1
|
Guo W, Wang S, Yang Z, Dong Y, Xia Z, Xue W, Zhang C. SAP30 promotes clear cell renal cell carcinoma proliferation and inhibits apoptosis through the MT1G axis. Eur J Med Res 2025; 30:306. [PMID: 40247376 PMCID: PMC12007153 DOI: 10.1186/s40001-025-02440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025] Open
Abstract
Sin3A-associated protein 30 (SAP30) is a crucial component of the SIN/HDAC histone deacetylase complex and acts as a scaffold that facilitates target gene binding. SAP30 is highly expressed in various tumours; however, its role in renal cell carcinoma (RCC) remains unclear. In our study, we observed the upregulation of SAP30 in clear cell renal cell carcinoma (ccRCC) tissues, and its elevated expression was correlated with a poor prognosis. Previous research has suggested that SAP30 may influence the growth, proliferation, and apoptosis of RCC cells. Gene Ontology (GO) analysis of the downstream regulatory targets of SAP30 revealed that SAP30 suppressed the expression of MT1G, a protein that binds to p53. Mechanistically, SAP30 inhibited MT1G transcription, thereby impairing the function of MT1G in delivering zinc ions to p53, which diminished p53 activity. Moreover, reduced MT1G levels attenuated the inhibitory effect of MT1G on MDM2, further destabilizing p53. Consequently, this cascade promoted RCC progression. In conclusion, our findings indicate that SAP30 inhibits the p53 pathway through MT1G suppression, suggesting that SAP30 and MT1G are potential prognostic markers and therapeutic targets for RCC.
Collapse
Affiliation(s)
- Wei Guo
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Shuwen Wang
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Zitong Yang
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yu Dong
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Zhinan Xia
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wei Xue
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Cheng Zhang
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
2
|
Mireles M, Jiménez-Valerio G, Morales-Dalmau J, Johansson JD, Martínez-Lozano M, Vidal-Rosas EE, Navarro-Pérez V, Busch DR, Casanovas O, Durduran T, Vilches C. Prediction of the response to antiangiogenic sunitinib therapy by non-invasive hybrid diffuse optics in renal cell carcinoma. BIOMEDICAL OPTICS EXPRESS 2024; 15:5773-5789. [PMID: 39421783 PMCID: PMC11482189 DOI: 10.1364/boe.532052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 10/19/2024]
Abstract
In this work, broadband diffuse reflectance spectroscopy (DRS) and diffuse correlation spectroscopy (DCS) were used to quantify deep tissue hemodynamics in a patient-derived orthotopic xenograft mouse model of clear cell renal cancer undergoing antiangiogenic treatment. A cohort of twenty-two mice were treated with sunitinib and compared to thirteen control untreated mice, and monitored by DRS/DCS. A reduction in total hemoglobin concentration (THC, p = 0.03), oxygen saturation (SO2, p = 0.03) and blood flow index (BFI, p = 0.02) was observed over the treatment course. Early changes in tumor microvascular blood flow and total hemoglobin concentration were correlated with the final microvessel density (p = 0.014) and tumor weight (p = 0.024), respectively. Higher pre-treatment tumor microvascular blood flow was observed in non-responder mice with respect to responder mice, which was statistically predictive of the tumor intrinsic resistance (p = 0.01). This hybrid diffuse optical technique provides a method for predicting tumor intrinsic resistance to antiangiogenic therapy and could be used as predictive biomarker of response to antiangiogenic therapies in pre-clinical models.
Collapse
Affiliation(s)
- Miguel Mireles
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- Computational Optics and Translational Imaging Lab, Northeastern University, Boston, Massachusetts 02115, USA
| | - Gabriela Jiménez-Valerio
- Computational Optics and Translational Imaging Lab, Northeastern University, Boston, Massachusetts 02115, USA
| | - Jordi Morales-Dalmau
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Johannes D. Johansson
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- Department of Biomedical Engineering, Linköping University, SE-581 83 Linköping, Sweden
| | - Mar Martínez-Lozano
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Ernesto E. Vidal-Rosas
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- Digital Health and Biomedical Engineering, School of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton, UK
| | - Valentí Navarro-Pérez
- Clinical Research Unit, Institut Català d’Oncologia, 08908 L’Hospitalet de Llobregat, Spain
| | - David R. Busch
- University of Texas Southwestern Medical Center, Departments of Anesthesiology and Pain Management, Neurology, and Biomedical Engineering Dallas, Texas 75390-9003, USA
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Clara Vilches
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| |
Collapse
|
3
|
Peng S, Xie Z, Jiang H, Zhang G, Chen N. Revealing the characteristics of SETD2-mutated clear cell renal cell carcinoma through tumor heterogeneity analysis. Front Genet 2024; 15:1447139. [PMID: 39119581 PMCID: PMC11306021 DOI: 10.3389/fgene.2024.1447139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Background Renal cell carcinoma (RCC) is the most prevalent type of malignant kidney tumor in adults, with clear cell renal cell carcinoma (ccRCC) comprising about 75% of all cases. The SETD2 gene, which is involved in the modification of histone proteins, is often found to have alterations in ccRCC. Yet, our understanding of how these SETD2 mutations affect ccRCC characteristics and behavior within the tumor microenvironment is still not fully understood. Methods We conducted a detailed analysis of single-cell RNA sequencing (scRNA-seq) data from ccRCC. First, the data was preprocessed using the Python package, "scanpy." High variability genes were pinpointed through Pearson's correlation coefficient. Dimensionality reduction and clustering identification were performed using Principal Component Analysis (PCA) and the Leiden algorithm. Malignant cell identification was conducted with the "InferCNV" R package, while cell trajectories and intercellular communication were depicted using the Python packages "VIA" and "cellphoneDB." We then employed the R package "Deseq2" to determine differentially expressed genes (DEGs) between groups. Using high-dimensional weighted gene correlation network analysis (hdWGCNA), co-expression modules were identified. We intersected these modules with DEGs to establish prognostic models through univariate Cox and the least absolute shrinkage and selection operator (LASSO) method. Results We identified 69 and 53 distinctive cell clusters, respectively. These were classified further into 12 unique cell types. This analysis highlighted the presence of an abnormal tumor sub-cluster (MT + group), identified by high mitochondrial-encoded protein gene expression and an indication of unfavorable prognosis. Investigation of cellular interactions spotlighted significant interactions between the MT + group and endothelial cells, macrophaes. In addition, we developed a prognostic model based on six characteristic genes. Notably, risk scores derived from these genes correlated significantly with various clinical features. Finally, a nomogram model was established to facilitate more accurate outcome prediction, incorporating four independent risk factors. Conclusion Our findings provide insight into the crucial transcriptomic characteristics of ccRCC associated with SETD2 mutation. We discovered that this mutation-induced subcluster could stimulate M2 polarization in macrophages, suggesting a heightened propensity for metastasis. Moreover, our prognostic model demonstrated effectiveness in forecasting overall survival for ccRCC patients, thus presenting a valuable clinical tool.
Collapse
Affiliation(s)
- Shansen Peng
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhouzhou Xie
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Huiming Jiang
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Guihao Zhang
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Nanhui Chen
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
4
|
van der Wijngaart H, Beekhof R, Knol JC, Henneman AA, de Goeij-de Haas R, Piersma SR, Pham TV, Jimenez CR, Verheul HMW, Labots M. Candidate biomarkers for treatment benefit from sunitinib in patients with advanced renal cell carcinoma using mass spectrometry-based (phospho)proteomics. Clin Proteomics 2023; 20:49. [PMID: 37940875 PMCID: PMC10631096 DOI: 10.1186/s12014-023-09437-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
The tyrosine kinase inhibitor sunitinib is an effective first-line treatment for patients with advanced renal cell carcinoma (RCC). Hypothesizing that a functional read-out by mass spectrometry-based (phospho, p-)proteomics will identify predictive biomarkers for treatment outcome of sunitinib, tumor tissues of 26 RCC patients were analyzed. Eight patients had primary resistant (RES) and 18 sensitive (SENS) RCC. A 78 phosphosite signature (p < 0.05, fold-change > 2) was identified; 22 p-sites were upregulated in RES (unique in RES: BCAR3, NOP58, EIF4A2, GDI1) and 56 in SENS (35 unique). EIF4A1/EIF4A2 were differentially expressed in RES at the (p-)proteome and, in an independent cohort, transcriptome level. Inferred kinase activity of MAPK3 (p = 0.026) and EGFR (p = 0.045) as determined by INKA was higher in SENS. Posttranslational modifications signature enrichment analysis showed that different p-site-centric signatures were enriched (p < 0.05), of which FGF1 and prolactin pathways in RES and, in SENS, vanadate and thrombin treatment pathways, were most significant. In conclusion, the RCC (phospho)proteome revealed differential p-sites and kinase activities associated with sunitinib resistance and sensitivity. Independent validation is warranted to develop an assay for upfront identification of patients who are intrinsically resistant to sunitinib.
Collapse
Affiliation(s)
- Hanneke van der Wijngaart
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Robin Beekhof
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jaco C Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Alex A Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Xue W, Jian W, Meng Y, Wang T, Cai L, Yu Y, Yu Y, Xia Z, Zhang C. Knockdown of SETD2 promotes erastin-induced ferroptosis in ccRCC. Cell Death Dis 2023; 14:539. [PMID: 37604811 PMCID: PMC10442429 DOI: 10.1038/s41419-023-06057-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/15/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and is associated with poor prognosis. The histone H3 lysine 36 methyltransferase SET-domain-containing 2 (SETD2) has been reported to be expressed at low levels and frequently mutated in ccRCC. Ferroptosis, a form of death distinct from apoptosis and necrosis, has been reported in recent years in renal cancer. However, the relationship between SETD2 and ferroptosis in renal cancer is not clear. Here, we demonstrated that SETD2 was expressed at low levels in ccRCC and was associated with poor prognosis. Moreover, we found that knockdown of SETD2 increased lipid peroxidation and Fe2+ levels in tumor cells, thereby increasing the sensitivity of erastin, a ferroptosis inducer. Mechanistically, histone H3 lysine 36 trimethylation (H3K36me3) which was catalyzed by SETD2, interacted with the promoter of ferrochelatase (FECH) to regulate its transcription and ferroptosis-related signaling pathways. In conclusion, the presesnt study revealed that knockdown of the epigenetic molecule, SETD2, significantly increases the sensitivity of ferroptosis inducers which promotes tumor cell death, thereby indicating that SETD2 may be a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Wei Xue
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Wengang Jian
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yuyang Meng
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Tengda Wang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Licheng Cai
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yongchun Yu
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yipeng Yu
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhinan Xia
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Cheng Zhang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Department of Urology, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
6
|
Lin D, Hu B, Zhu S, Wu Y. Exploring a ferroptosis and oxidative stress-based prognostic model for clear cell renal cell carcinoma. Front Oncol 2023; 13:1131473. [PMID: 37064095 PMCID: PMC10098013 DOI: 10.3389/fonc.2023.1131473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
BackgroundFerroptosis is a newly defined cell death process triggered by increased iron load and tremendous lipid reactive oxygen species (ROS). Oxidative stress-related ferroptosis is of great important to the occurrence and progression of clear cell renal cell carcinoma (ccRCC), which is particularly susceptibility to ferroptosis agonist. Therefore, exploring the molecular features of ferroptosis and oxidative stress might guide the clinical treatment and prognosis prediction for ccRCC patients.MethodsThe differentially expressed ferroptosis and oxidative stress-associated genes (FPTOSs) between normal renal and ccRCC tissues were identified based on The Cancer Genome Atlas (TCGA) database, and those with prognostic significances were applied to develop a prognostic model and a risk scoring system (FPTOS_score). The clinical parameter, miRNA regulation, tumor mutation burden (TMB), immune cell infiltration, immunotherapy response, and drug susceptibility between two FPTOS-based risk stratifications were determined.ResultsWe have identified 5 prognosis-associated FPTOSs (ACADSB, CDCA3, CHAC1, MYCN, and TFAP2A), and developed a reliable FPTOS_socre system to distinguish patients into low- and high-risk groups. The findings implied that patients from the high-risk group performed poor prognoses, even after stratified analysis of various clinical parameters. A total of 30 miRNA-FPTOS regulatory pairs were recognized to identify the possible molecular mechanisms. Meanwhile, patients from the high-risk group exhibited higher TMB levels than those from the low-risk groups, and the predominant mutated driver genes were VHL, PBRM1 and TTN in both groups. The main infiltrating immune cells of high- and low-risk groups were CD8+ T cells and resting mast cells, respectively, and patients from the high-risk groups showed preferable drug responsiveness to anti-PD-1 immunotherapy. Eventually, potential sensitive drugs (cisplatin, BI-D1870, and docetaxel) and their enrichment pathways were identified to guide the treatment of ccRCC patients with high-risk.ConclusionOur study comprehensively analyzed the expression profiles of FPTOSs and constructed a scoring system with considerable prognostic value, which would supply novel insights into the personalized treatment strategies and prognostic evaluation of ccRCC patient.
Collapse
Affiliation(s)
- Dongxu Lin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiqing Zhu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Yue Wu,
| |
Collapse
|
7
|
Jin J, Xie Y, Zhang JS, Wang JQ, Dai SJ, He WF, Li SY, Ashby CR, Chen ZS, He Q. Sunitinib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Drug Resist Updat 2023; 67:100929. [PMID: 36739809 DOI: 10.1016/j.drup.2023.100929] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Currently, renal cell carcinoma (RCC) is the most prevalent type of kidney cancer. Targeted therapy has replaced radiation therapy and chemotherapy as the main treatment option for RCC due to the lack of significant efficacy with these conventional therapeutic regimens. Sunitinib, a drug used to treat gastrointestinal tumors and renal cell carcinoma, inhibits the tyrosine kinase activity of a number of receptor tyrosine kinases, including vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), c-Kit, rearranged during transfection (RET) and fms-related receptor tyrosine kinase 3 (Flt3). Although sunitinib has been shown to be efficacious in the treatment of patients with advanced RCC, a significant number of patients have primary resistance to sunitinib or acquired drug resistance within the 6-15 months of therapy. Thus, in order to develop more efficacious and long-lasting treatment strategies for patients with advanced RCC, it will be crucial to ascertain how to overcome sunitinib resistance that is produced by various drug resistance mechanisms. In this review, we discuss: 1) molecular mechanisms of sunitinib resistance; 2) strategies to overcome sunitinib resistance and 3) potential predictive biomarkers of sunitinib resistance.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310003, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY 11439, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jin-Shi Zhang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Shi-Jie Dai
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang 311258, China
| | - Wen-Fang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310003, China
| | - Shou-Ye Li
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang 311258, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, Queens, NY 11439, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
8
|
Quan Y, Dai J, Zhou S, Zhao L, Jin L, Long Y, Liu S, Hu Y, Liu Y, Zhao J, Ding Z. HIF2α-induced upregulation of RNASET2 promotes triglyceride synthesis and enhances cell migration in clear cell renal cell carcinoma. FEBS Open Bio 2023; 13:638-654. [PMID: 36728187 PMCID: PMC10068329 DOI: 10.1002/2211-5463.13570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common malignant subtype of renal cell carcinoma, is characterized by the accumulation of lipid droplets in the cytoplasm. RNASET2 is a protein coding gene with a low expression level in ovarian cancers, but it is overexpressed in poorly differentiated neuroendocrine carcinomas. There is a correlation between RNASET2 upregulation and triglyceride expression levels in human serum but is unknown whether such an association is a factor contributing to lipid accumulation in ccRCC. Herein, we show that RNASET2 expression levels in ccRCC tissues and cell lines are significantly higher than those in both normal adjacent tissues and renal tubular epithelial cells. Furthermore, its upregulation is associated with increases in ccRCC malignancy and declines in patient survival. We also show that an association exists between increases in both cytoplasmic lipid accumulation and HIF-2α transcription factor upregulation, and increases in both RNASET2 and triglyceride expression levels in ccRCC tissues. In addition, DGAT1 and DGAT2, two key enzymes involved in triglyceride synthesis, are highly expressed in ccRCC tissues. By contrast, RNASET2 knockdown inhibited their expression levels and lowered lipid droplet accumulation, as well as suppressing in vitro cell proliferation, cell invasion, and migration. In conclusion, our data suggest HIF2α upregulates RNASET2 transcription in ccRCC cells, which promotes both the synthesis of triglycerides and ccRCC migration. As such, RNASET2 may have the potential as a biomarker or target for the diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Yanmei Quan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Jun Dai
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Sian Zhou
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Lingyi Zhao
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Lixing Jin
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yijing Long
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Siwei Liu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yanqin Hu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Juping Zhao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
9
|
NEK2 Serves as a Novel Biomarker and Enhances the Tumorigenicity of Clear-CellRenal-Cell Carcinoma by Activating WNT/β-Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1890823. [PMID: 36212952 PMCID: PMC9536896 DOI: 10.1155/2022/1890823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Objective. Currently, cumulative evidence has shown that loss of NEK2 function suppresses tumor growth. However, complete studies on the regulatory role of NEK2 in clear-cellrenal-cell carcinoma (ccRCC) are rarely reported. Methods. The GEPIA database was used for information mining to analyze the gene expression differences between ccRCC tumor and normal tissues. At the same time, we analyzed the protein expression of NEK2 in clinical ccRCC samples and ccRCC cell lines. We detected the effect of NEK2 on the biological behavior of ccRCC at the cell level and further verified the biological effect of NEK2 on ccRCC cells in vivo by nude mouse tumorigenesis experiment. The expression of WNT/β-cateninpathway-related proteins and downstream proteins related to cell function were detected by Western blotting. Results. Using the GEPIA database, we observed that NEK2 expression level in ccRCC tissues was significantly higher than that in normal kidney tissues and was also related to tumor grade. The survival time of patients with ccRCC with high NEK2 expression was shorter than that of patients with low NEK2 expression. Compared with adjacent carcinoma and normal renal tubular epithelial cells, NEK2 levels were highly expressed in ccRCC tissues and ccRCC cell lines. NEK2 interference restrained ccRCC cell growth, migration, and invasion. NEK2 regulated the malignant behavior of ccRCC cells through the WNT/β-catenin pathway. Nude mouse tumorigenesis assay results showed that the transplanted tumors from NEK2 silenced mice grew more slowly and were smaller in size than those from control mice. Conclusions. NEK2 elevation may be associated with poor prognosis in ccRCC, and NEK2 enhances ccRCC cell proliferation, migration, and invasion ability by activating the WNT/β-catenin signaling pathway.
Collapse
|
10
|
Komiyama T, Kim H, Tanaka M, Isaki S, Yokoyama K, Miyajima A, Kobayashi H. RNA-seq and Mitochondrial DNA Analysis of Adrenal Gland Metastatic Tissue in a Patient with Renal Cell Carcinoma. BIOLOGY 2022; 11:biology11040589. [PMID: 35453788 PMCID: PMC9030821 DOI: 10.3390/biology11040589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023]
Abstract
This study aimed to clarify whether genetic mutations participate in renal cell carcinoma (RCC) metastasis to the adrenal gland (AG). Our study analyzed whole mitochondrial gene and ribonucleic acid sequencing (RNA-seq) data from a male patient in his 60s with metastatic RCC. We confirmed common mutation sites in the mitochondrial gene and carried out Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis using RNA-seq data for RCC and adrenal carcinoma. Furthermore, we confirmed the common mutation sites of mitochondrial genes in which the T3394Y (p.H30Y) site transitioned from histidine (His.; H) to tyrosine (Tyr.; Y) in the NADH dehydrogenase subunit 1 (ND1) gene. The R11,807G (p.T350A) site transitioned from threonine (Thr.; T) to alanine (Ala.; A). Additionally, the G15,438R or A (p.G231D) site transitioned from glycine (Gly.; G) to aspartic acid (Asp.; D) in cytochrome b (CYTB). Furthermore, pathway analysis, using RNA-seq, confirmed the common mutant pathway between RCC and adrenal carcinoma as cytokine–cytokine receptor (CCR) interaction. Confirmation of the original mutation sites suggests that transfer to AG may be related to the CCR interaction. Thus, during metastasis to the AG, mitochondria DNA mutation may represent the initial origin of the metastasis, followed by the likely mutation of the nuclear genes.
Collapse
Affiliation(s)
- Tomoyoshi Komiyama
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan;
- Correspondence: (T.K.); (H.K.); Tel.: +81-463-93-1121 (T.K.)
| | - Hakushi Kim
- Department of Urology, Tokai University Hachioji Hospital, Tokyo 192-0032, Japan
- Correspondence: (T.K.); (H.K.); Tel.: +81-463-93-1121 (T.K.)
| | - Masayuki Tanaka
- Medical Science College Office, Tokai University, Isehara 259-1193, Kanagawa, Japan; (M.T.); (S.I.); (K.Y.)
| | - Sanae Isaki
- Medical Science College Office, Tokai University, Isehara 259-1193, Kanagawa, Japan; (M.T.); (S.I.); (K.Y.)
| | - Keiko Yokoyama
- Medical Science College Office, Tokai University, Isehara 259-1193, Kanagawa, Japan; (M.T.); (S.I.); (K.Y.)
| | - Akira Miyajima
- Department of Urology, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan;
| | - Hiroyuki Kobayashi
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan;
| |
Collapse
|
11
|
Identifying the Potential Role and Prognostic Value of the Platelet-Derived Growth Factor Pathway in Kidney Renal Clear Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9498010. [PMID: 35342405 PMCID: PMC8947876 DOI: 10.1155/2022/9498010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
The platelet-derived growth factor (PDGF) pathway is important in angiogenesis, which can accelerate the formation of vessels in tumor tissues and promote the progression of malignant tumors. To clarify the role of PDGF in the occurrence of renal cell carcinoma and targeted drug resistance, we explored the pathway in kidney renal clear cell carcinoma (KIRC) through bioinformatics analysis with the aim of supporting comprehensive and individualized therapy. First, we found 40 genes related to the PDGF pathway through gene set enrichment analysis and then obtained their expressions and clinical data in 32 different cancers from The Cancer Genome Atlas (TCGA). Mutations in these genes (including copy number and single-nucleotide variation) and mRNA expression were also detected. Next, we conducted a hazard ratio analysis to determine whether the PDGF pathway genes were risk or protective factors in tumors. Although PDGF-related genes acted as traditional oncogenes and were closely related to tumor angiogenesis in many cancers, our results indicated that most genes had a protective role in KIRC. We further analyzed the methylation modification of PDGF pathway genes and found that they were prevalent in 32 different cancers. Furthermore, 539 KIRC samples obtained from TCGA were divided into three clusters based on the mRNA expression of PDGF genes, including normal, inactive, and active PDGF gene expressions. The results from survival curve analysis indicated that the active PDGF cluster of patients had the best survival rate. Using the three clusters, we studied the correlation between the PDGF pathway and 12 common targeted drugs, as well as classical oncogenes and infiltrating immune cells. A prognostic risk model was constructed based on the PDGF score using LASSO-Cox regression analysis to analyze the value of the model in predicting the prognosis of patients with KIRC. Finally, 11 genes were selected for LASSO regression analysis, and the results demonstrated the high predictive value of this risk model and its close relationship with the pathological characteristics of KIRC (metastasis, size, grade, stage, etc.). In addition, we found that the risk score was an independent risk factor correlated with overall survival through univariate and multivariate analyses and a nomogram was built to assess patient prognosis. In conclusion, the occurrence and development of KIRC may be associated with an abnormally activated PDGF pathway, which may be a potential drug target in the treatment of KIRC.
Collapse
|
12
|
LINC01535 Attenuates ccRCC Progression through Regulation of the miR-146b-5p/TRIM2 Axis and Inactivation of the PI3K/Akt Pathway. JOURNAL OF ONCOLOGY 2022; 2022:2153337. [PMID: 35342411 PMCID: PMC8947867 DOI: 10.1155/2022/2153337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023]
Abstract
lncRNAs, a group of eukaryotic cell genome-encoded transcripts, have been demonstrated to exert a notable impact on tumorigenesis. LINC01535, belonging to the lncRNA family, was reported to have an aberrant expression in certain types of cancers and thus affect cancer progression. Nevertheless, the expression pattern and potential roles of LINC01535 in clear cell renal cell carcinoma (ccRCC) remain to be elucidated. Here, LINC01535 expression was detected in ccRCC by RT-qPCR, cell proliferation by CCK-8 assays, and invasion by transwell assays. Besides, effects of LINC01535 on in vivo tumor growth were investigated by xenograft tumor models. The miR-146b-5p/LINC01535/TRIM2 interaction was evaluated via luciferase reporter assays. This study showed downregulation of LINC01535 in ccRCC. Moreover, LINC01535 upregulation attenuated in vitro ccRCC development and hindered in vivo tumor growth. Furthermore, LINC01535 sponged miR-146b-5p which had a negative correlation with LINC01535, and TRIM2 was a direct target of miR-146b-5p and mediated by LINC01535. Mechanically, LINC01535/miR-146b-5p/TRIM2 axis affected ccRCC progression by mediating the PI3K/Akt signaling. All in all, our observations suggest the LINC01535/miR-146b-5p/TRIM2 axis as a crucial role in ccRCC.
Collapse
|
13
|
Identification of Novel Prognostic Signatures for Clear Cell Renal Cell Carcinoma Based on ceRNA Network Construction and Immune Infiltration Analysis. DISEASE MARKERS 2022; 2022:4033583. [PMID: 35320950 PMCID: PMC8938059 DOI: 10.1155/2022/4033583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
Objective. Clear cell renal cell carcinoma (ccRCC) carries significant morbidity and mortality globally and is often resistant to conventional radiotherapy and chemotherapy. Immune checkpoint blockade (ICB) has received attention in ccRCC patients as a promising anticancer treatment. Furthermore, competitive endogenous RNA (ceRNA) networks are crucial for the occurrence and progression of various tumors. This study was aimed at identifying reliable prognostic signatures and exploring potential mechanisms between ceRNA regulation and immune cell infiltration in ccRCC patients. Methods and Results. Gene expression profiling and clinical information of ccRCC samples were obtained from The Cancer Genome Atlas (TCGA) database. Through comprehensive bioinformatic analyses, differentially expressed mRNAs (DEmRNAs;
), lncRNAs (DElncRNAs;
), and miRNAs (DEmiRNAs;
) were identified to establish ceRNA networks. The CIBERSORT algorithm was applied to calculate the proportion of 22 types of tumor-infiltrating immune cells (TIICs) in ccRCC tissues. Subsequently, univariate Cox, Lasso, and multivariate Cox regression analyses were employed to construct ceRNA-related and TIIC-related prognostic signatures. In addition, we explored the relationship between the crucial genes and TIICs via coexpression analysis, which revealed that the interactions between MALAT1, miR-1271-5p, KIAA1324, and follicular helper T cells might be closely correlated with the progression of ccRCC. Ultimately, we preliminarily validated that the potential MALAT1/miR-1271-5p/KIAA1324 axis was consistent with the ceRNA theory by qRT-PCR in the ccRCC cell lines. Conclusion. On the basis of the ceRNA networks and TIICs, we constructed two prognostic signatures with excellent predictive value and explored possible molecular regulatory mechanisms, which might contribute to the improvement of prognosis and individualized treatment for ccRCC patients.
Collapse
|
14
|
van der Mijn JC, Eng KW, Chandra P, Fernandez E, Ramazanoglu S, Sigaras A, Oromendia C, Gudas LJ, Tagawa ST, Nanus DM, Faltas BF, Beltran H, Sternberg CN, Elemento O, Sboner A, Mosquera JM, Molina AM. The genomic landscape of metastatic clear cell renal cell carcinoma after systemic therapy. Mol Oncol 2022; 16:2384-2395. [PMID: 35231161 PMCID: PMC9208073 DOI: 10.1002/1878-0261.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Primary clear cell renal cell carcinoma (ccRCC) has been previously characterized, but the genomic landscape of metastatic ccRCC is largely unexplored. Here, we performed whole exome sequencing (WES) in 68 samples from 44 patients with ccRCC, including 52 samples from a metastatic site. SETD2, PBRM1, APC and VHL were the most frequently mutated genes in the metastatic ccRCC cohort. RBM10 and FBXW7 were also among the 10 most frequently mutated genes in metastatic tissues. Recurrent somatic copy number variations (CNV) were observed at the previously identified regions 3p25, 9p21 and 14q25, but also at 6p21 (CDKN1A) and 13q14 (RB1). No statistically significant differences were found between samples from therapy‐naïve and pretreated patients. Clonal evolution analyses with multiple samples from 13 patients suggested that early appearance of CNVs at 3p25, 9p21 and 14q25 may be associated with rapid clinical progression. Overall, the genomic landscapes of primary and metastatic ccRCC seem to share frequent CNVs at 3p25, 9p21 and 14q25. Future work will clarify the implication of RBM10 and FBXW7 mutations and 6p21 and 13q14 CNVs in metastatic ccRCC.
Collapse
Affiliation(s)
- Johannes C van der Mijn
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.,Department of Medical Oncology, The Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kenneth W Eng
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York
| | - Pooja Chandra
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York
| | - Evan Fernandez
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York
| | - Sinan Ramazanoglu
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York
| | - Alexandros Sigaras
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York
| | - Clara Oromendia
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Scott T Tagawa
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David M Nanus
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bishoy F Faltas
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Himisha Beltran
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York
| | - Andrea Sboner
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York
| | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ana M Molina
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.,Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
15
|
Meng F, Xiao Y, Xie L, Liu Q, Qian K. Diagnostic and prognostic value of ABC transporter family member ABCG1 gene in clear cell renal cell carcinoma. Channels (Austin) 2021; 15:375-385. [PMID: 33825659 PMCID: PMC8032227 DOI: 10.1080/19336950.2021.1909301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
As the most common histologic subtype of renal cancer, clear cell renal cell carcinoma (ccRCC) poses a serious threat to public health. However, there are no specific molecular-targeted drugs for ccRCC at present. Human ATP-binding cassette (ABC) transporter family plays an important role in homeostasis maintenance. This study aimed to evaluate the potential diagnostic value of ABC genes in ccRCC. A total of 952 samples of ccRCC patients (707) and controls (245) from three different datasets were included for analysis. Receiver operating characteristic analysis and t-test were used to analyze the differential expression of ABC genes in ccRCC patients and control samples at mRNA level during screening and validations. The Cancer Genome Atlas (TCGA-ccRCC) dataset was utilized to investigate the correlation between ABC genes expression and prognostic value in ccRCC. We then investigated the interactions between ABCG1 and proteins in the Comparative Toxicogenomics Database (CTD). Finally, we found that ATP-binding cassette transporter G member 1 (ABCG1) was over-expressed in ccRCC patients compared with healthy samples at mRNA level. Cox regression analysis and Kaplan-Meier analysis showed that ccRCC patients with high ABCG1 expression had better overall survival (OS) than those patients with low expression (hazard ratio (HR) = 0.662, p = 0.007). This study demonstrated that ABCG1 is a potential diagnostic and prognostic biomarker in ccRCC and discussed the molecular mechanisms underlying the relationship between ccRCC and ABCG1, which might provide guidance for better management and treatment of ccRCC in the future.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/diagnosis
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/diagnosis
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Prognosis
- Male
- Female
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Fucheng Meng
- Department of Infection Control, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yafei Xiao
- Department of Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Longxiang Xie
- Department of Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiao Liu
- Department of Pediatric Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Keli Qian
- Department of Infection Control, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Molecular Mechanisms of Resistance to Immunotherapy and Antiangiogenic Treatments in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13235981. [PMID: 34885091 PMCID: PMC8656474 DOI: 10.3390/cancers13235981] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype arising from renal cell carcinomas. This tumor is characterized by a predominant angiogenic and immunogenic microenvironment that interplay with stromal, immune cells, and tumoral cells. Despite the obscure prognosis traditionally related to this entity, strategies including angiogenesis inhibition with tyrosine kinase inhibitors (TKIs), as well as the enhancement of the immune system with the inhibition of immune checkpoint proteins, such as PD-1/PDL-1 and CTLA-4, have revolutionized the treatment landscape. This approach has achieved a substantial improvement in life expectancy and quality of life from patients with advanced ccRCC. Unfortunately, not all patients benefit from this success as most patients will finally progress to these therapies and, even worse, approximately 5 to 30% of patients will primarily progress. In the last few years, preclinical and clinical research have been conducted to decode the biological basis underlying the resistance mechanisms regarding angiogenic and immune-based therapy. In this review, we summarize the insights of these molecular alterations to understand the resistance pathways related to the treatment with TKI and immune checkpoint inhibitors (ICIs). Moreover, we include additional information on novel approaches that are currently under research to overcome these resistance alterations in preclinical studies and early phase clinical trials.
Collapse
|
17
|
Zhan B, Zhang Z, Piao C, Dong X, Du Y, Kong C, Jiang Y. The Sigma-2 Receptor/TMEM97 Agonist PB28 Suppresses Cell Proliferation and Invasion by Regulating the PI3K-AKT-mTOR Signalling Pathway in Renal Cancer. J Cell Mol Med 2021; 25:11244-11256. [PMID: 34783163 PMCID: PMC8650047 DOI: 10.1111/jcmm.17047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 01/23/2023] Open
Abstract
Sigma‐2 receptor/TMEM97 is overexpressed in many tumours, and sigma‐2 receptor ligands are under investigation for cancer therapy. We intended to evaluate the effect of PB28 on renal cancer in proliferation, migration and invasion in vitro and in vivo. Invasive renal cancer cell lines treated with PB28 (or sigma‐2 receptor antagonist 1) were subjected to cell proliferation, migration and invasion assays. The therapeutic effect of PB28 was performed on nude mice. Western blot for proteins in the PI3K‐AKT‐mTOR signalling pathway was conducted. A CCK‐8 assay was used to examine the effect of the combination of PB28 and cisplatin on renal cancer cells. Significant inhibitory effects were observed on proliferation, migration and invasion of 786‐O and ACHN cells after culturing with PB28. But, the outcomes of sigma‐2 receptor antagonist 1 presented the opposite tendency. PB28 significantly inhibited the proliferative and invasive ability of OS‐RC‐2 cells in vivo. Treatment resulted in decreased phosphorylation of constituents of the PI3K‐AKT‐mTOR pathway. The combination of PB28 and cisplatin showed enhanced efficacy in the inhibition of renal cancer cell proliferation. Taken together, PB28 inhibited the tumorigenic behaviours of renal cancer cells by regulating the PI3K‐AKT‐mTOR signalling pathway and was expected to be a sensitizer of cisplatin.
Collapse
Affiliation(s)
- Bo Zhan
- Department of Urology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chiyuan Piao
- Department of Urology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiao Dong
- Department of Urology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yang Du
- Department of Urology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
18
|
Cui N, Han Q, Cao Q, Wang K, Zhou X, Hou P, Liu C, Chen L, Xu L. Lefty A is involved in sunitinib resistance of renal cell carcinoma cells via regulation of IL-8. Biol Chem 2021; 402:1247-1256. [PMID: 34363384 DOI: 10.1515/hsz-2021-0280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Renal cell carcinoma (RCC) is the third most frequent malignancy within urological oncology. Sunitinib has been used as the standard of treatment for first-line RCC therapy. Understanding mechanisms of sunitinib resistance in RCC cell is important for clinical therapy and drug development. We established sunitinib resistant RCC cells by treating cells with increasing concentrations of sunitinib and named resistant cells as RCC/SR. Lefty A, an important embryonic morphogen, was increased in RCC/SR cells. Targeted inhibition of Lefty via its siRNAs restored the sensitivity of renal resistant cells to sunitinib treatment. It was due to that si-Lefty can decrease the expression of interleukin-8 (IL-8) in RCC/SR cells. Knockdown of IL-8 abolished Lefty-regulated sunitinib sensitivity of RCC cells. Mechanistically, Lefty can regulate IL-8 transcription via activation of p65, one major transcription factor of IL-8. Collectively, our present revealed that Lefty A can regulate sunitinib sensitivity of RCC cells of via NF-κB/IL-8 signals. It indicated that targeted inhibition of Lefty might be a potent approach to overcome sunitinib resistance of RCC.
Collapse
Affiliation(s)
- Ning Cui
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Qiang Han
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Qizhen Cao
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Kejun Wang
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Xujia Zhou
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Pingzhi Hou
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Chao Liu
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Lungang Chen
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Lin Xu
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| |
Collapse
|
19
|
Dong Y, Gao Y, Xie T, Liu H, Zhan X, Xu Y. miR-101-3p Serves as a Tumor Suppressor for Renal Cell Carcinoma and Inhibits Its Invasion and Metastasis by Targeting EZH2. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9950749. [PMID: 34307682 PMCID: PMC8282380 DOI: 10.1155/2021/9950749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND The role of miRNAs in renal cell carcinoma (RCC) is not certain. We wanted to study the biological functions and potential mechanisms of miR-101-3p in RCC. METHODS miR-101-3p was inhibited in A498 and OSRC-2 (two RCC cell lines). We studied its effect on cell invasion and proliferation. Target EZH2 of miR-101-3p was designated by different methods, including luciferase functional analysis and Western blotting. The expression level of the target gene in treated cells was quantitatively analyzed by quantitative real-time polymerase chain reaction. In addition, induction of miR-101-3p to prevent tumor formation of A498 cells in mice was further studied. RESULTS The overexpression of miR-101-3p significantly inhibited the proliferation, migration, and invasion in two RCC cells. Western blotting and luciferase functional analysis indicated that miR-101-3p regulated the expression of EZH2 in two cell lines. Mice inoculated with A498 and OSRC-2 cells transfected with miR-101-3p mimics showed significantly smaller xenografts and weaker EZH2 expression levels than the control group. CONCLUSIONS miR-101-3p inhibited RCC cell proliferation, migration, and invasion by targeting EZH2.
Collapse
Affiliation(s)
- Yunze Dong
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, 301 Yanchang Road, Jing'an District, Shanghai 200072, China
| | - Yuchen Gao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, 301 Yanchang Road, Jing'an District, Shanghai 200072, China
| | - Tiancheng Xie
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, 301 Yanchang Road, Jing'an District, Shanghai 200072, China
| | - Huan Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, 301 Yanchang Road, Jing'an District, Shanghai 200072, China
| | - Xiangcheng Zhan
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, 301 Yanchang Road, Jing'an District, Shanghai 200072, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, 301 Yanchang Road, Jing'an District, Shanghai 200072, China
| |
Collapse
|
20
|
Wang M, Chen W, Chen J, Yuan S, Hu J, Han B, Huang Y, Zhou W. Abnormal saccharides affecting cancer multi-drug resistance (MDR) and the reversal strategies. Eur J Med Chem 2021; 220:113487. [PMID: 33933752 DOI: 10.1016/j.ejmech.2021.113487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Clinically, chemotherapy is the mainstay in the treatment of multiple cancers. However, highly adaptable and activated survival signaling pathways of cancer cells readily emerge after long exposure to chemotherapeutics drugs, resulting in multi-drug resistance (MDR) and treatment failure. Recently, growing evidences indicate that the molecular action mechanisms of cancer MDR are closely associated with abnormalities in saccharides. In this review, saccharides affecting cancer MDR development are elaborated and analyzed in terms of aberrant aerobic glycolysis and its related enzymes, abnormal glycan structures and their associated enzymes, and glycoproteins. The reversal strategies including depletion of ATP, circumventing the original MDR pathway, activation by or inhibition of sugar-related enzymes, combination therapy with traditional cytotoxic agents, and direct modification on the sugar moiety, are ultimately proposed. It follows that abnormal saccharides have a significant effect on cancer MDR development, providing a new perspective for overcoming MDR and improving the outcome of chemotherapy.
Collapse
Affiliation(s)
- Meizhu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Wenming Chen
- Department of Pharmaceutical Production Center, The First Hospital of Hunan University of Chinese Medicine, 95, Shaoshan Rd, Changsha, Hunan, 41007, China
| | - Jiansheng Chen
- College of Horticulture, South China Agricultural University, 483, Wushan Rd, Guangzhou, Guangdong province, 510642, China
| | - Sisi Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China
| | - Bangxing Han
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, Anhui, China
| | - Yahui Huang
- College of Horticulture, South China Agricultural University, 483, Wushan Rd, Guangzhou, Guangdong province, 510642, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China.
| |
Collapse
|
21
|
Jiang H, Tang JY, Xue D, Chen YM, Wu TC, Zhuang QF, He XZ. Apolipoprotein C1 stimulates the malignant process of renal cell carcinoma via the Wnt3a signaling. Cancer Cell Int 2021; 21:41. [PMID: 33430855 PMCID: PMC7802262 DOI: 10.1186/s12935-020-01713-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a clinically common tumor in the urinary system, showing an upward trend of both incidence and mortality. Apolipoprotein C1 (APOC1) has been identified as a vital regulator in tumor progression. This study aims to uncover the biological function of APOC1 in RCC process and the underlying mechanism. Methods Differential levels of APOC1 in RCC samples and normal tissues in a downloaded TCGA profile and clinical samples collected in our center were detected by quantitative reverse transcription PCR (qRT-PCR). The prognostic value of APOC1 in RCC was assessed by depicting Kaplan–Meier survival curves. After intervening APOC1 level by transfection of sh-APOC1 or oe-APOC1, changes in phenotypes of RCC cells were examined through CCK-8, colony formation, Transwell assay and flow cytometry. Subsequently, protein levels of EMT-related genes influenced by APOC1 were determined by Western blot. The involvement of the Wnt3a signaling in APOC1-regulated malignant process of RCC was then examined through a series of rescue experiments. Finally, a RCC xenograft model was generated in nude mice, aiming to further clarify the in vivo function of APOC1 in RCC process. Results APOC1 was upregulated in RCC samples. Notably, its level was correlated to overall survival of RCC patients, displaying a certain prognostic value. APOC1 was able to stimulate proliferative, migratory and invasive abilities in RCC cells. The Wnt3a signaling was identified to be involved in APOC1-mediated RCC process. Notably, Wnt3a was able to reverse the regulatory effects of APOC1 on RCC cell phenotypes. In vivo knockdown of APOC1 in xenografted nude mice slowed down the growth of RCC. Conclusions APOC1 stimulates the malignant process of RCC via targeting the Wnt3a signaling.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jing-Yuan Tang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China
| | - Yi-Meng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China
| | - Ting-Chun Wu
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China
| | - Qian-Feng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China.
| | - Xiao-Zhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Mu Z, Dong D, Sun M, Li L, Wei N, Hu B. Prognostic Value of YTHDF2 in Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:1566. [PMID: 33102202 PMCID: PMC7546891 DOI: 10.3389/fonc.2020.01566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
m6A, the main form of mRNA modification, participates in regulating multiple normal and pathological biological events, especially in tumorigenesis. However, there is little known about the association of m6A-related genes with prognosis of clear cell renal cell cancer (ccRCC). Therefore, the prognostic value of m6A-related genes was investigated using Kaplan–Meier curves of overall survival (OS) with the log-rank test and Cox regression analysis. The differential expression of YTHDF2 mRNA in ccRCC and tumor-adjacent normal tissues and associated with clinicopathological characteristics was also analyzed. The alteration of cancer signaling pathways was screened by Gene Set Enrichment Analysis (GSEA). Univariate analysis showed that 15 m6A-related genes (including YTHDF2) were closely related to prognosis. Multivariate analysis further confirmed that YTHDF2 could serve as an independent prognostic factor for the OS of ccRCC patients (P < 0.001). Low-level expression of YTHDF2 had poor prognosis in ccRCC patients with lower tumor–node–metastasis (TNM) stage, age > 61, non-distant metastasis, non-lymph node metastasis, female gender, and higher histological grade (P < 0.05). Moreover, YTHDF2 expression in ccRCC tissues (N = 529) is significantly lower than that of tumor-adjacent normal tissues (N = 72, P = 0.0086). Furthermore, GSEA demonstrated that AKT/mTOR/GSK3 pathway, EIF4 pathway, CHREBP2 pathway, MET pathway, NFAT pathway, FAS pathway, EDG1 pathway, and CTCF pathway are altered in tumors with high YTHDF2 expression. Taken together, our results demonstrated that YTHDF2 (an m6A-related gene) could serve as a potential prognostic biomarker of ccRCC, and targeting epigenetic modification may be a novel therapeutic strategy for the treatment of ccRCC.
Collapse
Affiliation(s)
- Zhongyi Mu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Liwen Li
- Department of Biostatistics, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, United States
| | - Ning Wei
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bin Hu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
23
|
Liu H, Hu G, Wang Z, Liu Q, Zhang J, Chen Y, Huang Y, Xue W, Xu Y, Zhai W. circPTCH1 promotes invasion and metastasis in renal cell carcinoma via regulating miR-485-5p/MMP14 axis. Am J Cancer Res 2020; 10:10791-10807. [PMID: 32929380 PMCID: PMC7482820 DOI: 10.7150/thno.47239] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Circular RNAs (circRNAs) are a new class of non-coding RNAs (ncRNAs) that are derived from exons or introns by special selective shearing. circRNAs have been shown to play critical roles in various human cancers. However, their roles in renal cell carcinoma (RCC) and the underlying mechanisms remain largely unknown. Methods: A novel circRNA-circPTCH1, was identified from a microarray analysis of five paired RCC tissues. Then, we validated its expression and characterization through qRT-PCR, gel electrophoresis, RNase R digestion assays and Sanger sequencing. Functional experiments were performed to determine the effect of circPTCH1 on RCC progression both in vitro and in vivo. The interactions between circPTCH1 and miR-485-5p were clarified by RNA pull-down, luciferase reporter and RNA immunoprecipitation (RIP) assays. Results: We observed that circPTCH1 was up-regulated in RCC cell lines and tumor samples, and higher levels of circPTCH1 were significantly correlated with worse patient survival, advanced Fuhrman grade and greater risk of metastases. Elevated circPTCH1 expression led to increased migration and invasion of RCC cells both in vitro and in vivo whereas silencing circPTCH1 decreased migration and invasion and impeded the epithelial-mesenchymal transition (EMT) of RCC cells. Mechanistically, we elucidated that circPTCH1 could directly bind miR-485-5p and subsequently suppress expression of the target gene MMP14. Conclusion: circPTCH1 promotes RCC metastasis via the miR-485-5p/MMP14 axis and activation of the EMT process. Targeting circPTCH1 may represent a promising therapeutic strategy for metastatic RCC.
Collapse
|
24
|
Lin CL, Hung TW, Ying TH, Lin CJ, Hsieh YH, Chen CM. Praeruptorin B Mitigates the Metastatic Ability of Human Renal Carcinoma Cells through Targeting CTSC and CTSV Expression. Int J Mol Sci 2020; 21:ijms21082919. [PMID: 32331211 PMCID: PMC7216260 DOI: 10.3390/ijms21082919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common adult kidney cancer, and accounts for 85% of all cases of kidney cancers worldwide. Praeruptorin B (Pra-B) is a bioactive constituent of Peucedanum praeruptorum Dunn and exhibits several pharmacological activities, including potent antitumor effects. However, the anti-RCC effects of Pra-B and their underlying mechanisms are unclear; therefore, we explored the effects of Pra-B on RCC cells in this study. We found that Pra-B nonsignificantly influenced the cell viability of human RCC cell lines 786-O and ACHN at a dose of less than 30 μM for 24 h treatment. Further study revealed that Pra-B potently inhibited the migration and invasion of 786-O and ACHN cells, as well as downregulated the mRNA and protein expression of cathepsin C (CTSC) and cathepsin V (CTSV) of 786-O and ACHN cells. Mechanistically, Pra-B also reduced the protein levels of phospho (p)-epidermal growth factor receptor (EGFR), p-mitogen-activated protein kinase kinase (MEK), and p-extracellular signal-regulated kinases (ERK) in RCC cells. In addition, Pra-B treatment inhibited the effect of EGF on the upregulation of EGFR–MEK–ERK, CTSC and CTSV expression, cellular migration, and invasion of 786-O cells. Our findings are the first to demonstrate that Pra-B can reduce the migration and invasion ability of human RCC cells through suppressing the EGFR-MEK-ERK signaling pathway and subsequently downregulating CTSC and CTSV. This evidence suggests that Pra-B can be developed as an effective antimetastatic agent for the treatment of RCC.
Collapse
Affiliation(s)
- Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-L.L.); (C.-J.L.)
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Tung-Wei Hung
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chi-Jui Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-L.L.); (C.-J.L.)
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-L.L.); (C.-J.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (Y.-H.H.); (C.-M.C.); Tel.: +886-04-24730022 (Y.-H.H.); Fax: +886-04-23248110 (Y.-H.H.)
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- College of Nursing and Health Sciences, Dayeh University, Changhua 51591, Taiwan
- Correspondence: (Y.-H.H.); (C.-M.C.); Tel.: +886-04-24730022 (Y.-H.H.); Fax: +886-04-23248110 (Y.-H.H.)
| |
Collapse
|
25
|
Ramalingam S, Walker M, George DJ, Harrison MR. Real-World Data from a Metastatic Renal Cell Carcinoma Community-Academic Registry: Comparative Outcomes of Progression Free Survival and Overall Survival. KIDNEY CANCER 2019. [DOI: 10.3233/kca-190059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sundhar Ramalingam
- Duke Cancer Institute and the Division of Medical Oncology at the Duke University School of Medicine in Durham, NC, USA
| | | | - Daniel J. George
- Duke Cancer Institute and the Division of Medical Oncology at the Duke University School of Medicine in Durham, NC, USA
| | - Michael R. Harrison
- Duke Cancer Institute and the Division of Medical Oncology at the Duke University School of Medicine in Durham, NC, USA
| |
Collapse
|
26
|
Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to Systemic Therapies in Clear Cell Renal Cell Carcinoma: Mechanisms and Management Strategies. Mol Cancer Ther 2019; 17:1355-1364. [PMID: 29967214 DOI: 10.1158/1535-7163.mct-17-1299] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/28/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. It is categorized into various subtypes, with clear cell RCC (ccRCC) representing about 85% of all RCC tumors. The lack of sensitivity to chemotherapy and radiation therapy prompted research efforts into novel treatment options. The development of targeted therapeutics, including multi-targeted tyrosine kinase inhibitors (TKI) and mTOR inhibitors, has been a major breakthrough in ccRCC therapy. More recently, other therapeutic strategies, including immune checkpoint inhibitors, have emerged as effective treatment options against advanced ccRCC. Furthermore, recent advances in disease biology, tumor microenvironment, and mechanisms of resistance formed the basis for attempts to combine targeted therapies with newer generation immunotherapies to take advantage of possible synergy. This review focuses on the current status of basic, translational, and clinical studies on mechanisms of resistance to systemic therapies in ccRCC. Mol Cancer Ther; 17(7); 1355-64. ©2018 AACR.
Collapse
Affiliation(s)
- Peter Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Shreyas Joshi
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Pooja Ghatalia
- Division of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexander Kutikov
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert G Uzzo
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Vladimir M Kolenko
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
27
|
Gong D, Zhang J, Chen Y, Xu Y, Ma J, Hu G, Huang Y, Zheng J, Zhai W, Xue W. The m 6A-suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca 2+ influx modulating ERK1/2 phosphorylation and MMP9 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:233. [PMID: 31159832 PMCID: PMC6547495 DOI: 10.1186/s13046-019-1223-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Previous study demonstrated that extracellular ATP could promote cell migration and invasion in multiple human cancers. Till now, the pro-invasive mechanisms of ATP and P2RX6, a preferred receptor for ATP, are still poorly studied in RCC. Methods Bioinformatics analysis was performed to identify the differentially expressed genes during RCC different stages. Tissue microarray, IHC staining and survival analysis was respectively used to evaluate potential clinical function. In vitro and in vivo assays were performed to explore the P2RX6 biological effects in RCC progression. Results We found that ATP might increase RCC cells migration and invasion through P2RX6. Mechanism dissection revealed that ATP-P2RX6 might modulate the Ca2+-mediated p-ERK1/2/MMP9 signaling to increase the RCC cells migration and invasion. Furthermore, METTL14 implicated m6A modification in RCC and down-regulated P2RX6 protein translation. In addition, human clinical survey also indicated the positive correlation of this newly identified signaling in RCC progression and prognosis. Conclusions Our findings revealed that the newly identified ATP-P2RX6-Ca2+-p-ERK1/2-MMP9 signaling facilitates RCC cell invasion and metastasis. Targeting this novel signaling pathway with small molecules might help us to develop a new approach to better suppress RCC progression. Electronic supplementary material The online version of this article (10.1186/s13046-019-1223-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongkui Gong
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yonghui Chen
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Junjie Ma
- Department of Urology, Pudong Hospital, School of Medicine in Fudan University, Shanghai, 201300, China
| | - Guanghui Hu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junhua Zheng
- Department of Urology, Shanghai First People's Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
28
|
Yuan J, Dong R, Liu F, Zhan L, Liu Y, Wei J, Wang N. The miR-183/182/96 cluster functions as a potential carcinogenic factor and prognostic factor in kidney renal clear cell carcinoma. Exp Ther Med 2019; 17:2457-2464. [PMID: 30906433 PMCID: PMC6425123 DOI: 10.3892/etm.2019.7221] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most common type of renal cell carcinoma. While a number of treatments have been developed over the past few decades, the prognosis of patients with KIRC remains poor due to tumor metastasis and recurrence. Therefore, the molecular mechanisms of KIRC require to be elucidated in order to identify novel biomarkers. MicroRNAs (miRNAs/miRs) have been studied as important regulators of gene expression in a variety of cancer types. In the present study, a bioinformatics analysis of differentially expressed miRNAs in KIRC vs. normal tissues was performed based on raw miRNA expression data and patient information downloaded from the The Cancer Genome Atlas database. Furthermore, the clinical significance of differentially expressed miRNAs was evaluated, and their target genes and biological effects were further predicted. After applying the cut-off criteria of an absolute fold change of ≥2 and P<0.05, 127 differentially expressed miRNAs between KIRC and normal tissues were identified. The product of the miR-183/182/96 gene cluster, namely miR-183, miR-96 and miR-182, was revealed to be associated with multiple clinicopathological features of KIRC and to have a significant predictive and prognostic value. Subsequent functional enrichment analysis indicated that the target genes of the three miRNAs are associated with various Panther pathways, including the α-adrenergic receptor signaling pathway, metabotropic glutamate receptor group I pathway, histamine H1 receptor-mediated signaling pathway and thyrotropin-releasing hormone receptor signaling pathway. In addition, major enriched gene ontology terms in the category biological process included the intracellular signaling cascade, cellular macromolecule catabolic process and response to DNA damage stimulus. Taken together, the present study suggested that miR-183, miR-96 and miR-182 may function as potential carcinogenic factors in KIRC and may be utilized as prognostic predictors.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Urology, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430050, P.R. China
| | - Rui Dong
- Department of Urology, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430050, P.R. China
| | - Fei Liu
- Department of Urology, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430050, P.R. China
| | - Lijun Zhan
- Department of Urology, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430050, P.R. China
| | - Yu Liu
- Department of Urology, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430050, P.R. China
| | - Jun Wei
- Department of Urology, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430050, P.R. China
| | - Ninghua Wang
- Department of Urology, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430050, P.R. China
| |
Collapse
|
29
|
Mittal R, Woo FW, Castro CS, Cohen MA, Karanxha J, Mittal J, Chhibber T, Jhaveri VM. Organ‐on‐chip models: Implications in drug discovery and clinical applications. J Cell Physiol 2018; 234:8352-8380. [DOI: 10.1002/jcp.27729] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Frank W. Woo
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Carlo S. Castro
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Madeline A. Cohen
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Joana Karanxha
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Tanya Chhibber
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University Chandigarh India
| | - Vasanti M. Jhaveri
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
30
|
Vaishampayan U. Landmark Trials in Renal Cancer. KIDNEY CANCER 2018. [DOI: 10.3233/kca-170026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Zheng L, Zhao C, Du Y, Lin X, Jiang Y, Lee C, Tian G, Mi J, Li X, Chen Q, Ye Z, Huang L, Wang S, Ren X, Xing L, Chen W, Huang D, Gao Z, Zhang S, Lu W, Tang Z, Wang B, Ju R, Li X. PDGF-CC underlies resistance to VEGF-A inhibition and combinatorial targeting of both suppresses pathological angiogenesis more efficiently. Oncotarget 2018; 7:77902-77915. [PMID: 27788490 PMCID: PMC5363630 DOI: 10.18632/oncotarget.12843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
Anti-VEGF-A therapy has proven to be effective for many neovascular diseases. However, drug resistance to anti-VEGF-A treatment can develop. Also, not all patients with neovascular diseases are responsive to anti-VEGF-A treatment. The mechanisms underlying these important issues remain unclear. In this study, using different model systems, we found that inhibition of VEGF-A directly upregulated PDGF-CC and its receptors in multiple cell types in pathological angiogenesis in vitro and in vivo. Importantly, we further revealed that combinatorial targeting of VEGF-A and PDGF-CC suppressed pathological angiogenesis more efficiently than monotherapy. Given the potent angiogenic activity of PDGF-CC, our findings suggest that the development of resistance to anti-VEGF-A treatment may be caused by the compensatory upregulation of PDGF-CC, and combined inhibition of VEGF-A and PDGF-CC may have therapeutic advantages in treating neovascular diseases.
Collapse
Affiliation(s)
- Lei Zheng
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Chen Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yuxiang Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Yida Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Geng Tian
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China
| | - Jia Mi
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China
| | - Xianglin Li
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China
| | - Qishan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Zhimin Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Liying Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Delong Huang
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Zhiqin Gao
- Department of Cell Biology, Weifang Medical University, Weifang, 261053 P. R. China
| | - Shuping Zhang
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Zhongshu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Bin Wang
- Medical Imaging Institute, Shandong Province Characteristical Key Subject, Medical Imaging and Nuclear Medicine, Binzhou Medical University, Yantai, 264003 P. R. China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xuri Li
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| |
Collapse
|
32
|
Li S, Yang J, Wang J, Gao W, Ding Y, Ding Y, Jia Z. Down-regulation of miR-210-3p encourages chemotherapy resistance of renal cell carcinoma via modulating ABCC1. Cell Biosci 2018; 8:9. [PMID: 29445446 PMCID: PMC5803904 DOI: 10.1186/s13578-018-0209-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
Background ATP-binding cassette transporter super-family including ABCC1 and MDR-1 were involved in multi-drug resistance (MDR) of renal cell carcinoma (RCC) patients. Several miRNAs were confirmed to promote the MDR and the survival of tumor cells. Methods The RCC cell lines Caki-2 with vinblastine-resistant (Caki-2/VBL) or doxorubicin-resistant (Caki-2/DOX) were constructed, respectively. The expressions of miR-210-3p, ABCC1 and MDR-1 protein were determined by qRT-PCR and Western blot assays. The viability of RCC cells was assessed by MTT assay. The regulatory relationship between miR-210-3p and ABCC1 was analyzed by Dual Luciferase assay. The effect of miR-210-3p in vivo was investigated with a tumor xenograft model in mice. Results MiR-210-3p expression was observed to significantly decrease in Caki-2/VBL and Caki-2/DOX cells. Meanwhile, ABCC1 and MDR-1 were significantly increased in Caki-2/VBL and Caki-2/DOX cells. ABCC1 was a novel target of miR-210-3p and negatively regulated by miR-210-3p. And miR-210-3p improved drug-sensitivity of RCC cells. Down-regulation of ABCC1 could reverse the effect of miR-210-3p knockdown on the drug-resistance and the level of MDR-1 in drug-sensitive RCC cells. Conclusion We confirmed that down-regulation of miR-210-3p increased ABCC1 expression, thereby enhancing the MRP-1-mediated multidrug resistance of RCC cells.
Collapse
Affiliation(s)
- Songchao Li
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Jinjian Yang
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Jun Wang
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Wansheng Gao
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Yafei Ding
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Yinghui Ding
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Zhankui Jia
- 1Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Rd., Zhengzhou, 450052 People's Republic of China.,Urological Institute of Henan, Zhengzhou, 450052 Henan Province People's Republic of China
| |
Collapse
|
33
|
Xu Q, Junttila S, Scherer A, Giri KR, Kivelä O, Skovorodkin I, Röning J, Quaggin SE, Marti HP, Shan J, Samoylenko A, Vainio SJ. Renal carcinoma/kidney progenitor cell chimera organoid as a novel tumorigenesis gene discovery model. Dis Model Mech 2017; 10:1503-1515. [PMID: 29084770 PMCID: PMC5769601 DOI: 10.1242/dmm.028332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) organoids provide a new way to model various diseases, including cancer. We made use of recently developed kidney-organ-primordia tissue-engineering technologies to create novel renal organoids for cancer gene discovery. We then tested whether our novel assays can be used to examine kidney cancer development. First, we identified the transcriptomic profiles of quiescent embryonic mouse metanephric mesenchyme (MM) and of MM in which the nephrogenesis program had been induced ex vivo. The transcriptome profiles were then compared to the profiles of tumor biopsies from renal cell carcinoma (RCC) patients, and control samples from the same kidneys. Certain signature genes were identified that correlated in the developmentally induced MM and RCC, including components of the caveolar-mediated endocytosis signaling pathway. An efficient siRNA-mediated knockdown (KD) of Bnip3, Gsn, Lgals3, Pax8, Cav1, Egfr or Itgb2 gene expression was achieved in mouse RCC (Renca) cells. The live-cell imaging analysis revealed inhibition of cell migration and cell viability in the gene-KD Renca cells in comparison to Renca controls. Upon siRNA treatment, the transwell invasion capacity of Renca cells was also inhibited. Finally, we mixed E11.5 MM with yellow fluorescent protein (YFP)-expressing Renca cells to establish chimera organoids. Strikingly, we found that the Bnip3-, Cav1- and Gsn-KD Renca-YFP+ cells as a chimera with the MM in 3D organoid rescued, in part, the RCC-mediated inhibition of the nephrogenesis program during epithelial tubules formation. Altogether, our research indicates that comparing renal ontogenesis control genes to the genes involved in kidney cancer may provide new growth-associated gene screens and that 3D RCC-MM chimera organoids can serve as a novel model with which to investigate the behavioral roles of cancer cells within the context of emergent complex tissue structures. Editor’s Choice: Chimeras between embryonic kidney cells and renal carcinoma cells serve as a novel model to assay the roles of co-regulated genes in kidney development and renal carcinogenesis.
Collapse
Affiliation(s)
- Qi Xu
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Sanna Junttila
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | | | - Khem Raj Giri
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Oona Kivelä
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland.,ValiFinn, FI-90220 Oulu, Finland
| | - Ilya Skovorodkin
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Juha Röning
- Department of Computer Science and Engineering, University of Oulu, FI-90014 Oulu, Finland
| | - Susan E Quaggin
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland.,Feinberg Cardiovascular Research Institute, Division of Medicine-Nephrology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Jingdong Shan
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Anatoly Samoylenko
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Oulu University, FI-90014 Oulu, Finland
| |
Collapse
|
34
|
Ge W, Zhao K, Wang X, Li H, Yu M, He M, Xue X, Zhu Y, Zhang C, Cheng Y, Jiang S, Hu Y. iASPP Is an Antioxidative Factor and Drives Cancer Growth and Drug Resistance by Competing with Nrf2 for Keap1 Binding. Cancer Cell 2017; 32:561-573.e6. [PMID: 29033244 DOI: 10.1016/j.ccell.2017.09.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/15/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) have emerged as important signaling molecules that play crucial roles in carcinogenesis and cytotoxic responses. Nrf2 is the master regulator of ROS balance. Thus, uncovering mechanisms of Nrf2 regulation is important for the development of alternative treatment strategies for cancers. Here, we demonstrate that iASPP, a known p53 inhibitor, lowers ROS independently of p53. Mechanistically, iASPP competes with Nrf2 for Keap1 binding via a DLT motif, leading to decreased Nrf2 ubiquitination and increased Nrf2 accumulation, nuclear translocation, and antioxidative transactivation. This iASPP-Keap1-Nrf2 axis promotes cancer growth and drug resistance both in vitro and in vivo. Thus, iASPP is an antioxidative factor and represents a promising target to improve cancer treatment, regardless of p53 status.
Collapse
Affiliation(s)
- Wenjie Ge
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Kunming Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Huayi Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Miao Yu
- School of Chemistry, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Mengmeng He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Xuting Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Yifu Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150006, China
| | - Yiwei Cheng
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150006, China
| | - Shijian Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China; Shenzhen Graduate School of Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
35
|
Secreted miR-210-3p as non-invasive biomarker in clear cell renal cell carcinoma. Oncotarget 2017; 8:69551-69558. [PMID: 29050224 PMCID: PMC5642499 DOI: 10.18632/oncotarget.18449] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/06/2017] [Indexed: 12/22/2022] Open
Abstract
The most common subtype of renal cell carcinoma (RCC) is clear cell RCC (ccRCC). It accounts for 70-80% of all renal malignancies representing the third most common urological cancer after prostate and bladder cancer. The identification of non-invasive biomarkers for the diagnosis and responsiveness to therapy of ccRCC may represent a relevant step-forward in ccRCC management. The aim of this study is to evaluate whether specific miRNAs deregulated in ccRCC tissues present altered levels also in urine specimens. To this end we first assessed that miR-21-5p, miR-210-3p and miR-221-3p resulted upregulated in ccRCC fresh frozen tissues compared to matched normal counterparts. Next, we evidenced that miR-210-3p resulted significantly up-regulated in 38 urine specimens collected from two independent cohorts of ccRCC patients at the time of surgery compared to healthy donors samples. Of note, miR-210-3p levels resulted significantly reduced in follow-up samples. These results point to miR-210-3p as a potential non-invasive biomarker useful not only for diagnosis but also for the assessment of complete resection or response to treatment in ccRCC management.
Collapse
|
36
|
Rybarczyk A, Klacz J, Wronska A, Matuszewski M, Kmiec Z, Wierzbicki PM. Overexpression of the YAP1 oncogene in clear cell renal cell carcinoma is associated with poor outcome. Oncol Rep 2017; 38:427-439. [DOI: 10.3892/or.2017.5642] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/27/2017] [Indexed: 11/05/2022] Open
|
37
|
Molecular Markers and Targeted Therapeutics in Metastatic Tumors of the Spine: Changing the Treatment Paradigms. Spine (Phila Pa 1976) 2016; 41 Suppl 20:S218-S223. [PMID: 27488299 DOI: 10.1097/brs.0000000000001833] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY TYPE A review of the literature. OBJECTIVE The aim of this study was to discuss the evolution of molecular signatures and the history and development of targeted therapeutics in metastatic tumor types affecting the spinal column. SUMMARY OF BACKGROUND DATA Molecular characterization of metastatic spine tumors is expected to usher in a revolution in diagnostic and treatment paradigms. Molecular characterization will provide critical information that can be used for initial diagnosis, prognosticating the ideal treatment strategy, assessment of treatment efficacy, surveillance and monitoring recurrence, and predicting complications, clinical outcome, and overall survival in patients diagnosed with metastatic cancers to the spinal column. METHODS A review of the literature was performed focusing on illustrative examples of the role that molecular-based therapeutics have played in clinical outcomes for patients diagnosed with metastatic tumor types affecting the spinal column. RESULTS The impact of molecular therapeutics including receptor tyrosine kinases and immune checkpoint inhibitors and the ability of molecular signatures to provide prognostic information are discussed in metastatic breast cancer, lung cancer, prostate cancer, melanoma, and renal cell cancer affecting the spinal column. CONCLUSION For the providers who will ultimately counsel patients diagnosed with metastases to the spinal column, molecular advancements will radically alter the management/surgical paradigms utilized. Ultimately, the translation of these molecular advancements into routine clinical care will greatly improve the quality and quantity of life for patients diagnosed with spinal malignancies and provide better overall outcomes and counseling for treating physicians. LEVEL OF EVIDENCE N/A.
Collapse
|
38
|
Nagyiványi K, Budai B, Bíró K, Gyergyay F, Noszek L, Küronya Z, Németh H, Nagy P, Géczi L. Synergistic Survival: A New Phenomenon Connected to Adverse Events of First-Line Sunitinib Treatment in Advanced Renal Cell Carcinoma. Clin Genitourin Cancer 2016; 14:314-22. [DOI: 10.1016/j.clgc.2015.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 01/20/2023]
|
39
|
Hussain SA, Sulaiman AA, Balch C, Chauhan H, Alhadidi QM, Tiwari AK. Natural Polyphenols in Cancer Chemoresistance. Nutr Cancer 2016; 68:879-91. [DOI: 10.1080/01635581.2016.1192201] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Xiao-Fen W, Ting C, Jie L, Deng-Yang M, Qing-Feng Z, Xin L. Correlation analysis of VHL and Jade-1 gene expression in human renal cell carcinoma. Open Med (Wars) 2016; 11:226-230. [PMID: 28352799 PMCID: PMC5329830 DOI: 10.1515/med-2016-0043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/19/2016] [Indexed: 01/07/2023] Open
Abstract
Objective The aim of this study was to investigate the correlation of von Hippel-Lindau tumor suppressor (VHL) mRNA expression and jade family PHD finger 1 (Jade-1) gene expression in patients with renal cell carcinoma (RCC). Another aim of this study was to analyze the relationship of these two genes with clinicalpathological features of the RCC patients. Methods A total of 75 RCC patients who received surgically therapy in our hospital were included. All patients had complete pathological data. The expression of VHL/Jade-1 was determined by real-time polymerase chain reaction (RT-PCR). Results VHL and Jade-1 were both obviously downregulated in RCC tissues than that of the matched normal tissues, and both negatively correlated with tumor size as well as tumor grade. And we found a fine association of VHL gene expression with Jade-1. Conclusion VHL/Jade-1 exhibited significantly decreased expression in RCC tissues and was closely related to the clinical prognosis of patients. The finding of VHL expression positively correlated with Jade-1 expression shed light and provided crucial evidence on the connection of VHL protein with Wnt/b-catenin pathway.
Collapse
Affiliation(s)
- Wu Xiao-Fen
- Department of Urology Surgery, The Central Hospital of Lishui City, Lishui, 323000, People's Republic of China
| | - Chen Ting
- Department of Urology Surgery, The Central Hospital of Lishui City, Lishui, 323000, People's Republic of China
| | - Li Jie
- Department of Urology Surgery, The Central Hospital of Lishui City, Lishui, 323000, People's Republic of China
| | - Ma Deng-Yang
- Department of Urology Surgery, The Central Hospital of Lishui City, Lishui, 323000, People's Republic of China
| | - Zhu Qing-Feng
- Department of Urology Surgery, The Central Hospital of Lishui City, Lishui, 323000, People's Republic of China
| | - Lian Xin
- Department of Urology Surgery, The Central Hospital of Lishui City, Lishui, 323000, People's Republic of China
| |
Collapse
|
41
|
Liep J, Kilic E, Meyer HA, Busch J, Jung K, Rabien A. Cooperative Effect of miR-141-3p and miR-145-5p in the Regulation of Targets in Clear Cell Renal Cell Carcinoma. PLoS One 2016; 11:e0157801. [PMID: 27336447 PMCID: PMC4919070 DOI: 10.1371/journal.pone.0157801] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/04/2016] [Indexed: 12/17/2022] Open
Abstract
Background Due to the poor prognosis for advanced renal cell carcinoma (RCC), there is an urgent need for new therapeutic targets and for prognostic markers to identify high risk tumors. MicroRNAs (miRNAs) are frequently dysregulated in tumors, play a crucial role during carcinogenesis and therefore might be promising new biomarkers. In previous studies, we identified miR-141-3p and miR-145-5p to be downregulated in clear cell RCC (ccRCC). Our objective was to investigate the functional association of these miRNAs, focusing on the cooperative regulation of new specific targets and their role in ccRCC progression. Methods The effect of miR-141-3p and miR-145-5p on cell migration was examined by overexpression in 786-O cells. New targets of both miRNAs were identified by miRWalk, validated in 786-O and ACHN cells and additionally characterized in ccRCC tissue on mRNA and protein level. Results In functional analysis, a tumor suppressive effect of miR-141-3p and miR-145-5p by decreasing migration and invasion of RCC cells could be shown. Furthermore, co-overexpression of the miRNAs seemed to result in an increased inhibition of cell migration. Both miRNAs were recognized as post-transcriptional regulators of the targets EAPP, HS6ST2, LOX, TGFB2 and VRK2. Additionally, they showed a cooperative effect again as demonstrated by a significantly increased inhibition of HS6ST2 and LOX expression after simultaneous overexpression of both miRNAs. In ccRCC tissue, LOX mRNA expression was strongly increased compared to normal tissue, allowing also to distinguish between non-metastatic and already metastasized primary tumors. Finally, in subsequent tissue microarray analysis LOX protein expression showed a prognostic relevance for the overall survival of ccRCC patients. Conclusion These results illustrate a jointly strengthening effect of the dysregulated miR-141-3p and miR-145-5p in various tumor associated processes. Focusing on the cooperative effect of miRNAs provides new opportunities for the development of therapeutic strategies and offers novel prognostic and diagnostic capabilities.
Collapse
Affiliation(s)
- Julia Liep
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
| | - Ergin Kilic
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hellmuth A. Meyer
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Busch
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
| | - Anja Rabien
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Urologic Research, Berlin, Germany
- * E-mail:
| |
Collapse
|
42
|
van der Mijn JC, Broxterman HJ, Knol JC, Piersma SR, De Haas RR, Dekker H, Pham TV, Van Beusechem VW, Halmos B, Mier JW, Jiménez CR, Verheul HMW. Sunitinib activates Axl signaling in renal cell cancer. Int J Cancer 2016; 138:3002-10. [PMID: 26815723 DOI: 10.1002/ijc.30022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/01/2015] [Accepted: 01/14/2016] [Indexed: 12/14/2022]
Abstract
Mass spectrometry-based phosphoproteomics provides a unique unbiased approach to evaluate signaling network in cancer cells. The tyrosine kinase inhibitor sunitinib is registered as treatment for patients with renal cell cancer (RCC). We investigated the effect of sunitinib on tyrosine phosphorylation in RCC tumor cells to get more insight in its mechanism of action and thereby to find potential leads for combination treatment strategies. Sunitinib inhibitory concentrations of proliferation (IC50) of 786-O, 769-p and A498 RCC cells were determined by MTT-assays. Global tyrosine phosphorylation was measured by LC-MS/MS after immunoprecipitation with the antiphosphotyrosine antibody p-TYR-100. Phosphoproteomic profiling of 786-O cells yielded 1519 phosphopeptides, corresponding to 675 unique proteins including 57 different phosphorylated protein kinases. Compared to control, incubation with sunitinib at its IC50 of 2 µM resulted in downregulation of 86 phosphopeptides including CDK5, DYRK3, DYRK4, G6PD, PKM and LDH-A, while 94 phosphopeptides including Axl, FAK, EPHA2 and p38α were upregulated. Axl- (y702), FAK- (y576) and p38α (y182) upregulation was confirmed by Western Blot in 786-O and A498 cells. Subsequent proliferation assays revealed that inhibition of Axl with a small molecule inhibitor (R428) sensitized 786-O RCC cells and immortalized endothelial cells to sunitinib up to 3 fold. In conclusion, incubation with sunitinib of RCC cells causes significant upregulation of multiple phosphopeptides including Axl. Simultaneous inhibition of Axl improves the antitumor activity of sunitinib. We envision that evaluation of phosphoproteomic changes by TKI treatment enables identification of new targets for combination treatment strategies.
Collapse
Affiliation(s)
- Johannes C van der Mijn
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Henk J Broxterman
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaco C Knol
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Richard R De Haas
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk Dekker
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Victor W Van Beusechem
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Balazs Halmos
- Department of Hematology/Oncology, Columbia University Medical Center, New York, NY
| | - James W Mier
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Connie R Jiménez
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Sirous R, Henegan JC, Zhang X, Howard CM, Souza F, Smith AD. Metastatic renal cell carcinoma imaging evaluation in the era of anti-angiogenic therapies. Abdom Radiol (NY) 2016; 41:1086-99. [PMID: 27193601 DOI: 10.1007/s00261-016-0742-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During the last decade, the arsenal of anti-angiogenic (AAG) agents used to treat metastatic renal cell carcinoma (RCC) has grown and revolutionized the treatment of metastatic RCC, leading to improved overall survival compared to conventional chemotherapy and traditional immunotherapy agents. AAG agents include inhibitors of vascular endothelial growth factor receptor signaling pathways and mammalian target of rapamycin inhibitors. Both of these classes of targeted agents are considered cytostatic rather than cytotoxic, inducing tumor stabilization rather than marked tumor shrinkage. As a result, decreases in tumor size alone are often minimal and/or occur late in the course of successful AAG therapy, while tumor devascularization is a distinct feature of AAG therapy. In successful AAG therapy, tumor devascularization manifests on computed tomography images as a composite of a decrease in tumor size, a decrease in tumor attenuation, and the development of tumor necrosis. In this article, we review Response Evaluation Criteria in Solid Tumors (RECIST)-the current standard of care for tumor treatment response assessment which is based merely on changes in tumor length-and its assessment of metastatic RCC tumor response in the era of AAG therapies. We then review the features of an ideal tumor imaging biomarker for predicting metastatic RCC response to a particular AAG agent and serving as a longitudinal tumor response assessment tool. Finally, a discussion of the more recently proposed imaging response criteria and new imaging trends in metastatic RCC response assessment will be reviewed.
Collapse
Affiliation(s)
- Reza Sirous
- Department of Radiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - John C Henegan
- Department of Hematology/Oncology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Xu Zhang
- Center for Biostatistics and Bioinformatics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Candace M Howard
- Department of Radiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Frederico Souza
- Department of Radiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Andrew D Smith
- Department of Radiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
44
|
Klacz J, Wierzbicki PM, Wronska A, Rybarczyk A, Stanislawowski M, Slebioda T, Olejniczak A, Matuszewski M, Kmiec Z. Decreased expression of RASSF1A tumor suppressor gene is associated with worse prognosis in clear cell renal cell carcinoma. Int J Oncol 2015; 48:55-66. [PMID: 26648328 PMCID: PMC4734610 DOI: 10.3892/ijo.2015.3251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/09/2015] [Indexed: 12/27/2022] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is the most common subtype of RCC (70-80%) and is associated with poor prognosis in 40% of cases mainly due to metastasis in the course of the disease. RASSF1, with its isoforms RASSF1A and RASSF1C, is a tumor suppressor gene which has not been fully analyzed in ccRCC yet. The epigenetic downregulation of RASSF1A is commonly associated with promoter hypermethylation. The aim of the present study was to compare the ccRCC outcomes with the expression of RASSF1A and RASSF1C. Tissues were obtained from 86 ccRCC patients. RASSF1A and RASSF1C mRNA levels were assessed in tumor and matched normal kidney tissue, and in 12 samples of local metastases by quantitative PCR (qPCR). RASSF1A and RASSF1C proteins levels were semi-quantified in 58 samples by western blot analysis and their tissue localization was assessed by immunohistochemistry. Hypermethylation of RASSF1A promoter was measured by high-resolution-melting methylation-specific qPCR. RASSF1A mRNA levels were 4 and 5 times lower in 66% of tumor and 75% metastasized samples. RASSF1A hypermethylation was found in 40% of analyzed T cases. RASSF1A protein expression was 5 or 20 times decreased in 70% tumor and 75% metastatic samples, respectively. RASSF1A hypermethylation, mRNA and protein levels were associated with TNM progression and higher Fuhrman's grading. Decreased RASSF1A expression, hypermethylation, TNM and Fuhrman's grading were associated with poorer overall survival (OS). Cox hazard ratio (HR) analysis revealed predictor role of RASSF1A mRNA levels on OS and progression-free survival (PFS) in relation to Fuhrman's grading (OS HR=2.25, PFS HR=2.93). RASSF1C levels were increased in ccRCC; no correlations with clinicopathological variables were found. We conclude that RASSF1C gene is not involved in ccRCC progression and we propose that the measurements of RASSF1A mRNA levels in paired tumor-normal kidney tissue could serve as a new prognostic factor in ccRCC.
Collapse
Affiliation(s)
- Jakub Klacz
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Piotr M Wierzbicki
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Agata Wronska
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Agnieszka Rybarczyk
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Marcin Stanislawowski
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Tomasz Slebioda
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Agata Olejniczak
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Marcin Matuszewski
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Zbigniew Kmiec
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| |
Collapse
|
45
|
The role of interleukin-8 (CXCL8) and CXCR2 in acquired chemoresistance of human colorectal carcinoma cells HCT116. Med Oncol 2015; 32:258. [PMID: 26519257 DOI: 10.1007/s12032-015-0703-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022]
Abstract
Colorectal cancer is one of the most common malignant diseases and is a leading cause of cancer mortality in the Western world. Primary or acquired resistance to chemotherapeutic drugs is a common phenomenon which causes a failure in cancer treatment. A diverse range of molecular mechanisms has been implicated in drug resistance: DNA damage repair, alterations in drug metabolism, mutation of drug targets, increased rates of drug efflux, and activation of survival signaling pathways. The aim of this study was to investigate the expression of CXCL8-CXCR1/2 pathway, its impact on cell proliferation and cytokine expression in human colorectal carcinoma HCT116 cells, and their chemotherapy-resistant subline. We found that IL-1 alpha stimulates the production of CXCL8 through IL-1 receptor signaling. Our data indicate that CXCL8 is upregulated in chemoresistant subline of colorectal cancer cells HCT116, and modulation of CXCR2 pathway can be a target for proliferation inhibition of chemoresistant colorectal cancer cells.
Collapse
|
46
|
Interleukin-16 polymorphisms as new promising biomarkers for risk of gastric cancer. Tumour Biol 2015; 37:2119-26. [PMID: 26346169 DOI: 10.1007/s13277-015-4013-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Gastric cancer (GC) is the second cause of cancer-related death worldwide. Interleukin (IL)-16 has a vital role in the development and homeostasis of the immune system. In the present study, we evaluated an exon variant rs4072111 C/T polymorphism and 3' UTR variant rs1131445 C/T within the miRNA binding with gastric cancer susceptibility in Iranian population. Genomic DNA was isolated from peripheral blood samples according to phenol chloroform extraction. The genotypes of IL-16 polymorphisms rs1131445 T/C and rs4072111 T/C were determined by polymerase chain reaction-restriction fragment length polymorphism method. In this case control study, a total of 256 patients with gastric cancer (238 cases (92.9 %) non-cardia and 18 cases (7.1 %) cardia) and 300 healthy control subjects were evaluated. In the present study, we found a significant association between rs4072111 of IL-16 gene and risk of GC in Iranian population. Individuals with CT genotype showed a significant association with 1.79-fold increased risk of GC (P = 0.008; adjusted OR 1.792; 95 % CI 1.164-2.759). The significant association was also detected for T allele of rs4072111 and increased risk of GC (P < 0.001; adjusted OR 1.981; 95 % CI 1.354-2.900). We also observed statistically a significant relationship between rs1131445 of IL-16 CT genotype and GC risk. Carriers of IL-16 CT genotype compared with TT genotype had 1.44 times higher increased likelihood of GC (P = 0.048; adjusted OR 1.445; 95 % CI 1.003-2.084). After stratification according to gender, we observed that in rs1131445, CT and CC male carriers had a higher risk of GC than females (P = 0.08; adjusted OR 1.608; 95 % CI 0.945-2.737 and P = 0.08; adjusted OR 2.186; 95 % CI 0.897-5.325, respectively). We also observed that for male carriers with C allele in rs1131445, there was a 1.53-fold higher risk of GC risk than female subjects (P = 0.029; adjusted OR 1.53; 95 % CI 1.04.4-2.248). We found that the rs1131445 T/C and rs4072111 T/C variants of IL-16 were significantly associated with increased risk of GC in Iranian population.
Collapse
|
47
|
Alongi P, Picchio M, Zattoni F, Spallino M, Gianolli L, Saladini G, Evangelista L. Recurrent renal cell carcinoma: clinical and prognostic value of FDG PET/CT. Eur J Nucl Med Mol Imaging 2015; 43:464-73. [PMID: 26268680 DOI: 10.1007/s00259-015-3159-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/30/2015] [Indexed: 01/03/2023]
Abstract
PURPOSE The purpose of our study was 1) to evaluate the diagnostic performance of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT), 2) to assess the impact of FDG PET/CT on treatment decision-making, and 3) to estimate the prognostic value of FDG PET/CT in the restaging process among patients with renal cell carcinoma (RCC). METHODS From the FDG PET/CT databases of San Raffaele Hospital in Milan, Italy, and the Veneto Institute of Oncology in Padua, Italy, we selected 104 patients with a certain diagnosis of RCC after surgery, and for whom at least 24 months of post-surgical FDG PET/CT, clinical, and instrumental follow-up data was available. The sensitivity and specificity of FDG PET/CT were assessed by histology and/or other imaging as standard of reference. Progression-free survival (PFS) and overall survival (OS) were computed using the Kaplan-Meier method. Univariate and multivariate Cox proportional hazards models were used to identify predictors of outcome. RESULTS FDG PET/CT resulted in a positive diagnosis in 58 patients and a negative diagnosis in 46 patients. Sensitivity and specificity were 74% and 80%, respectively. FDG PET/CT findings influenced therapeutic management in 45/104 cases (43%). After a median follow-up period of 37 months (± standard deviation 12.9), 51 (49%) patients had recurrence of disease, and 26 (25%) had died. In analysis of OS, positive versus negative FDG PET/CT was associated with worse cumulative survival rates over a 5-year period (19% vs. 69%, respectively; p <0.05). Similarly, a positive FDG PET/CT correlated with a lower 3-year PFS rate. In addition, univariate and multivariate analysis revealed that a positive scan, alone or in combination with disease stage III-IV or nuclear grading 3-4, was associated with high risk of progression (multivariate analysis = hazard ratios [HRs] of 4.01, 3.7, and 2.8, respectively; all p < 0.05). CONCLUSIONS FDG PET/CT is a valuable tool both in treatment decision-making and for predicting survival and progression in patients affected by RCC.
Collapse
Affiliation(s)
- Pierpaolo Alongi
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Picchio
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Zattoni
- Department of Oncological and Surgical Sciences, Urology Clinic, University of Padua, Padua, Italy
| | | | - Luigi Gianolli
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgio Saladini
- Radiotherapy and Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy, Gattamelata Street, 64, Padua, Italy
| | - Laura Evangelista
- Radiotherapy and Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy, Gattamelata Street, 64, Padua, Italy.
| |
Collapse
|
48
|
Papillary renal cell carcinoma: A review of the current therapeutic landscape. Crit Rev Oncol Hematol 2015; 96:100-12. [PMID: 26052049 DOI: 10.1016/j.critrevonc.2015.05.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/29/2015] [Accepted: 05/12/2015] [Indexed: 12/17/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common cancer of the kidney and accounts for 2-3% of all adult malignancies. Clear cell carcinoma represents the most common histologic subtype, while papillary Renal Cell Carcinoma (pRCC) accounts for 10-20% of all renal cell cancers. While the inactivation of VHL gene can be found in the majority of clear cell carcinomas, different molecular mechanisms are involved into pRCC biology. Mutations in the MET oncogene are an essential step into the pathogenesis of hereditary pRCC forms, but they can be found only in a small rate of sporadic cases. Several agents, including anti-VEGF drugs and mTOR inhibitors, are possible options in the treatment of advanced and metastatic pRCC, following the demonstration of efficacy obtained in clinical trials including all RCC histologic subtypes. However, data specifically obtained in the subgroup of patients affected by pRCC are limited and not conclusive. Several ongoing trials are evaluating the efficacy of targeted therapy in papillary form. However, more rationale approaches based on molecular studies would help improving the outcome of these patients. Among others, MET inhibitors and targeted immunotherapy are promising new strategies for hereditary and sporadic disease. This review summarizes current knowledge on pRCC tumorigenesis and discusses recent and ongoing clinical trials with new therapeutic agents.
Collapse
|
49
|
Chan JY, Choudhury Y, Tan MH. Predictive molecular biomarkers to guide clinical decision making in kidney cancer: current progress and future challenges. Expert Rev Mol Diagn 2015; 15:631-46. [PMID: 25837857 DOI: 10.1586/14737159.2015.1032261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the past decade has seen a surfeit of new targeted therapies for renal cell carcinoma (RCC), no predictive molecular biomarker is currently used in routine clinical practice to guide personalized therapy as a companion diagnostic. Many putative biomarkers have been suggested, but none have undergone rigorous validation. There have been considerable advances in the biological understanding of RCC in recent years, with the development of accompanying molecular diagnostics that with additional validation, may be helpful for routine clinical decision making. In this review, we summarize the current understanding of predictive biomarkers in RCC management and also highlight upcoming developments of interest in biomarker research for personalizing RCC diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jason Yongsheng Chan
- Department of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, Singapore
| | | | | |
Collapse
|