effects of doxorubicin and MCL1 siRNA, achieving improved therapeutic outcomes. The l-RNA nanostructure demonstrates superior stability compared with natural d-RNA, resulting in reduced toxicity in healthy cells while maintaining therapeutic efficacy in cancer cells. This indicates that l-RNA nanostructures may offer enhanced biosafety when applied as therapeutic agents. The addition of folic acid (FA) to the nanostructure surface substantially increases both delivery specificity and endosomal escape efficiency, optimizing targeted delivery. Structural modeling also suggests a distinctive binding conformation of doxorubicin with l-DNA, setting it apart from native DNA interactions. This study highlights the potential of mirror-image nucleic acid nanostructures as robust and precise platforms for combinatorial drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| | - Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
- Melvin and Bren Simon Comprehensive Cancer Center, 535 Barnhill Drive, Indianapolis, Indiana 46202, United States
| |
Collapse
|
7
|
Xu S, Yu Y, Zhang B, Zhu K, Cheng Y, Zhang T. Boron carbide nanoparticles for boron neutron capture therapy. RSC Adv 2025; 15:10717-10730. [PMID: 40196817 PMCID: PMC11973571 DOI: 10.1039/d5ra00734h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Boron agent is widely accepted as one of the most important factors in boron neutron capture therapy (BNCT). In this study, boron carbide (B4C) nanoparticles were subjected to chemical modification, with the folic acid moiety linked to the surface of the particles by varying the segments of the covalent linker polyethylene glycol (PEG) through γ-aminopropyltriethoxysilane (APTES) functionalization. The resultant products were three boron agents, termed as B4C-APTES-FA, B4C-APTES-PEG2K-FA, and B4C-APTES-PEG5K-FA. A comparison was made between these products and the pristine B4C nanoparticles by investigating their physicochemical properties and biological performances, including hemolysis, cytotoxicity, and cellular uptake. Subsequently, the modified B4C-APTES-PEG2K-FA nanoparticles were subjected to in vivo safety assays and biodistribution investigations in mice at various dosages. Upon characterization using ICP-OES, it was found that the boron contents were the highest in the lungs, followed by the liver, spleen, kidneys, hearts, and tumors, and the lowest in the brain and muscles. The boron content in the tumor reached as high as 50 μg per g of dried tissue weight after 24 h of intravenous injection (I.V.), while the tumor-to-muscle and tumor-to-brain ratios of boron contents were found to exceed 3 following 24 hours of intravenous injection. These findings suggest that B4C nanoparticles are promising for BNCT owing to their high boron content, satisfactory biocompatibility, and abundant chemical modification sites.
Collapse
Affiliation(s)
- Shiwei Xu
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Ying Yu
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Boyu Zhang
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Kejia Zhu
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214104 China
| | - Yuan Cheng
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214104 China
| | - Tao Zhang
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
- MOE Key Laboratory of High-Performance Polymer Materials and Technology, Nanjing University Nanjing 210023 China
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214104 China
- School of Engineering, Qinghai Institute of Technology Xining 810016 China
| |
Collapse
|
8
|
Pan Y, Zhao H, Huang W, Liu S, Qi Y, Huang Y. Metal-Protein Hybrid Materials: Unlocking New Frontiers in Biomedical Applications. Adv Healthc Mater 2025; 14:e2404405. [PMID: 39778029 DOI: 10.1002/adhm.202404405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Metal-protein hybrid materials represent a novel class of functional materials that exhibit exceptional physicochemical properties and tunable structures, rendering them remarkable applications in diverse fields, including materials engineering, biocatalysis, biosensing, and biomedicine. The design and development of multifunctional and biocompatible metal-protein hybrid materials have been the subject of extensive research and a key aspiration for practical applications in clinical settings. This review provides a comprehensive analysis of the design strategies, intrinsic properties, and biomedical applications of these hybrid materials, with a specific emphasis on their potential in cancer therapy, drug and vaccine delivery, antibacterial treatments, and tissue regeneration. Through rational design, stable metal-protein hybrid materials can be synthesized using straightforward methods, enabling them with therapeutic, delivery, immunomodulatory, and other desired functionalities. Finally, the review outlines the existing limitations and challenges associated with metal-protein hybrid materials and evaluates their potential for clinical translation, providing insights into their practical implementation within biomedical applications.
Collapse
Affiliation(s)
- Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Han Zhao
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Wenyong Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Siyang Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| |
Collapse
|
9
|
Sadeghi Jam Z, Tafvizi F, Khodarahmi P, Jafari P, Baghbani-Arani F. Cisplatin-loaded UiO-66-NH 2 functionalized with folic acid enhances apoptotic activity and antiproliferative effects in MDA-MB-231 breast and A2780 ovarian cancer cells: An in vitro study. Heliyon 2025; 11:e42685. [PMID: 40084014 PMCID: PMC11904574 DOI: 10.1016/j.heliyon.2025.e42685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/01/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
The multifunctional nature of UiO-66-NH₂ as a drug carrier positions it as an optimal candidate for encapsulating and delivering anticancer agents. This study developed a folic acid (FA)-functionalized metal-organic framework (MOF) based on UiO-66-NH₂ to facilitate the targeted delivery of cisplatin (CIS) to MDA-MB-231 breast cancer and A2780 ovarian cancer cells. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful encapsulation of CIS within UiO-66-NH₂, while the drug release profile demonstrated a sustained, pH-responsive release of CIS, with a pronounced increase in the acidic tumor microenvironment. The MTT assay revealed excellent biocompatibility of UiO-66-NH₂-FA with HFF healthy cells, whereas UiO-66-NH₂-CIS-FA significantly enhanced anticancer activity against MDA-MB-231 and A2780 cells. Treatment with UiO-66-NH₂-CIS-FA induced substantial apoptosis in both cell lines, leading to a marked upregulation of BAX and P53 gene expression, alongside the downregulation of BCL2, CCND1, and CDK4. Furthermore, cells treated with CIS, UiO-66-NH₂-CIS, and UiO-66-NH₂-CIS-FA exhibited a significant increase in DCF fluorescence compared to the control group, indicating elevated ROS generation. UiO-66-NH₂-CIS-FA demonstrated enhanced drug-loading capacity and cytotoxic efficacy against cancer cells. Functionalization of UiO-66-NH₂-CIS with FA presents a promising strategy for targeted cancer therapy by improving drug delivery specificity and enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Zahra Sadeghi Jam
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Parvin Khodarahmi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Parvaneh Jafari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Fahimeh Baghbani-Arani
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
10
|
Yamanaka T, Nishikawa T, Yoshida H. Development of Antibody-Drug Conjugates for Malignancies of the Uterine Corpus: A Review. Cells 2025; 14:333. [PMID: 40072062 PMCID: PMC11898814 DOI: 10.3390/cells14050333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
Despite recent advances in cancer treatment, the prognosis for uterine malignancies (carcinoma and sarcoma) requires further improvement. Antibody-drug conjugates (ADCs) have emerged as a novel class of anti-cancer therapeutic agents, and multiple ADCs have been approved for other types of cancer. In 2024, trastuzumab deruxtecan received approval from the US Food and Drug Administration for cancer types and became the first ADC approved for the treatment of uterine malignancies. Many ADCs are currently being investigated in uterine malignancies, and therefore, there is a need to gain a deeper understanding of ADCs. In this article, we aim to provide a comprehensive overview of the advancements in ADCs. The contents of this article include the structure and mechanism of action, an analysis of recent clinical trials, and expected future clinical questions. This article also focuses on uterine sarcoma, which is not often highlighted as a target for ADC treatment.
Collapse
Affiliation(s)
- Taro Yamanaka
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Tadaaki Nishikawa
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| |
Collapse
|
11
|
Burčík D, Macko J, Podrojková N, Demeterová J, Stano M, Oriňak A. Role of Cell Adhesion in Cancer Metastasis Formation: A Review. ACS OMEGA 2025; 10:5193-5213. [PMID: 39989825 PMCID: PMC11840620 DOI: 10.1021/acsomega.4c08140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/25/2025]
Abstract
Intercellular adhesion is accompanied by several physical quantities and actions. In this review, we tried to collect information about the influence of surface energy and its impact on cell-cell adhesion. It still undergoes development for cancer treatment. Data on receptor-ligand interactions that occur on circulating tumor cells (CTCs) are described, and adhesion receptors as therapeutic targets are collected. Additionally, the impact of surface roughness on the interactions between CTC cells and the surface was monitored. The effects of different cell adhesion molecules (CAMs) on cell adhesion, growth, and proliferation were investigated. This review offers general principles of cell adhesion, through the blockade of adhesion with blocking drugs and inhibitors like computational models that describe the process of adhesion. Some theoretical models based on the minimum of the total free energy of interaction between CAMs and selected organic molecules have been presented. The final aim was to find information on how modulation of the surface of CTCs (by medicals or physically) inhibits cancer metastases formation.
Collapse
Affiliation(s)
- Denis Burčík
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Ján Macko
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Natália Podrojková
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Jana Demeterová
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Michal Stano
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Andrej Oriňak
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| |
Collapse
|
12
|
Ren S, Wang Q, Zhang C, Du R, Meng J, Zhang R. Layer-by-Layer Multitargeting Strategy for Enhanced Photothermal Therapy. ACS OMEGA 2025; 10:5460-5467. [PMID: 39989810 PMCID: PMC11840619 DOI: 10.1021/acsomega.4c07611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Photothermal therapy (PTT) presents unique advantages, including high temporal and spatial controllability and relatively few toxic side effects. Active targeting modifications of photothermal agents can deliver nanoprobes to tumors more efficiently, reducing toxic side effects while improving efficacy. In this work, the polyphenols, gallic acid, folic acid (FA), hyaluronic acid (HA), and Fe(III) were selected to prepare a self-photothermal nanoplatform Ga/Fe/HA/FA based on polyphenol-metal self-assembly. The self-assembly process synchronously integrated the targeting molecules, folic acid and hyaluronic acid, layer by layer in a polyphenol-metal network, thus realizing the "layer-by-layer targeting" effect. Compared with the traditional targeting modification, the self-assembly multitargeting modification strategy effectively avoided the complicated experimental steps of traditional targeting modification. Meanwhile, it mitigated the off-target risk during blood circulation and improved tumor-targeting efficiency, ultimately augmenting the effectiveness of photothermal therapy.
Collapse
Affiliation(s)
- Shilei Ren
- Third
Hospital of Shanxi Medical University, Shanxi
Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi
Hospital, Taiyuan 030032, China
- College
of Computer Science and Technology, North
University of China, Taiyuan 030051, China
| | - Qian Wang
- The
Radiology Department of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Chongqing Zhang
- Shanxi
Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital
Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Ruochen Du
- Department
of Laboratory Animal Center, Shanxi Medical
University, Taiyuan, Shanxi 030001, China
| | - Jian Meng
- Third
Hospital of Shanxi Medical University, Shanxi
Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi
Hospital, Taiyuan 030032, China
- The
Radiology Department of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The
Radiology Department of Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
13
|
Dey S, Ghosh M, Dev A. Signalling and molecular pathways, overexpressed receptors of colorectal cancer and effective therapeutic targeting using biogenic silver nanoparticles. Gene 2025; 936:149099. [PMID: 39557372 DOI: 10.1016/j.gene.2024.149099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Increasing morbidity and mortality in CRC is a potential threat to human health. The major challenges for better treatment outcomes are the heterogeneity of CRC cases, complicated molecular pathway cross-talks, the influence of gut dysbiosis in CRC, and the lack of multimodal target-specific drug delivery. The overexpression of many receptors in CRC cells may pave the path for targeting them with multiple ligands. The design of a more target-specific drug-delivery device with multiple ligand-functionalized, green-synthesized silver nanoparticles is highly promising and may also deliver other approved chemotherapeutic agents. This review presents the various aspects of colorectal cancer and over-expressed receptors that can be targeted with appropriate ligands to enhance the specific drug delivery potency of green synthesised silver nanoparticles. This review aims to broaden further research into this multi-ligand functionalised, safer and effective silver nano drug delivery system.
Collapse
Affiliation(s)
- Sandip Dey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Manik Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India.
| |
Collapse
|
14
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
15
|
Fasih S, Welch S, Lohmann AE. Antibody-Drug Conjugates: A Start of a New Era in Gynecological Cancers. Curr Oncol 2024; 31:7088-7106. [PMID: 39590153 PMCID: PMC11593302 DOI: 10.3390/curroncol31110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are a new class of therapeutic agents designed to target specific antigens on tumor cells, combining the specificity of monoclonal antibodies with the cytotoxicity of chemotherapy agents. ADCs have been available for over a decade, but in gynecological cancers, these agents are relatively new with great promise ahead. More than 80% of ongoing trials in gynecological cancers are evaluating ADCs' safety and efficacy, of which 40% are early-phase trials. Around twenty ADCs are currently under investigation, either alone or in combination with chemotherapies or immune checkpoint inhibitors. Among them, mirvetuximab soravtansine has been recently approved by the Food and Drug Administration (FDA) in platinum-resistant ovarian cancer with high folate-α receptor expression, as a single agent or in combination. Tisotumab vedotin and trastuzumab deruxtecan are also now approved by the FDA in patients with pre-treated cervical and uterine cancers and further investigation is ongoing. Overall, the toxicity profiles of ADCs are acceptable. Ocular toxicity is one of the specific side effects of some ADCs, but most of the cases are manageable with the use of prophylactic steroids and dose adjustments. This review aims to provide an overview of the fundamental and operational features of ADCs and examine the latest and most promising data, with a particular focus on the Canadian viewpoint.
Collapse
Affiliation(s)
- Samir Fasih
- Department of Oncology, Division of Medical Oncology, University of Western Ontario, London, ON N6A 5W9, Canada; (S.F.); (S.W.)
| | - Stephen Welch
- Department of Oncology, Division of Medical Oncology, University of Western Ontario, London, ON N6A 5W9, Canada; (S.F.); (S.W.)
| | - Ana Elisa Lohmann
- Department of Oncology, Division of Medical Oncology, University of Western Ontario, London, ON N6A 5W9, Canada; (S.F.); (S.W.)
- Department of Epidemiology and Biostatistics, University of Western Ontario, London, ON N6A 5W9, Canada
| |
Collapse
|
16
|
Tonbul H, Şahin A, Öztürk SC, Ultav G, Tavukçuoğlu E, Akbaş S, Aktaş Y, Esendağlı G, Çapan Y. An all-in-one nanoparticle for overcoming drug resistance: doxorubicin and elacridar co-loaded folate receptor targeted PLGA/MSN hybrid nanoparticles. J Drug Target 2024; 32:1101-1110. [PMID: 38946465 DOI: 10.1080/1061186x.2024.2374034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Overexpression of permeability-glycoprotein (P-gp) transporter leads to multidrug resistance (MDR) through cellular exclusion of chemotherapeutics. Co-administration of P-gp inhibitors and chemotherapeutics is a promising approach for improving the efficacy of therapy. Nevertheless, problems in pharmacokinetics, toxicity and solubility limit the application of P-gp inhibitors. Herein, we developed a novel all-in-one hybrid nanoparticle system to overcome MDR in doxorubicin (DOX)-resistant breast cancer. First, folic acid-modified DOX-loaded mesoporous silica nanoparticles (MSNs) were prepared and then loaded into PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles along with a P-gp inhibitor, elacridar. This hybrid nanoparticle system had high drug loading capacity, enabled both passive and active targeting of tumour tissues, and exhibited sequential and pH-triggered release of drugs. In vitro and in vivo studies in DOX-resistant breast cancer demonstrated the ability of the hybrid nanoparticles to reverse P-gp-mediated drug resistance. The nanoparticles were efficiently taken up by the breast cancer cells and delivered elacridar, in vitro. Biodistribution studies demonstrated substantial accumulation of the folate receptor-targeted PLGA/MSN hybrid nanoparticles in tumour-bearing mice. Moreover, deceleration of the tumour growth was remarkable in the animals administered with the DOX and elacridar co-loaded hybrid nanoparticles when compared to those treated with the marketed liposomal DOX (Caelyx®) or its combination with elacridar.
Collapse
MESH Headings
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacology
- Doxorubicin/pharmacokinetics
- Drug Resistance, Neoplasm/drug effects
- Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
- Animals
- Humans
- Nanoparticles/chemistry
- Female
- Mice
- Tetrahydroisoquinolines/pharmacology
- Tetrahydroisoquinolines/administration & dosage
- Tetrahydroisoquinolines/pharmacokinetics
- Lactic Acid/chemistry
- Acridines/pharmacology
- Acridines/administration & dosage
- Acridines/chemistry
- Cell Line, Tumor
- Folic Acid/chemistry
- Drug Resistance, Multiple/drug effects
- Silicon Dioxide/chemistry
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Drug Carriers/chemistry
- Polyglycolic Acid/chemistry
- Mice, Nude
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/pharmacology
- Mice, Inbred BALB C
- Folic Acid Transporters/metabolism
Collapse
Affiliation(s)
- Hayrettin Tonbul
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Adem Şahin
- Department of Pharmacy Service, Vocational School of Health Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Süleyman Can Öztürk
- Laboratory Animals Research and Application Center (HUDHAM), Hacettepe University, Ankara, Turkey
| | - Gözde Ultav
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Ece Tavukçuoğlu
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Sedenay Akbaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Güneş Esendağlı
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Yılmaz Çapan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
17
|
Cunha J, Ventura FV, Charrueau C, Ribeiro AJ. Alternative routes for parenteral nucleic acid delivery and related hurdles: highlights in RNA delivery. Expert Opin Drug Deliv 2024; 21:1415-1439. [PMID: 39271564 DOI: 10.1080/17425247.2024.2405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Nucleic acid-based therapies are promising advancements in medicine. They offer unparalleled efficacy in treating previously untreatable diseases through precise gene manipulation techniques. However, the challenge of achieving targeted delivery to specific cells remains a significant obstacle. AREAS COVERED This review thoroughly examines the physicochemical properties of nucleic acids, focusing on their interaction with carriers and exploring various delivery routes, including oral, pulmonary, ocular, and dermal routes. It also examines the nonviral vector delivery efficiency of nucleic acids, focusing on RNA, and provides regulatory landscapes. EXPERT OPINION The role of carriers in improving the effectiveness of nucleic acid-based therapies is emphasized. The discussion of published results covers regulatory frameworks, including insights into European Medicines Agency guidelines. It highlights cutting-edge biotechnological innovations and a quality-by-design approach that could facilitate clinical translation and smooth regulatory obstacles.
Collapse
Affiliation(s)
- Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Fátima V Ventura
- Medicines Evaluation Department, National Authority of Medicines and Health Products (INFARMED), Lisbon, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | | | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
18
|
Nevins S, McLoughlin CD, Oliveros A, Stein JB, Rashid MA, Hou Y, Jang MH, Lee KB. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy-Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300744. [PMID: 37058079 PMCID: PMC10576016 DOI: 10.1002/smll.202300744] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
Collapse
Affiliation(s)
- Sarah Nevins
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Callan D. McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Joshua B. Stein
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mohammad Abdur Rashid
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| |
Collapse
|
19
|
Matoba Y, Devins KM, Milane L, Manning WB, Mazina V, Yeku OO, Rueda BR. High-Grade Endometrial Cancer: Molecular Subtypes, Current Challenges, and Treatment Options. Reprod Sci 2024; 31:2541-2559. [PMID: 38658487 DOI: 10.1007/s43032-024-01544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Although many recent advancements have been made in women's health, perhaps one of the most neglected areas of research is the diagnosis and treatment of high-grade endometrial cancer (EnCa). The molecular classification of EnCa in concert with histology was a major step forward. The integration of profiling for mismatch repair deficiency and Human Epidermal Growth Factor 2 (HER2) overexpression, can further inform treatment options, especially for drug resistant recurrent disease. Recent early phase trials suggest that regardless of subtype, combination therapy with agents that have distinct mechanisms of action is a fruitful approach to the treatment of high-grade EnCa. Unfortunately, although the importance of diagnosis and treatment of high-grade EnCa is well recognized, it is understudied compared to other gynecologic and breast cancers. There remains a tremendous need to couple molecular profiling and biomarker development with promising treatment options to inform new treatment strategies with higher efficacy and safety for all who suffer from high-grade recurrent EnCa.
Collapse
Affiliation(s)
- Yusuke Matoba
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
| | - Kyle M Devins
- Department of Pathology, Massachusetts General Hospital, 021151, Boston, MA, USA
| | - Lara Milane
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, 02115, Boston, MA, USA
| | - William B Manning
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 02114, Boston, MA, USA
| | - Varvara Mazina
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 02114, Boston, MA, USA
| | - Oladapo O Yeku
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, 55 Fruit St, 02114, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA.
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA.
| |
Collapse
|
20
|
Peters GJ, Kathmann I, Giovannetti E, Smid K, Assaraf YG, Jansen G. The role of l-leucovorin uptake and metabolism in the modulation of 5-fluorouracil efficacy and antifolate toxicity. Front Pharmacol 2024; 15:1450418. [PMID: 39234107 PMCID: PMC11371747 DOI: 10.3389/fphar.2024.1450418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND L-Leucovorin (l-LV; 5-formyltetrahydrofolate, folinic acid) is a precursor for 5,10-methylenetetrahydrofolate (5,10-CH2-THF), which is important for the potentiation of the antitumor activity of 5-fluorouracil (5FU). LV is also used to rescue antifolate toxicity. LV is commonly administered as a racemic mixture of its l-LV and d-LV stereoisomers. We compared dl-LV with l-LV and investigated whether d-LV would interfere with the activity of l-LV. METHODS Using radioactive substrates, we characterized the transport properties of l-LV and d-LV, and compared the efficacy of l-LV with d-LV to potentiate 5FU-mediated thymidylate synthase (TS) inhibition. Using proliferation assays, we investigated their potential to protect cancer cells from cytotoxicity of the antifolates methotrexate, pemetrexed (Alimta), raltitrexed (Tomudex) and pralatrexate (Folotyn). RESULTS l-LV displayed an 8-fold and 3.5-fold higher substrate affinity than d-LV for the reduced folate carrier (RFC/SLC19A1) and proton coupled folate transporter (PCFT/SLC46A1), respectively. In selected colon cancer cell lines, the greatest enhanced efficacy of 5FU was observed for l-LV (2-fold) followed by the racemic mixture, whereas d-LV was ineffective. The cytotoxicity of antifolates in lymphoma and various solid tumor cell lines could be protected very efficiently by l-LV but not by d-LV. This protective effect of l-LV was dependent on cellular RFC expression as corroborated in RFC/PCFT-knockout and RFC/PCFT-transfected cells. Assessment of TS activity in situ showed that TS inhibition by 5FU could be enhanced by l-LV and dl-LV and only partially by d-LV. However, protection from inhibition by various antifolates was solely achieved by l-LV and dl-LV. CONCLUSION In general l-LV acts similar to the dl-LV formulations, however disparate effects were observed when d-LV and l-LV were used in combination, conceivably by d-LV affecting (anti)folate transport and intracellular metabolism.
Collapse
Affiliation(s)
- Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Ietje Kathmann
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Kees Smid
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
Malik S, Sikander M, Bell N, Zubieta D, Bell MC, Yallapu MM, Chauhan SC. Emerging role of mucins in antibody drug conjugates for ovarian cancer therapy. J Ovarian Res 2024; 17:161. [PMID: 39118097 PMCID: PMC11308542 DOI: 10.1186/s13048-024-01485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Ovarian cancer stands as the deadliest gynecologic malignancy, responsible for nearly 65% of all gynecologic cancer-related deaths. The challenges in early detection and diagnosis, coupled with the widespread intraperitoneal spread of cancer cells and resistance to chemotherapy, contribute significantly to the high mortality rate of this disease. Due to the absence of specific symptoms and the lack of effective screening methods, most ovarian cancer cases are diagnosed at advanced stages. While chemotherapy is a common treatment, it often leads to tumor recurrence, necessitating further interventions. In recent years, antibody-drug conjugates (ADCs) have emerged as a valuable tool in targeted cancer therapy. These complex biotherapeutics combine an antibody that specifically targets tumor specific/associated antigen(s) with a high potency anti-cancer drug through a linker, offering a promising approach for ovarian cancer treatment. The identification of molecular targets in various human tumors has paved the way for the development of targeted therapies, with ADCs being at the forefront of this innovation. By delivering cytotoxic agents directly to tumors and metastatic lesions, ADCs show potential in managing chemo-resistant ovarian cancers. Mucins such as MUC16, MUC13, and MUC1 have shown significantly higher expression in ovarian tumors as compared to normal and/or benign samples, thus have become promising targets for ADC generation. While traditional markers are limited by their elevated levels in non-cancerous conditions, mucins offer a new possibility for targeted treatment in ovarian cancer. This review comprehensively described the potential of mucins for the generation of ADC therapy, highlighting their importance in the quest to improve the outcome of ovarian cancer patients.
Collapse
Affiliation(s)
- Shabnam Malik
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Mohammed Sikander
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Natasha Bell
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Daniel Zubieta
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Maria C Bell
- Sanford Health, Sanford Gynecologic Oncology Clinic, Sioux Falls, SD, 57104, USA
| | - Murali M Yallapu
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Subhash C Chauhan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA.
| |
Collapse
|
22
|
Kuhn E, Gambini D, Runza L, Ferrero S, Scarfone G, Bulfamante G, Ayhan A. Unsolved Issues in the Integrated Histo-Molecular Classification of Endometrial Carcinoma and Therapeutic Implications. Cancers (Basel) 2024; 16:2458. [PMID: 39001520 PMCID: PMC11240465 DOI: 10.3390/cancers16132458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Endometrial carcinoma (EC) is the most frequent gynecological cancer, with an increasing incidence and mortality in recent times. The last decade has represented a true revolution with the development of the integrated histo-molecular classification of EC, which allows for the stratification of patients with morphologically indistinguishable disease into groups with different prognoses. Particularly, the POLE-mutated subgroup exhibits outstanding survival. Nevertheless, the indiscriminate application of molecular classification appears premature. Its prognostic significance has been proven mainly in endometrioid EC, the most common histotype, but it has yet to be convincingly confirmed in the other minor histotypes, which indeed account for a relevant proportion of EC mortality. Moreover, its daily use both requires a mindful pathologist who is able to correctly evaluate and unambiguously report immunohistochemical staining used as a surrogated diagnostic tool and is hampered by the unavailability of POLE mutation analysis. Further molecular characterization of ECs is needed to allow for the identification of better-tailored therapies in different settings, as well as the safe avoidance of surgery for fertility preservation. Hopefully, the numerous ongoing clinical trials in the adjuvant and metastatic settings of EC will likely produce evidence to refine the histo-molecular classification and therapeutic guidelines. Our review aims to retrace the origin and evolution of the molecular classification for EC, reveal its strengths and limitations, show clinical relevance, and uncover the desired future developments.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy
| | - Letterio Runza
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giovanna Scarfone
- Gynecology Oncology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Human Pathology and Molecular Pathology, TOMA Advanced Biomedical Assays S.p.A., 21052 Busto Arsizio, Italy
| | - Ayse Ayhan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
23
|
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat 2024; 75:101086. [PMID: 38677200 DOI: 10.1016/j.drup.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory of Mocelular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Yang Z, Wang C, Du S, Ma Q, Wang W, Liu C, Zhan Y, Zhan W. Folic acid-mediated hollow Mn 3 O 4 nanocomposites for in vivo MRI/FLI monitoring the metastasis of gastric cancer. Biomed Eng Online 2024; 23:53. [PMID: 38858706 PMCID: PMC11571743 DOI: 10.1186/s12938-024-01248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Metastasis is one of the main factors leading to the high mortality rate of gastric cancer. The current monitoring methods are not able to accurately monitor gastric cancer metastasis. METHODS In this paper, we constructed a new type of hollowMn 3 O 4 nanocomposites,Mn 3 O 4 @HMSN-Cy7.5-FA, which had a size distribution of approximately 100 nm and showed good stability in different liquid environments. The in vitro magnetic resonance imaging (MRI) results show that the nanocomposite has good response effects to the acidic microenvironment of tumors. The acidic environment can significantly enhance the contrast of T 1 -weighted MRI. The cellular uptake and endocytosis results show that the nanocomposite has good targeting capabilities and exhibits good biosafety, both in vivo and in vitro. In a gastric cancer nude mouse orthotopic metastatic tumor model, with bioluminescence imaging's tumor location information, we realized in vivo MRI/fluorescence imaging (FLI) guided precise monitoring of the gastric cancer orthotopic and metastatic tumors with this nanocomposite. RESULTS This report demonstrates thatMn 3 O 4 @HMSN-Cy7.5-FA nanocomposites is a promising nano-diagnostic platform for the precision diagnosis and therapy of gastric cancer metastasis in the future. CONCLUSIONS In vivo MRI/FLI imaging results show that the nanocomposites can achieve accurate monitoring of gastric cancer tumors in situ and metastases. BLI's tumor location information further supports the good accuracy of MRI/FLI dual-modality imaging. The above results show that the MHCF NPs can serve as a good nano-diagnostic platform for precise in vivo monitoring of tumor metastasis. This nanocomposite provides more possibilities for the diagnosis and therapy of gastric cancer metastases.
Collapse
Affiliation(s)
- Zhihua Yang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chenying Wang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, Shaanxi, China
| | - Shangting Du
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Qin Ma
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wei Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Changhu Liu
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yonghua Zhan
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, Shaanxi, China
| | - Wenhua Zhan
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
25
|
Wallace-Povirk A, O'Connor C, Dekhne AS, Bao X, Nayeen MJ, Schneider M, Katinas JM, Wong-Roushar J, Kim S, Polin L, Li J, Back JB, Dann CE, Gangjee A, Hou Z, Matherly LH. Mitochondrial and Cytosolic One-Carbon Metabolism Is a Targetable Metabolic Vulnerability in Cisplatin-Resistant Ovarian Cancer. Mol Cancer Ther 2024; 23:809-822. [PMID: 38377173 PMCID: PMC11150100 DOI: 10.1158/1535-7163.mct-23-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
One-carbon (C1) metabolism is compartmentalized between the cytosol and mitochondria with the mitochondrial C1 pathway as the major source of glycine and C1 units for cellular biosynthesis. Expression of mitochondrial C1 genes including SLC25A32, serine hydroxymethyl transferase (SHMT) 2, 5,10-methylene tetrahydrofolate dehydrogenase 2, and 5,10-methylene tetrahydrofolate dehydrogenase 1-like was significantly elevated in primary epithelial ovarian cancer (EOC) specimens compared with normal ovaries. 5-Substituted pyrrolo[3,2-d]pyrimidine antifolates (AGF347, AGF359, AGF362) inhibited proliferation of cisplatin-sensitive (A2780, CaOV3, IGROV1) and cisplatin-resistant (A2780-E80, SKOV3) EOC cells. In SKOV3 and A2780-E80 cells, colony formation was inhibited. AGF347 induced apoptosis in SKOV3 cells. In IGROV1 cells, AGF347 was transported by folate receptor (FR) α. AGF347 was also transported into IGROV1 and SKOV3 cells by the proton-coupled folate transporter (SLC46A1) and the reduced folate carrier (SLC19A1). AGF347 accumulated to high levels in the cytosol and mitochondria of SKOV3 cells. By targeted metabolomics with [2,3,3-2H]L-serine, AGF347, AGF359, and AGF362 inhibited SHMT2 in the mitochondria. In the cytosol, SHMT1 and de novo purine biosynthesis (i.e., glycinamide ribonucleotide formyltransferase, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) were targeted; AGF359 also inhibited thymidylate synthase. Antifolate treatments of SKOV3 cells depleted cellular glycine, mitochondrial NADH and glutathione, and showed synergistic in vitro inhibition toward SKOV3 and A2780-E80 cells when combined with cisplatin. In vivo studies with subcutaneous SKOV3 EOC xenografts in SCID mice confirmed significant antitumor efficacy of AGF347. Collectively, our studies demonstrate a unique metabolic vulnerability in EOC involving mitochondrial and cytosolic C1 metabolism, which offers a promising new platform for therapy.
Collapse
Affiliation(s)
- Adrianne Wallace-Povirk
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Aamod S. Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Md. Junayed Nayeen
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Mathew Schneider
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Jade M. Katinas
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | | | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Jessica B. Back
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Charles E. Dann
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Larry H. Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
26
|
Quindoza GM, Horimoto R, Nakagawa Y, Aida Y, Irawan V, Norimatsu J, Mizuno HL, Anraku Y, Ikoma T. Folic acid-mediated enhancement of the diagnostic potential of luminescent europium-doped hydroxyapatite nanocrystals for cancer biomaging. Colloids Surf B Biointerfaces 2024; 239:113975. [PMID: 38762934 DOI: 10.1016/j.colsurfb.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Early and accurate cancer diagnosis is crucial for improving patient survival rates. Luminescent nanoparticles have emerged as a promising tool in fluorescence bioimaging for cancer diagnosis. To enhance diagnostic accuracy, ligands promoting endocytosis into cancer cells are commonly incorporated onto nanoparticle surfaces. Folic acid (FA) is one such ligand, known to specifically bind to folate receptors (FR) overexpressed in various cancer cells such as cervical and ovarian carcinoma. Therefore, surface modification of luminescent nanoparticles with FA can enhance both luminescence efficiency and diagnostic accuracy. In this study, luminescent europium-doped hydroxyapatite (EuHAp) nanocrystals were prepared via hydrothermal method and subsequently modified with (3-Aminopropyl)triethoxysilane (APTES) followed by FA to target FR-positive human cervical adenocarcinoma cell line (HeLa) cells. The sequential grafting of APTES and then FA formed a robust covalent linkage between the nanocrystals and FA. Rod-shaped FA-modified EuHAp nanocrystals, approximately 100 nm in size, exhibited emission peaks at 589, 615, and 650 nm upon excitation at 397 nm. Despite a reduction in photoluminescence intensity following FA modification, fluorescence microscopy revealed a remarkable 120-fold increase in intensity compared to unmodified EuHAp, attributed to the enhanced uptake of FA-modified EuHAp. Additionally, confocal microscope observations confirmed the specificity and the internalization of FA-modified EuHAp nanocrystals in HeLa cells. In conclusion, the modification of EuHAp nanocrystals with FA presents a promising strategy to enhance the diagnostic potential of cancer bioimaging probes.
Collapse
Affiliation(s)
- Gerardo Martin Quindoza
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Rui Horimoto
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasuhiro Nakagawa
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuta Aida
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Vincent Irawan
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Jumpei Norimatsu
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hayato Laurence Mizuno
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasutaka Anraku
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiyuki Ikoma
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
27
|
Urbano-Gámez JD, Guzzi C, Bernal M, Solivera J, Martínez-Zubiaurre I, Caro C, García-Martín ML. Tumor versus Tumor Cell Targeting in Metal-Based Nanoparticles for Cancer Theranostics. Int J Mol Sci 2024; 25:5213. [PMID: 38791253 PMCID: PMC11121233 DOI: 10.3390/ijms25105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The application of metal-based nanoparticles (mNPs) in cancer therapy and diagnostics (theranostics) has been a hot research topic since the early days of nanotechnology, becoming even more relevant in recent years. However, the clinical translation of this technology has been notably poor, with one of the main reasons being a lack of understanding of the disease and conceptual errors in the design of mNPs. Strikingly, throughout the reported studies to date on in vivo experiments, the concepts of "tumor targeting" and "tumor cell targeting" are often intertwined, particularly in the context of active targeting. These misconceptions may lead to design flaws, resulting in failed theranostic strategies. In the context of mNPs, tumor targeting can be described as the process by which mNPs reach the tumor mass (as a tissue), while tumor cell targeting refers to the specific interaction of mNPs with tumor cells once they have reached the tumor tissue. In this review, we conduct a critical analysis of key challenges that must be addressed for the successful targeting of either tumor tissue or cancer cells within the tumor tissue. Additionally, we explore essential features necessary for the smart design of theranostic mNPs, where 'smart design' refers to the process involving advanced consideration of the physicochemical features of the mNPs, targeting motifs, and physiological barriers that must be overcome for successful tumor targeting and/or tumor cell targeting.
Collapse
Affiliation(s)
- Jesús David Urbano-Gámez
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
| | - Cinzia Guzzi
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
| | - Manuel Bernal
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, 29071 Malaga, Spain
| | - Juan Solivera
- Department of Neurosurgery, Reina Sofia University Hospital, 14004 Cordoba, Spain;
| | - Iñigo Martínez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050, Langnes, 9037 Tromsö, Norway;
| | - Carlos Caro
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
| | - María Luisa García-Martín
- Biomedical Magnetic Resonance Laboratory—BMRL, Andalusian Public Foundation Progress and Health—FPS, 41092 Seville, Spain; (J.D.U.-G.); (C.G.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma BIONAND, C/Severo Ochoa, 35, 29590 Malaga, Spain;
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
28
|
Zhi L, Cheng C, Jing L, Zhi-Ping P, Lu Y, Yan T, Zhi-Gang W, Guo-Bing Y. Application of fluorocarbon nanoparticles of 131I-fulvestrant as a targeted radiation drug for endocrine therapy on human breast cancer. J Nanobiotechnology 2024; 22:107. [PMID: 38475902 DOI: 10.1186/s12951-024-02309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Breast cancer is the most prevalent malignant tumor among women, with hormone receptor-positive cases constituting 70%. Fulvestrant, an antagonist for these receptors, is utilized for advanced metastatic hormone receptor-positive breast cancer. Yet, its inhibitory effect on tumor cells is not strong, and it lacks direct cytotoxicity. Consequently, there's a significant challenge in preventing recurrence and metastasis once cancer cells develop resistance to fulvestrant. METHOD To address these challenges, we engineered tumor-targeting nanoparticles termed 131I-fulvestrant-ALA-PFP-FA-NPs. This involved labeling fulvestrant with 131I to create 131I-fulvestrant. Subsequently, we incorporated the 131I-fulvestrant and 5-aminolevulinic acid (ALA) into fluorocarbon nanoparticles with folate as the targeting agent. This design facilitates a tri-modal therapeutic approach-endocrine therapy, radiotherapy, and PDT for estrogen receptor-positive breast cancer. RESULTS Our in vivo and in vitro tests showed that the drug-laden nanoparticles effectively zeroed in on tumors. This targeting efficiency was corroborated using SPECT-CT imaging, confocal microscopy, and small animal fluorescence imaging. The 131I-fulvestrant-ALA-PFP-FA-NPs maintained stability and showcased potent antitumor capabilities due to the synergism of endocrine therapy, radiotherapy, and CR-PDT. Throughout the treatment duration, we detected no notable irregularities in hematological, biochemical, or histological evaluations. CONCLUSION We've pioneered a nanoparticle system loaded with radioactive isotope 131I, endocrine therapeutic agents, and a photosensitizer precursor. This system offers a combined modality of radiotherapy, endocrine treatment, and PDT for breast cancer.
Collapse
Affiliation(s)
- Li Zhi
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Chen Cheng
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Luo Jing
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Peng Zhi-Ping
- Department of Nuclear Medicine Laboratory, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yang Lu
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China
| | - Tian Yan
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Wang Zhi-Gang
- Department of Ultrasound Research Institute, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yin Guo-Bing
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
29
|
Oryani MA, Nosrati S, Javid H, Mehri A, Hashemzadeh A, Karimi-Shahri M. Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1377-1404. [PMID: 37715816 DOI: 10.1007/s00210-023-02707-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Azad Shahroud University, Shahroud, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
30
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
31
|
Jing Y, Huang L, Dong Z, Gong Z, Yu B, Lin D, Qu J. Super-resolution imaging of folate receptor alpha on cell membranes using peptide-based probes. Talanta 2024; 268:125286. [PMID: 37832456 DOI: 10.1016/j.talanta.2023.125286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Folate receptor alpha (FRα) is a vital membrane protein which have great association with cancers and involved in various biological processes including folate transport and cell signaling. However, the distribution and organization pattern of FRα on cell membranes remains unclear. Previous studies relied on antibodies to recognize the proteins. However, multivalent crosslinking and large size of antibodies confuse the direct observation to some extent. Fortunately, the emergence of peptide, which are small-sized and monovalent, has supplied us an unprecedented choice. Here, we applied fluorophore-conjugated peptide probe to recognize the FRα and study the distribution pattern of FRα on cell membrane using dSTORM super-resolution imaging technique. FRα were found to organized as clusters on cell surface with different sizes. And they have a higher expression level and formed larger clusters on various cancer cells than normal cells, which hinted that its specific distribution could be utilized for cancer diagnosis. Furthermore, we revealed that the lipid raft and cortical actin as restrictive factors for the FRα clustering, suggesting a potential assembly mechanism insight into FRα clustering on cell membrane. Collectively, our work clarified the morphology distribution and clustered organization of FRα with peptide probes at the nanometer scale, which paves the way for further revealing the relationship between the spatial organization and functions of membranal proteins.
Collapse
Affiliation(s)
- Yingying Jing
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Lilin Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zufu Dong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zhenquan Gong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Bin Yu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Danying Lin
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
32
|
Baran M, Onder GO, Goktepe O, Yay A. Role of apoptosis and autophagy in folic acid-induced cytotoxicity of human breast cancer cells in vitro. Fundam Clin Pharmacol 2024; 38:126-138. [PMID: 37587691 DOI: 10.1111/fcp.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Obstacles to the successful treatment of breast cancer patients with chemotherapeutic agents can be overcome with effective new strategies. It is still unclear how folic acid affects the onset and spread of breast cancer. The purpose of this study was to determine how folic acid affected the apoptotic and autophagic pathways of the breast cancer cell lines MCF-7 and MDA-MB-231. In the present study, folic acid was applied to MCF-7 and MDA-MB-231 breast cancer cell lines at different concentrations and for different durations. MTT analysis was used to investigate cytotoxic activity. All groups underwent the Tunel staining procedure to identify apoptosis and the immunofluorescence staining approach to identify the autophagic pathway. 24-hour folic acid values were accepted as the most appropriate cytotoxic dose. In MCF-7, cell cycle arrest was observed in the S phase and MDA-MB-231 G1/G0 phases. When apoptotic TUNEL staining was evaluated in both cell lines, folic acid significantly increased apoptosis. While a significant difference was observed between the groups in terms of Beclin 1 immunoreactivity in the MDA-MB-231 cell line, there was no significant difference in the MCF-7 cell line. In addition, statistical significance was not observed LC3 immunoreactivity in both cell lines. In the study, it was observed that folic acid induced autophagy at the initial stage in the MDA-MB-231 cell line but had no inductive effect in the MCF-7 cell line. In conclusion, our findings showed that folic acid has a potential cytotoxic and therapeutic effect on MCF-7 and MDA-MB-231 breast cancer cell lines.
Collapse
Affiliation(s)
- Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, 38039, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ozge Goktepe
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, 38039, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Faculty of Medicine, Kayseri, 38039, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
33
|
Zhang D, Zhang M, Pang Y, Li M, Ma W. Folic Acid-Modified Long-Circulating Liposomes Loaded with Sulfasalazine For Targeted Induction of Ferroptosis in Melanoma. ACS Biomater Sci Eng 2024; 10:588-598. [PMID: 38117929 DOI: 10.1021/acsbiomaterials.3c01223] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Melanoma is a malignant tumor that originates from melanocytes. The incidence of melanoma is increasing worldwide, partially because of its insensitivity to radiotherapy or chemotherapy. Therefore, effective treatments for melanoma are urgently required. In this study, we employed folic acid-modified sulfasalazine long-circulating liposomes (FA-SSZ-Lips) to precisely target drug delivery to melanoma cells, eliciting ferroptosis effectively. The synthesized FA-SSZ-Lips were characterized as small spheres of a double-layer membrane, a particle size of 110.1 nm, and a ζ-potential of -22.8 ± 0.66 mV. FA-SSZ-Lips are effective drug carriers with SSZ-loading ratio and SSZ release rate of 6.2 ± 0.10%, and 72.63 ± 1.40%, respectively. The liposomes enhanced SSZ solubility, and the folic acid modifications increased the liposome targeting to melanoma cells. Compared with SSZ alone, FA-SSZ-Lips more strongly inhibited B16F10 cell growth, significantly disrupted the intracellular redox balance, and induced ferroptosis. After treatment, considerable differences were observed in the tumor volumes between FA-SSZ-Lips and phosphate-buffered saline control groups. The tumor growth-inhibition value of the FA-SSZ-Lips group reached 70.09%. Thus, FA-SSZ-Lips exhibited favorable antitumor effects in vitro and in vivo and are a promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Mogen Zhang
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yunyan Pang
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Meiling Li
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Weiyuan Ma
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| |
Collapse
|
34
|
Cui LW, Fan LY, Shen ZY. Application Research Progress of Nanomaterial Graphene and its Derivative Complexes in Tumor Diagnosis and Therapy. Curr Med Chem 2024; 31:6436-6459. [PMID: 38299292 DOI: 10.2174/0109298673251648231106112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 02/02/2024]
Abstract
Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Li Wen Cui
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Lu Yao Fan
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Zhi Yong Shen
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| |
Collapse
|
35
|
Anastasio MK, Shuey S, Davidson BA. Antibody-Drug Conjugates in Gynecologic Cancers. Curr Treat Options Oncol 2024; 25:1-19. [PMID: 38172449 DOI: 10.1007/s11864-023-01166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
OPINION STATEMENT Antibody-drug conjugates (ADCs) are a novel class of targeted cancer therapies with the ability to selectively deliver a cytotoxic drug to a tumor cell using a monoclonal antibody linked to a cytotoxic payload. The technology of ADCs allows for tumor-specificity, improved efficacy, and decreased toxicity compared to standard chemotherapy. Common toxicities associated with ADC use include ocular, pulmonary, hematologic, and neurologic toxicities. Several ADCs have been approved by the United States Food and Drug Administration (FDA) for the management of patients with recurrent or metastatic gynecologic cancers, a population with poor outcomes and limited effective treatment options. The first FDA-approved ADC for recurrent or metastatic cervical cancer was tisotumab vedotin, a tissue factor-targeting agent, after demonstrating response in the innovaTV 204 trial. Mirvetuximab soravtansine targets folate receptor alpha and is approved for use in patients with folate receptor alpha-positive, platinum-resistant, epithelial ovarian cancer based on results from the SORAYA trial. While there are no FDA-approved ADCs for the treatment of uterine cancer, trastuzumab deruxtecan, an anti-human epidermal growth factor receptor 2 (HER2) agent, is actively being investigated. In this review, we will describe the structure and mechanism of action of ADCs, discuss their toxicity profiles, review ADCs both approved and under investigation for the management of gynecologic cancers, and discuss mechanisms of ADC resistance.
Collapse
Affiliation(s)
- Mary Katherine Anastasio
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, 27705, USA.
| | - Stephanie Shuey
- Department of Pharmacy, Duke University Medical Center, Durham, NC, USA
| | - Brittany A Davidson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, 27705, USA
| |
Collapse
|
36
|
Zhou Q, He Q, He W, Wang C, Liu G, Wang K, Li H, Li J, Xiao W, Fang Q, Peng L, Han Y, Wang D, Leng X. Clinical value of folate receptor-positive circulating tumor cells in patients with esophageal squamous cell carcinomas: a retrospective study. BMC Cancer 2023; 23:1171. [PMID: 38037003 PMCID: PMC10687783 DOI: 10.1186/s12885-023-11565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The aim of the study is to explore the role of preoperative folate receptor-positive circulating tumor cell (FR+CTC) levels in predicting disease-free survival (DFS) and overall survival (OS) in patients with esophageal squamous cell carcinomas (ESCC). METHODS Three ml blood samples were prospectively drawn from ESCC patients, and ligand-targeted polymerase chain reaction (LT-PCR) was used for the quantification of FR+CTCs. Other serum indicators were measured by traditional methods. Clinicopathological characteristics were obtained from the hospital medical record system, DFS and OS data were obtained by follow-up. The correlation between clinico-pathological characteristics, DFS, and OS and FR+CTCs were analyzed, respectively. Risk factors potentially affecting DFS and OS were explored by Cox regression analysis. RESULTS there were no significant correlations between FR+CTCs and patient age, sex, albumin, pre-albumin, C-reactive protein (CRP), ferritin and CRP/Albumin ratio, tumor size, grade of differentiation, lymph node metastasis, TNM stage, perineural invasion/vessel invasion (all P > 0.05). Nevertheless, preoperative FR+CTCs were an independent prognostic factor for DFS (HR 2.7; 95% CI 1.31-, P = 0.007) and OS (HR 3.37; 95% CI 1.06-, P = 0.04). DFS was significantly shorter for patients with post-operative FR+CTCs ≥ 17.42 FU/3ml compared with patients < 17.42 FU/3ml (P = 0.0012). For OS, it was shorter for patients with FR+CTCs ≥ 17.42 FU/3ml compared with patients < 17.42 FU/3ml, however, the difference did not reach statistical significance (P = 0.51). CONCLUSIONS ESCC patients with high FR+CTCs tend to have a worse prognosis. FR+CTCs may monitor the recurrence of cancers in time, accurately assess patient prognosis, and guide clinical decision-making. TRIAL REGISTRATION The study was approved by the Sichuan Cancer Hospital & Institute Ethics Committee (No. SCCHEC-02-2022-050).
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Qiao He
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wenwu He
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Chenghao Wang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Guangyuan Liu
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Kangning Wang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Haojun Li
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Jialong Li
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Wenguang Xiao
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Qiang Fang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Lin Peng
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Yongtao Han
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xuefeng Leng
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China.
| |
Collapse
|
37
|
Jang H, Kim H, Kim EH, Han G, Jang Y, Kim Y, Lee JW, Shin SC, Kim EE, Kim SH, Yang Y. Post-insertion technique to introduce targeting moieties in milk exosomes for targeted drug delivery. Biomater Res 2023; 27:124. [PMID: 38031117 PMCID: PMC10688116 DOI: 10.1186/s40824-023-00456-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Recently, increased attention has been given on exosomes as ideal nanocarriers of drugs owing to their intrinsic properties that facilitate the transport of biomolecular cargos. However, large-scale exosome production remains a major challenge in the clinical application of exosome-based drug delivery systems. Considering its biocompatibility and stability, bovine milk is a suitable natural source for large-scale and stable exosome production. Because the active-targeting ability of drug carriers is essential to maximize therapeutic efficacy and minimize side effects, precise membrane functionalization strategies are required to enable tissue-specific delivery of milk exosomes with difficulty in post-isolation modification. METHODS In this study, the membrane functionalization of a milk exosome platform modified using a simple post-insertion method was examined comprehensively. Exosomes were engineered from bovine milk (mExo) with surface-tunable modifications for the delivery of tumor-targeting doxorubicin (Dox). The surface modification of mExo was achieved through the hydrophobic insertion of folate (FA)-conjugated lipids. RESULTS We have confirmed the stable integration of functionalized PE-lipid chains into the mExo membrane through an optimized post-insertion technique, thereby effectively enhancing the surface functionality of mExo. Indeed, the results revealed that FA-modified mExo (mExo-FA) improved cellular uptake in cancer cells via FA receptor (FR)-mediated endocytosis. The designed mExo-FA selectively delivered Dox to FR-positive tumor cells and triggered notable tumor cell death, as confirmed by in vitro and in vivo analyses. CONCLUSIONS This simple and easy method for post-isolation modification of the exosomal surface may be used to develop milk-exosome-based drug delivery systems.
Collapse
Affiliation(s)
- Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eun Hye Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Geonhee Han
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yeongji Jang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yelee Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Won Lee
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Chul Shin
- Technological Convergence Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sun Hwa Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| | - Yoosoo Yang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
38
|
Kubota Y, Hoshiko T, Higashi T, Motoyama K, Okada S, Kimura S. Folate-Appended Hydroxypropyl-β-Cyclodextrin Induces Autophagic Cell Death in Acute Myeloid Leukemia Cells. Int J Mol Sci 2023; 24:16720. [PMID: 38069042 PMCID: PMC10706821 DOI: 10.3390/ijms242316720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous myeloid neoplasm that remains challenging to treat. Because intensive conventional chemotherapy reduces survival rates in elderly patients, drugs with lower toxicity and fewer side effects are needed urgently. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is used clinically as a pharmaceutical excipient for poorly water-soluble drugs. Previously, we showed that HP-β-CyD exerts antitumor activity by disrupting cholesterol homeostasis. Recently, we developed folate-conjugated HP-β-CyD (FA-HP-β-CyD) and demonstrated its potential as a new antitumor agent that induces not only apoptosis, but also autophagic cell death; however, we do not know whether FA-HP-β-CyD exerts these effects against AML. Here, we investigated the effects of FA-HP-β-CyD on folate receptor (FR)-expressing AML cells. We found that the cytotoxic activity of FA-HP-β-CyD against AML cells was stronger than that of HP-β-CyD. Also, FA-HP-CyD induced the formation of autophagosomes in AML cell lines. FA-HP-β-CyD increased the inhibitory effects of cytarabine and a BCL-2-selective inhibitor, Venetoclax, which are commonly used treat elderly AML patients. Notably, FA-HP-β-CyD suppressed the proliferation of AML cells in BALB/c nude recombinase-activating gene-2 (Rag-2)/Janus kinase 3 (Jak3) double-deficient mice with AML. These results suggest that FA-HP-β-CyD acts as a potent anticancer agent for AML chemotherapy by regulating autophagy.
Collapse
Affiliation(s)
- Yasushi Kubota
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
- Department of Transfusion Medicine and Cell Therapy, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Japan
| | - Toshimi Hoshiko
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (T.H.); (K.M.)
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (T.H.); (K.M.)
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto 860-0811, Japan;
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| |
Collapse
|
39
|
Kalaitsidou M, Moon OR, Sykorova M, Bao L, Qu Y, Sukumaran S, Valentine M, Zhou X, Pandey V, Foos K, Medvedev S, Powell Jr DJ, Udyavar A, Gschweng E, Rodriguez R, Dudley ME, Hawkins RE, Kueberuwa G, Bridgeman JS. Signaling via a CD28/CD40 chimeric costimulatory antigen receptor (CoStAR™), targeting folate receptor alpha, enhances T cell activity and augments tumor reactivity of tumor infiltrating lymphocytes. Front Immunol 2023; 14:1256491. [PMID: 38022678 PMCID: PMC10664248 DOI: 10.3389/fimmu.2023.1256491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Transfer of autologous tumor infiltrating lymphocytes (TIL) to patients with refractory melanoma has shown clinical efficacy in a number of trials. However, extending the clinical benefit to patients with other cancers poses a challenge. Inefficient costimulation in the tumor microenvironment can lead to T cell anergy and exhaustion resulting in poor anti-tumor activity. Here, we describe a chimeric costimulatory antigen receptor (CoStAR) comprised of FRα-specific scFv linked to CD28 and CD40 intracellular signaling domains. CoStAR signaling alone does not activate T cells, while the combination of TCR and CoStAR signaling enhances T cell activity resulting in less differentiated T cells, and augmentation of T cell effector functions, including cytokine secretion and cytotoxicity. CoStAR activity resulted in superior T cell proliferation, even in the absence of exogenous IL-2. Using an in vivo transplantable tumor model, CoStAR was shown to improve T cell survival after transfer, enhanced control of tumor growth, and improved host survival. CoStAR could be reliably engineered into TIL from multiple tumor indications and augmented TIL activity against autologous tumor targets both in vitro and in vivo. CoStAR thus represents a general approach to improving TIL therapy with synthetic costimulation.
Collapse
Affiliation(s)
| | - Owen R. Moon
- Department of Research, Instil Bio, Dallas, TX, United States
| | | | - Leyuan Bao
- Department of Research, Instil Bio, Dallas, TX, United States
| | - Yun Qu
- Department of Research, Instil Bio, Dallas, TX, United States
| | | | | | - Xingliang Zhou
- Department of Research, Instil Bio, Dallas, TX, United States
| | - Veethika Pandey
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kay Foos
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sergey Medvedev
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel J. Powell Jr
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Akshata Udyavar
- Department of Research, Instil Bio, Dallas, TX, United States
| | - Eric Gschweng
- Department of Research, Instil Bio, Dallas, TX, United States
| | - Ruben Rodriguez
- Department of Research, Instil Bio, Dallas, TX, United States
| | - Mark E. Dudley
- Department of Research, Instil Bio, Dallas, TX, United States
| | | | - Gray Kueberuwa
- Department of Research, Instil Bio, Dallas, TX, United States
| | | |
Collapse
|
40
|
Flore G, Deledda A, Lombardo M, Armani A, Velluzzi F. Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer. Antioxidants (Basel) 2023; 12:1845. [PMID: 37891924 PMCID: PMC10603973 DOI: 10.3390/antiox12101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Several studies report that breast cancer survivors (BCS) tend to have a poor diet, as fruit, vegetable, and legume consumption is often reduced, resulting in a decreased intake of nutraceuticals. Moreover, weight gain has been commonly described among BCS during treatment, increasing recurrence rate and mortality. Improving lifestyle and nutrition after the diagnosis of BC may have important benefits on patients' general health and on specific clinical outcomes. The Mediterranean diet (MD), known for its multiple beneficial effects on health, can be considered a nutritional pool comprising several nutraceuticals: bioactive compounds and foods with anti-inflammatory and antioxidant effects. Recent scientific advances have led to the identification of nutraceuticals that could amplify the benefits of the MD and favorably influence gene expression in these patients. Nutraceuticals could have beneficial effects in the postdiagnostic phase of BC, including helping to mitigate the adverse effects of chemotherapy and radiotherapy. Moreover, the MD could be a valid and easy-to-follow option for managing excess weight. The aim of this narrative review is to evaluate the recent scientific literature on the possible beneficial effects of consuming functional and nutraceutical foods in the framework of MD in BCS.
Collapse
Affiliation(s)
- Giovanna Flore
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| |
Collapse
|
41
|
Choudhury H, Pandey M, Saravanan V, Mun ATY, Bhattamisra SK, Parikh A, Garg S, Gorain B. Recent progress of targeted nanocarriers in diagnostic, therapeutic, and theranostic applications in colorectal cancer. BIOMATERIALS ADVANCES 2023; 153:213556. [PMID: 37478770 DOI: 10.1016/j.bioadv.2023.213556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Cancer at the lower end of the digestive tract, colorectal cancer (CRC), starts with asymptomatic polyps, which can be diagnosed as cancer at a later stage. It is the fourth leading cause of malignancy-associated mortality worldwide. Despite progress in conventional treatment strategies, the possibility to overcome the mortality and morbidity issues with the enhancement of the lifespan of CRC patients is limited. With the advent of nanocarrier-based drug delivery systems, a promising revolution has been made in diagnosis, treatment, and theranostic purposes for cancer management. Herein, we reviewed the progress of miniaturized nanocarriers, such as liposomes, niosomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles, employed in passive and active targeting and their role in theranostic applications in CRC. With this novel scope, the diagnosis and treatment of CRC have proceeded to the forefront of innovation, where specific characteristics of the nanocarriers, such as processability, flexibility in developing precise architecture, improved circulation, site-specific delivery, and rapid response, facilitate the management of cancer patients. Furthermore, surface-engineered technologies for the nanocarriers could involve receptor-mediated deliveries towards the overexpressed receptors on the CRC microenvironment. Moreover, the potential of clinical translation of these targeted miniaturized formulations as well as the possible limitations and barriers that could impact this translation into clinical practice were highlighted. The advancement of these newest developments in clinical research and progress into the commercialization stage gives hope for a better tomorrow.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Vilashini Saravanan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Amanda Tan Yee Mun
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ankit Parikh
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
42
|
Jiang S, Wang H, Zhu J, Xu X, Chen L, Wang B, Zhou B, Zhu Y, Zhang Z, Ma B, Du B, Yang Y. Identify the Clinicopathological Characteristics of Lung Carcinoma Patients Being False Negative in Folate Receptor Based Circulating Tumor Cell Detection. SMALL METHODS 2023; 7:e2300055. [PMID: 37330646 DOI: 10.1002/smtd.202300055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/27/2023] [Indexed: 06/19/2023]
Abstract
In lung cancer diagnosis, folate receptor (FR)-based circulating tumor cell (CTC) has shown its ability to distinguish malignancy from benign disease to some extent. However, there are still some patients that cannot be identified by FR-based CTC detection. And studies comparing the characteristics between true positive (TP) and false negative (FN) patients are few. Thus, the study comprehensively analyzes the clinicopathological characteristics of FN and TP patients in the current study. According to inclusion and exclusion criteria, 3420 patients are enrolled. Combining the pathological diagnosis with CTC results, patients are divided into FN and TP groups, and clinicopathological characteristics are compared between two groups. Compared with TP patients, FN patients have smaller tumor, early T stage, early pathological stage, and without lymph node metastasis. Epidermal growth factor receptor (EGFR) mutation status is different between FN and TP group. And this result is also demonstrated in lung adenocarcinoma subgroup but not in lung squamous cell carcinoma subgroup. Tumor size, T stage, pathological stage, lymph node metastasis, and EGFR mutation status may influence the accuracy of FR-based CTC detection in lung cancer. However, further prospective studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Siming Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xinnan Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linsong Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Bo Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Bin Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhemin Zhang
- Department of Respiratory Medicine Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Benting Ma
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bin Du
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
43
|
Nayeen MJ, Katinas JM, Magdum T, Shah K, Wong JE, O’Connor CE, Fifer AN, Wallace-Povirk A, Hou Z, Matherly LH, Dann CE, Gangjee A. Structure-Based Design of Transport-Specific Multitargeted One-Carbon Metabolism Inhibitors in Cytosol and Mitochondria. J Med Chem 2023; 66:11294-11323. [PMID: 37582241 PMCID: PMC10461232 DOI: 10.1021/acs.jmedchem.3c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/17/2023]
Abstract
Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-d]pyrimidine antifolate 1 with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and β afforded 11 analogues. Multitargeted inhibition and selective tumor transport were designed by providing promiscuous conformational flexibility in the molecules. Metabolite rescue identified mitochondrial C1 metabolism along with de novo purine biosynthesis as the targeted pathways. We identified analogues with tumor-selective transport via FRs and increased SHMT2, SHMT1, and GARFTase inhibition (28-, 21-, and 11-fold, respectively) compared to 1. These multitargeted agents represent an exciting new structural motif for targeted cancer therapy with substantial advantages of selectivity and potency over clinically used antifolates.
Collapse
Affiliation(s)
- Md. Junayed Nayeen
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jade M. Katinas
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Tejashree Magdum
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Khushbu Shah
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer E. Wong
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Carrie E. O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Alexandra N. Fifer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Adrianne Wallace-Povirk
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Charles E. Dann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
44
|
Wu S, Yun J, Tang W, Familiari G, Relucenti M, Wu J, Li X, Chen H, Chen R. Therapeutic m 6A Eraser ALKBH5 mRNA-Loaded Exosome-Liposome Hybrid Nanoparticles Inhibit Progression of Colorectal Cancer in Preclinical Tumor Models. ACS NANO 2023. [PMID: 37310898 DOI: 10.1021/acsnano.3c03050] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although therapeutic targets have been developed for colorectal cancer (CRC) therapy, the therapeutic effects are not ideal and the survival rate for CRC patients remains poor. Therefore, it is crucial to recognize a specific target and develop an efficacious delivery system for CRC therapy. Herein, we demonstrate that reduced ALKBH5 mediates aberrant m6A modification and tumor progression in CRC. Mechanically, histone deacetylase 2-mediated H3K27 deacetylation inhibits ALKBH5 transcription in CRC, whereas ectopic ALKBH5 expression decreases tumorigenesis of CRC cells and protects mice from colitis-associated tumor development. Further, METTL14/ALKBH5/IGF2BPs combine to modulate JMJD8 stability in an m6A-dependent manner, which increases glycolysis and accelerates the development of CRC by enhancing the enzymatic activity of PKM2. Moreover, ALKBH5 mRNA-loaded folic acid-modified exosome-liposome hybrid nanoparticles were synthesized and significantly inhibit the progression of CRC in preclinical tumor models by modulating the ALKBH5/JMJD8/PKM2 axis and inhibiting glycolysis. Overall, our research confirms the crucial function of ALKBH5 in regulating the m6A status in CRC and provides a direct preclinical approach for using ALKBH5 mRNA nanotherapeutics for CRC.
Collapse
Affiliation(s)
- Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jun Yun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Weiyan Tang
- Medical Oncology, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Medical and Legal Locomotive Apparatus, Section of Human Anatomy Via Alfonso Borelli, Sapienza University of Rome, Roma 5000161, Italy
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Science, Sapienza University of Rome, Roma 5000161, Italy
| | - Jiong Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hanqing Chen
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
- Beijing Laboratory of Allergic Diseases, Capital Medical University, Beijing 100069, China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
45
|
Lin B, Dai R, Liu Z, Li W, Bai J, Zhang G, Lv R. Dual-targeting lanthanide-ICG-MOF nanoplatform for cancer Theranostics: NIR II luminescence imaging guided sentinel lymph nodes surgical navigation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112731. [PMID: 37331158 DOI: 10.1016/j.jphotobiol.2023.112731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023]
Abstract
Sentinel lymph node imaging is important for breast tumor staging and prediction of postoperative metastasis. However, clinical sentinel lymph node imaging has limitations such as low specificity, low contrast, and short retention time. The combination of bio-conjugates chemistry and luminescence technology may achieve the specific targeting effect. In this research, we designed a dual-targeting composite nanoprobe (∼50 nm) using a metal-organic framework (MOF) as carrier, loaded with lanthanide and ICG, and combined with hyaluronic acid and folic acid to detect metastatic lymph nodes. The coupled hyaluronic acid and folic acid can target to the tumor cells and dentritic cells with a dual-targeting effect. The FA-HA/ZIF-8@ICG nanoprobes can accumulate rapidly in sentinel lymph node with a stronger luminescence intensity (1.6 times) than that of normal popliteal lymph nodes in vivo, thus distinguish metastatic sentinel lymph node from normal effectively. Furthermore, due to the MOF carrier, the integrated lanthanide and near-infrared dye by transferring the absorbed excitation energy from ICG to Nd3+ can enhance the signal-to-background ratio of NIR II imaging and have long retention time in vivo imaging. Finally, the FA-HA/ICG@Ln@ZIF-8 nanoplatform increased the penetration depth and contrast of imaging, prolonged the retention time, and achieved the sentinel lymph nodes surgical resection. This study has important implications for lymph node imaging and surgical navigation.
Collapse
Affiliation(s)
- Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Ruiyi Dai
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Zhenghao Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenjing Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Jingwen Bai
- Cancer Center & Department of Breast and Thyroid Surgery and Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361100, China; Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361100, China
| | - Guojun Zhang
- Cancer Center & Department of Breast and Thyroid Surgery and Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361100, China; Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361100, China.
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| |
Collapse
|
46
|
Varaganti P, Buddolla V, Lakshmi BA, Kim YJ. Recent advances in using folate receptor 1 (FOLR1) for cancer diagnosis and treatment, with an emphasis on cancers that affect women. Life Sci 2023:121802. [PMID: 37244363 DOI: 10.1016/j.lfs.2023.121802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
A glycosylphosphatidylinositol (GPI)-anchored glycoprotein called the folate receptor 1 (FOLR1) facilitates the transportation of folate by mediating receptor-mediated endocytosis in response to ligand binding. While FOLR1 expression is typically restricted to the apical surfaces of the epithelium in the lung, kidney, and choroid plexus in healthy people, it is overexpressed in a number of solid tumours, including high-grade osteosarcoma, breast cancer, ovarian cancer, and non-small cell lung cancer. As a result, FOLR1 has become an attractive target for cancer detection and therapy, particularly for cancers that affect women. A number of methods have been developed to target FOLR1 in cancer therapy, including the development of FOLR1-targeted imaging agents for cancer diagnosis and the use of folate conjugates to deliver cytotoxic agents to cancer cells that overexpress FOLR1. Therefore, we focus on the most recent developments in employing FOLR1 for cancer diagnosis and treatment in this review, particularly with regard to cancers that affect women.
Collapse
Affiliation(s)
- Pavitra Varaganti
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517506, Andhra Pradesh, India
| | - Viswanath Buddolla
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517506, Andhra Pradesh, India
| | - Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
47
|
Adhel E, Ha Duong NT, Vu TH, Taverna D, Ammar S, Serradji N. Interaction between carbon dots from folic acid and their cellular receptor: a qualitative physicochemical approach. Phys Chem Chem Phys 2023; 25:14324-14333. [PMID: 37183591 DOI: 10.1039/d3cp01277h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
According to the World Health Organization, the number of cancers (all cancers, both sexes, all ages and worldwide) in 2020 reached a total of 19 292 789 new cases leading to 9 958 133 deaths during the same period. Many cancers could be cured if detected early. Preventing cancer and detecting it early are two essential strategies for controlling this pathology. For this purpose, several strategies have been described for imaging cancer cells. One of them is based on the use of carbon nanoparticles called carbon dots, tools of physical chemistry. The literature describes that cancer cells can be imaged using carbon dots obtained from folic acid and that the in cellulo observed photoluminescence probably results from the interaction of these nanoparticles with the folic acid-receptor, a cell surface protein overexpressed in many malignant cells. However, this interaction has never been directly demonstrated yet. We investigated it, for the first time, using (i) freshly synthesized and fully characterized carbon dots, (ii) folate binding protein, a folic acid-receptor model protein and (iii) fluorescence spectroscopy and isothermal titration calorimetry, two powerful methods for detecting molecular interactions. Our results even highlight a selective interaction between these carbon made nano-objects and their biological target.
Collapse
Affiliation(s)
- Erika Adhel
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | | | - Thi Huyen Vu
- University of Engineering and Technology, Vietnam National University, Hanoi (VNUH), Vietnam
| | - Dario Taverna
- Sorbonne Université, CNRS, IMPMC, F-75005 Paris, France
| | - Souad Ammar
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Nawal Serradji
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| |
Collapse
|
48
|
Tong N, Wong-Roushar J, Wallace-Povirk A, Shah Y, Nyman MC, Katinas JM, Schneider M, O’Connor C, Bao X, Kim S, Li J, Hou Z, Matherly LH, Dann CE, Gangjee A. Multitargeted 6-Substituted Thieno[2,3- d]pyrimidines as Folate Receptor-Selective Anticancer Agents that Inhibit Cytosolic and Mitochondrial One-Carbon Metabolism. ACS Pharmacol Transl Sci 2023; 6:748-770. [PMID: 37200803 PMCID: PMC10186366 DOI: 10.1021/acsptsci.3c00020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Indexed: 05/20/2023]
Abstract
Multitargeted agents with tumor selectivity result in reduced drug resistance and dose-limiting toxicities. We report 6-substituted thieno[2,3-d]pyrimidine compounds (3-9) with pyridine (3, 4), fluorine-substituted pyridine (5), phenyl (6, 7), and thiophene side chains (8, 9), for comparison with unsubstituted phenyl (1, 2) and thiophene side chain (10, 11) containing thieno[2,3-d]pyrimidine compounds. Compounds 3-9 inhibited proliferation of Chinese hamster ovary cells (CHO) expressing folate receptors (FRs) α or β but not the reduced folate carrier (RFC); modest inhibition of CHO cells expressing the proton-coupled folate transporter (PCFT) by 4, 5, 6, and 9 was observed. Replacement of the side-chain 1',4'-phenyl ring with 2',5'-pyridyl, or 2',5'-pyridyl with a fluorine insertion ortho to l-glutamate resulted in increased potency toward FR-expressing CHO cells. Toward KB tumor cells, 4-9 were highly active (IC50's from 2.11 to 7.19 nM). By metabolite rescue in KB cells and in vitro enzyme assays, de novo purine biosynthesis was identified as a targeted pathway (at 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase)). Compound 9 was 17- to 882-fold more potent than previously reported compounds 2, 10, and 11 against GARFTase. By targeted metabolomics and metabolite rescue, 1, 2, and 6 also inhibited mitochondrial serine hydroxymethyl transferase 2 (SHMT2); enzyme assays confirmed inhibition of SHMT2. X-ray crystallographic structures were obtained for 4, 5, 9, and 10 with human GARFTase. This series affords an exciting new structural platform for potent multitargeted antitumor agents with FR transport selectivity.
Collapse
Affiliation(s)
- Nian Tong
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer Wong-Roushar
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Adrianne Wallace-Povirk
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Yesha Shah
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Morgan C. Nyman
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jade M. Katinas
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Mathew Schneider
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Carrie O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Xun Bao
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Seongho Kim
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Jing Li
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Department
of Pharmacology, Wayne State University
School of Medicine, Detroit, Michigan 48201, United States
| | - Charles E. Dann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
49
|
Baldassari S, Balboni A, Drava G, Donghia D, Canepa P, Ailuno G, Caviglioli G. Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers. Pharmaceutics 2023; 15:1445. [PMID: 37242687 PMCID: PMC10221807 DOI: 10.3390/pharmaceutics15051445] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of anticancer agents currently used derive from natural sources: plants, frequently the ones employed in traditional medicines, are an abundant source of mono- and diterpenes, polyphenols, and alkaloids that exert antitumor activity through diverse mechanisms. Unfortunately, many of these molecules are affected by poor pharmacokinetics and limited specificity, shortcomings that may be overcome by incorporating them into nanovehicles. Cell-derived nanovesicles have recently risen to prominence, due to their biocompatibility, low immunogenicity and, above all, targeting properties. However, due to difficult scalability, the industrial production of biologically-derived vesicles and consequent application in clinics is difficult. As an efficient alternative, bioinspired vesicles deriving from the hybridization of cell-derived and artificial membranes have been conceived, revealing high flexibility and appropriate drug delivery ability. In this review, the most recent advances in the application of these vesicles to the targeted delivery of anticancer actives obtained from plants are presented, with specific focus on vehicle manufacture and characterization, and effectiveness evaluation performed through in vitro and in vivo assays. The emerging overall outlook appears promising in terms of efficient drug loading and selective targeting of tumor cells, suggesting further engrossing developments in the future.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Daniela Donghia
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Paolo Canepa
- Department of Physics, University of Genova, 16146 Genova, Italy;
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| |
Collapse
|
50
|
Shmendel EV, Puchkov PA, Maslov MA. Design of Folate-Containing Liposomal Nucleic Acid Delivery Systems for Antitumor Therapy. Pharmaceutics 2023; 15:pharmaceutics15051400. [PMID: 37242642 DOI: 10.3390/pharmaceutics15051400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The delivery of therapeutic nucleic acids is a prospective method for the treatment of both inherited and acquired diseases including cancer. To achieve maximal delivery efficiency and selectivity, nucleic acids should be targeted to the cells of interest. In the case of cancer, such targeting may be provided through folate receptors overexpressed in many tumor cells. For this purpose, folic acid and its lipoconjugates are used. Compared to other targeting ligands, folic acid provides low immunogenicity, rapid tumor penetration, high affinity to a wide range of tumors, chemical stability, and easy production. Different delivery systems can utilize targeting by folate ligand including liposomal forms of anticancer drugs, viruses, and lipid and polymer nanoparticles. This review focuses on the liposomal gene delivery systems that provide targeted nucleic acid transport into tumor cells due to folate lipoconjugates. Moreover, important development step, such as rational design of lipoconjugates, folic acid content, size, and ζ-potential of lipoplexes are discussed.
Collapse
Affiliation(s)
- Elena V Shmendel
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia
| | - Pavel A Puchkov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia
| | - Michael A Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia
| |
Collapse
|