1
|
Yazdan M, Naghib SM, Mozafari MR. Liposomal Nano-Based Drug Delivery Systems for Breast Cancer Therapy: Recent Advances and Progresses. Anticancer Agents Med Chem 2024; 24:896-915. [PMID: 38529608 DOI: 10.2174/0118715206293653240322041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
Breast cancer is a highly prevalent disease on a global scale, with a 30% incidence rate among women and a 14% mortality rate. Developing countries bear a disproportionate share of the disease burden, while countries with greater technological advancements exhibit a higher incidence. A mere 7% of women under the age of 40 are diagnosed with breast cancer, and the prevalence of this ailment is significantly diminished among those aged 35 and younger. Chemotherapy, radiation therapy, and surgical intervention comprise the treatment protocol. However, the ongoing quest for a definitive cure for breast cancer continues. The propensity for cancer stem cells to metastasize and resistance to treatment constitute their Achilles' heel. The advancement of drug delivery techniques that target cancer cells specifically holds significant promise in terms of facilitating timely detection and effective intervention. Novel approaches to pharmaceutical delivery, including nanostructures and liposomes, may bring about substantial changes in the way breast cancer is managed. These systems offer a multitude of advantages, such as heightened bioavailability, enhanced solubility, targeted tumor destruction, and diminished adverse effects. The application of nano-drug delivery systems to administer anti-breast cancer medications is a significant subject of research. This article delves into the domain of breast cancer, conventional treatment methods, the incorporation of nanotechnology into managerial tactics, and strategic approaches aimed at tackling the disease at its core.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Lyu Y, Wu X, Yang J, Wang X, Li J. Protocol for preparing dynamic covalent macrocycles for co-delivering genes and drugs to cancer cell lines. STAR Protoc 2023; 4:102350. [PMID: 37314921 PMCID: PMC10277607 DOI: 10.1016/j.xpro.2023.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Combination therapy using effective drug molecules and functional genes such as small interfering RNA (siRNA) has been suggested as a powerful strategy against multiple drug resistance. Here, we present a protocol for preparing a delivery system by developing dynamic covalent macrocycles using a dithiol monomer to co-deliver doxorubicin and siRNA. We describe steps for preparing the dithiol monomer, followed by co-delivery to form nanoparticles. We then detail procedures for cell uptake and assessing enhanced anti-cancer efficacy in vitro. For complete details on the use and execution of this protocol, please refer to Lyu et al.1.
Collapse
Affiliation(s)
- Yonglei Lyu
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland; Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Xiaoxia Wu
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Jinghui Yang
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland; Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Xin Wang
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland; Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
3
|
Chen C, Wang S, Wang J, Yao F, Tang X, Guo W. Nanosized drug delivery strategies in osteosarcoma chemotherapy. APL Bioeng 2023; 7:011501. [PMID: 36845905 PMCID: PMC9957606 DOI: 10.1063/5.0137026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Despite recent developments worldwide in the therapeutic care of osteosarcoma (OS), the ongoing challenges in overcoming limitations and side effects of chemotherapy drugs warrant new strategies to improve overall patient survival. Spurred by rapid progress in biomedicine, nanobiotechnology, and materials chemistry, chemotherapeutic drug delivery in treatment of OS has become possible in recent years. Here, we review recent advances in the design of drug delivery system, especially for chemotherapeutic drugs in OS, and discuss the relative merits in trials along with future therapeutic options. These advances may pave the way for novel therapies requisite for patients with OS.
Collapse
Affiliation(s)
| | - Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, People's Republic of China
| | - Juan Wang
- Department of Orthopedics, Beijing Jishuitan Hospital, Beijing, People's Republic of China
| | - Fangzhou Yao
- Wuzhen Laboratory, Jiaxing, People's Republic of China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing 100044, People's Republic of China,Author to whom correspondence should be addressed:. Tel.: ±86 18406559069
| |
Collapse
|
4
|
Wang Y, Pan J, Sun Z. LncRNA NCK1-AS1-mediated regulatory functions in human diseases. Clin Transl Oncol 2023; 25:323-332. [PMID: 36131072 DOI: 10.1007/s12094-022-02948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Disease development requires the activation of complex multi-factor processes involving numerous long noncoding RNAs (lncRNAs), which describe non-protein-coding RNAs longer than 200 nucleotides. Emerging evidence indicates that lncRNAs act as essential regulators that perform pivotal roles in the pathogenesis and progression of human diseases. The mechanisms underlying lncRNA involvement in diverse diseases have been extensively explored, and lncRNAs are considered powerful biomarkers for clinical practice. The lncRNA noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) antisense 1 (NCK1-AS1), also known as NCK1 divergent transcript (NCK1-DT), is encoded on human chromosome 3q22.3 and produces a 27,274-base-long transcript. NCK1-AS1 has increasingly been characterized as a causative agent for multiple diseases. The abnormal expression and involvement of NCK1-AS1 in various biological processes have been associated with several diseases. Further exploration of the mechanisms through which NCK1-AS1 contributes to disease development and progression will provide a foundation for potential clinical applications of NCK1-AS1 in the diagnosis and treatment of various diseases. This review summarizes the current understanding of the various functions and mechanisms through which NCK1-AS1 contributes to various diseases and the clinical application prospects for NCK1-AS1.
Collapse
Affiliation(s)
- Yingfan Wang
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
In Silico Identification and In Vitro Evaluation of New ABCG2 Transporter Inhibitors as Potential Anticancer Agents. Int J Mol Sci 2022; 24:ijms24010725. [PMID: 36614168 PMCID: PMC9820944 DOI: 10.3390/ijms24010725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Different molecular mechanisms contribute to the development of multidrug resistance in cancer, including increased drug efflux, enhanced cellular repair mechanisms and alterations of drug metabolism or drug targets. ABCG2 is a member of the ATP-binding cassette superfamily transporters that promotes drug efflux, inducing chemotherapeutic resistance in malignant cells. In this context, the development of selective ABCG2 inhibitors might be a suitable strategy to improve chemotherapy efficacy. Thus, through a multidisciplinary approach, we identified a new ABCG2 selective inhibitor (8), highlighting its ability to increase mitoxantrone cytotoxicity in both hepatocellular carcinoma (EC50from 8.67 ± 2.65 to 1.25 ± 0.80 μM) and transfected breast cancer cell lines (EC50from 9.92 ± 2.32 to 2.45 ± 1.40 μM). Moreover, mitoxantrone co-administration in both transfected and non-transfected HEK293 revealed that compound 8 notably lowered the mitoxantrone EC50, demonstrating its efficacy along with the importance of the ABCG2 extrusion pump overexpression in MDR reversion. These results were corroborated by evaluating the effect of inhibitor 8 on mitoxantrone cell uptake in multicellular tumor spheroids and via proteomic experiments.
Collapse
|
6
|
Chen Y, Lu S, Zhang Y, Chen B, Zhou H, Jiang H. Examination of the emerging role of transporters in the assessment of nephrotoxicity. Expert Opin Drug Metab Toxicol 2022; 18:787-804. [PMID: 36420583 DOI: 10.1080/17425255.2022.2151892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The kidney is vulnerable to various injuries based on its function in the elimination of many xenobiotics, endogenous substances and metabolites. Since transporters are critical for the renal elimination of those substances, it is urgent to understand the emerging role of transporters in nephrotoxicity. AREAS COVERED This review summarizes the contribution of major renal transporters to nephrotoxicity induced by some drugs or toxins; addresses the role of transporter-mediated endogenous metabolic disturbances in nephrotoxicity; and discusses the advantages and disadvantages of in vitro models based on transporter expression and function. EXPERT OPINION Due to the crucial role of transporters in the renal disposition of xenobiotics and endogenous substances, it is necessary to further elucidate their renal transport mechanisms and pay more attention to the underlying relationship between the transport of endogenous substances and nephrotoxicity. Considering the species differences in the expression and function of transporters, and the low expression of transporters in general cell models, in vitro humanized models, such as humanized 3D organoids, shows significant promise in nephrotoxicity prediction and mechanism study.
Collapse
Affiliation(s)
- Yujia Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Shuanghui Lu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingqiong Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| |
Collapse
|
7
|
In Vitro Characterization of Renal Drug Transporter Activity in Kidney Cancer. Int J Mol Sci 2022; 23:ijms231710177. [PMID: 36077583 PMCID: PMC9456511 DOI: 10.3390/ijms231710177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The activity of drug transporters is central to the secretory function of the kidneys and a defining feature of renal proximal tubule epithelial cells (RPTECs). The expression, regulation, and function of these membrane-bound proteins is well understood under normal renal physiological conditions. However, the impact of drug transporters on the pathophysiology of kidney cancer is still elusive. In the present study, we employed different renal cell carcinoma (RCC) cell lines and a prototypical non-malignant RPTEC cell line to characterize the activity, expression, and potential regulatory mechanisms of relevant renal drug transporters in RCC in vitro. An analysis of the uptake and efflux activity, the expression of drug transporters, and the evaluation of cisplatin cytotoxicity under the effects of methylation or epidermal growth factor receptor (EGFR) inhibition showed that the RCC cells retained substantial drug transport activity. In RCC cells, P-glycoprotein was localized in the nucleus and its pharmacological inhibition enhanced cisplatin toxicity in non-malignant RPTECs. On the other hand, methylation inhibition enhanced cisplatin toxicity by upregulating the organic cation uptake activity in RCC cells. Differential effects of methylation and EGFR were observed in transporter expression, showing regulatory heterogeneity in these cells. Interestingly, the non-malignant RPTEC cell line that was used lacked the machinery responsible for organic cation transport, which reiterates the functional losses that renal cells undergo in vitro.
Collapse
|
8
|
Clinical implications of germline variations for treatment outcome and drug resistance for small molecule kinase inhibitors in patients with non-small cell lung cancer. Drug Resist Updat 2022; 62:100832. [DOI: 10.1016/j.drup.2022.100832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
|
9
|
Jiang CF, Xie YX, Qian YC, Wang M, Liu LZ, Shu YQ, Bai XM, Jiang BH. TBX15/miR-152/KIF2C pathway regulates breast cancer doxorubicin resistance via promoting PKM2 ubiquitination. Cancer Cell Int 2021; 21:542. [PMID: 34663310 PMCID: PMC8522147 DOI: 10.1186/s12935-021-02235-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 02/14/2023] Open
Abstract
Background Chemoresistance is a critical risk problem for breast cancer treatment. However, mechanisms by which chemoresistance arises remains to be elucidated. The expression of T-box transcription factor 15 (TBX-15) was found downregulated in some cancer tissues. However, role and mechanism of TBX15 in breast cancer chemoresistance is unknown. Here we aimed to identify the effects and mechanisms of TBX15 in doxorubicin resistance in breast cancer. Methods As measures of Drug sensitivity analysis, MTT and IC50 assays were used in DOX-resistant breast cancer cells. ECAR and OCR assays were used to analyze the glycolysis level, while Immunoblotting and Immunofluorescence assays were used to analyze the autophagy levels in vitro. By using online prediction software, luciferase reporter assays, co-Immunoprecipitation, Western blotting analysis and experimental animals models, we further elucidated the mechanisms. Results We found TBX15 expression levels were decreased in Doxorubicin (DOX)-resistant breast cancer cells. Overexpression of TBX15 reversed the DOX resistance by inducing microRNA-152 (miR-152) expression. We found that KIF2C levels were highly expressed in DOX-resistant breast cancer tissues and cells, and KIF2C was a potential target of miR-152. TBX15 and miR-152 overexpression suppressed autophagy and glycolysis in breast cancer cells, while KIF2C overexpression reversed the process. Overexpression of KIF2C increased DOX resistance in cancer cells. Furthermore, KIF2C directly binds with PKM2 for inducing the DOX resistance. KIF2C can prevent the ubiquitination of PKM2 and increase its protein stability. In addition, we further identified that Domain-2 of KIF2C played a major role in the binding with PKM2 and preventing PKM2 ubiquitination, which enhanced DOX resistance by promoting autophagy and glycolysis. Conclusions Our data identify a new mechanism by which TBX15 abolishes DOX chemoresistance in breast cancer, and suggest that TBX15/miR-152/KIF2C axis is a novel signaling pathway for mediating DOX resistance in breast cancer through regulating PKM2 ubiquitination and decreasing PKM2 stability. This finding suggests new therapeutic target and/or novel strategy development for cancer treatment to overcome drug resistance in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02235-w.
Collapse
Affiliation(s)
- Cheng-Fei Jiang
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Yun-Xia Xie
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ying-Chen Qian
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Min Wang
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | - Xiao-Ming Bai
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China. .,Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
10
|
Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles. Sci Rep 2021; 11:14053. [PMID: 34234242 PMCID: PMC8263711 DOI: 10.1038/s41598-021-93570-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The kidney proximal tubule is the primary site for solute reabsorption, secretion and where kidney diseases can originate, including drug-induced toxicity. Two-dimensional cell culture systems of the human proximal tubule cells (hPTCs) are often used to study these processes. However, these systems fail to model the interplay between filtrate flow, fluid shear stress (FSS), and functionality essential for understanding renal diseases and drug toxicity. The impact of FSS exposure on gene expression and effects of FSS at differing rates on gene expression in hPTCs has not been thoroughly investigated. Here, we performed RNA-sequencing of human RPTEC/TERT1 cells in a microfluidic chip-based 3D model to determine transcriptomic changes. We measured transcriptional changes following treatment of cells in this device at three different fluidic shear stress. We observed that FSS changes the expression of PTC-specific genes and impacted genes previously associated with renal diseases in genome-wide association studies (GWAS). At a physiological FSS level, we observed cell morphology, enhanced polarization, presence of cilia, and transport functions using albumin reabsorption via endocytosis and efflux transport. Here, we present a dynamic view of hPTCs response to FSS with increasing fluidic shear stress conditions and provide insight into hPTCs cellular function under biologically relevant conditions.
Collapse
|
11
|
Ghadi M, Hosseinimehr SJ, Amiri FT, Mardanshahi A, Noaparast Z. Itraconazole synergistically increases therapeutic effect of paclitaxel and 99mTc-MIBI accumulation, as a probe of P-gp activity, in HT-29 tumor-bearing nude mice. Eur J Pharmacol 2021; 895:173892. [PMID: 33497608 DOI: 10.1016/j.ejphar.2021.173892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
P-glycoprotein (P-gp), is an important efflux pump involved in chemotherapy resistance in human colon cancer. We investigated the efficacy of itraconazole as a P-gp inhibitor and its therapeutic synergistic relationship to paclitaxel through 99mTc-MIBI accumulation in HT-29 tumor-bearing nude mice. Histopathological screening along with in vitro experiments was done for further assessment. Itraconazole successfully inhibited P-gp mediated 99mTc-MIBI efflux, increasing its in vitro accumulation in itraconazole-receiving dishes. Notably, the co-administration of itraconazole with paclitaxel significantly enhanced the in vitro cytotoxicity effect of paclitaxel in itraconazole + paclitaxel wells containing HT-29 cells. Compared to the control, tumor volume in mice treated with itraconazole, paclitaxel and itraconazole +paclitaxel showed growth suppression approximately by 36.21, 60.02, and 73.3% respectively. And compared to paclitaxel group, the nude mice co-treated with paclitaxel and itraconazole showed suppression of tumor growth by about 33.31 % at the end of the treatment period. Also the biodistribution result showed that the co-administration of itraconazole with paclitaxel raised the mean tumor radioactivity accumulation compared to control and paclitaxel group. When given paclitaxel alone, the ID% of hepatic and cardiac tissue was reduced while co-administration of itraconazole with paclitaxel increased 99mTc-MIBI accumulation in these organs. Furthermore, the histopathological findings confirmed the biodistribution results. These results demonstrate that although monotherapy with itraconazole or paclitaxel has anti-tumor activity against HT-29 human colorectal cancer, a synergistic anti-tumor activity can be achieved when itraconazole is co-administered with paclitaxel. Also, 99mTc-MIBI is an effective radiotracer for monitoring response to treatment in MDR tumors.
Collapse
Affiliation(s)
- Mahdi Ghadi
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mardanshahi
- Department of Radiology, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
12
|
Rood JJM, Jamalpoor A, van Hoppe S, van Haren MJ, Wasmann RE, Janssen MJ, Schinkel AH, Masereeuw R, Beijnen JH, Sparidans RW. Extrahepatic metabolism of ibrutinib. Invest New Drugs 2021; 39:1-14. [PMID: 32623551 PMCID: PMC7851014 DOI: 10.1007/s10637-020-00970-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
Ibrutinib is a first-in-class Bruton's kinase inhibitor used in the treatment of multiple lymphomas. In addition to CYP3A4-mediated metabolism, glutathione conjugation can be observed. Subsequently, metabolism of the conjugates and finally their excretion in feces and urine occurs. These metabolites, however, can reach substantial concentrations in human subjects, especially when CYP3A4 is inhibited. Ibrutinib has unexplained nephrotoxicity and high metabolite concentrations are also found in kidneys of Cyp3a knockout mice. Here, a mechanism is proposed where the intermediate cysteine metabolite is bioactivated. The metabolism of ibrutinib through this glutathione cycle was confirmed in cultured human renal proximal tubule cells. Ibrutinib-mediated toxicity was enhanced in-vitro by inhibitors of breast cancer resistance protein (BCRP), P-glycoprotein (P-gp) and multidrug resistance protein (MRP). This was a result of accumulating cysteine metabolite levels due to efflux inhibition. Finally, through inhibition of downstream metabolism, it was shown now that direct conjugation was responsible for cysteine metabolite toxicity.
Collapse
Affiliation(s)
- Johannes J M Rood
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Benu apotheek Hoorn, Pakhuisstraat 80, 1621 GL, Hoorn, The Netherlands
| | - Amer Jamalpoor
- Division of Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Stephanie van Hoppe
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Charles River Laboratories, Darwinweg 24, 2333 CR, Leiden, The Netherlands
| | - Matthijs J van Haren
- Division of Chemical Biology & Drug Development, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Institute of Biology, Biological Chemistry Group, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Roeland E Wasmann
- Department of Pharmacy, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Manoe J Janssen
- Division of Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Rolf W Sparidans
- Division of Pharmacoepidemiology & Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
- Division of Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
- Division of Chemical Biology & Drug Development, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Eid SY, Althubiti MA, Abdallah ME, Wink M, El-Readi MZ. The carotenoid fucoxanthin can sensitize multidrug resistant cancer cells to doxorubicin via induction of apoptosis, inhibition of multidrug resistance proteins and metabolic enzymes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153280. [PMID: 32712543 DOI: 10.1016/j.phymed.2020.153280] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) causes failure of doxorubicin therapy of cancer cells, which develops after or during doxorubicin treatment resulting in cross-resistance to structurally and functionally-unrelated other anticancer drugs. MDR is multifactorial phenomenon associated with overexpression of ATP-binding cassette (ABC) transporters, metabolic enzymes, impairment of apoptosis, and alteration of cell cycle checkpoints. The cancer-prevention of the dietary carotenoid; fucoxanthin (FUC) has been extensively explored. Nevertheless, the underlying mechanism of its action is not full elucidated. HYPOTHESIS/PURPOSE Investigation of the underlying mechanism of MDR reversal by the dietary carotenoid fucoxanthin (FUC) and its ability to enhance the doxorubicin (DOX) cytotoxicity in resistant breast (MCF-7/ADR), hepatic (HepG-2/ADR), and ovarian (SKOV-3/ADR) cell lines. METHODS The synergistic interaction of FUC and DOX was evaluated using several techniques, viz.; MTT assay, ABC transporter function assays using FACS and fluorimetry, enzyme activity via spectroscopy and luminescence assays, and apoptosis assay using FACS, and gene expression using RTPCR. RESULTS FUC (20 µM) synergistically enhanced the cytotoxicity of DOX and significantly reduced the dose of DOX (FR) in DOX resistant cells (MCF-7/ADR), hepatic (HepG-2/ADR), and ovarian (SKOV-3/ADR) to 8.42-(CI= 0.25), 6.28-(CI= 0.32), and 4.56-fold (CI=0.37) (P<0.001). FUC significantly increased the accumulation of DOX more than verapamil in resistant cells by 2.70, 2.67, and 3.95-fold of untreated cells (p<0.001), respectively. A FUC and DOX combination significantly increased the Rho123 accumulation higher than individual drugs by 2.36-, 2.38-, 1.89-fold verapamil effects in tested cells (p<0.001), respectively. The combination of the FUC and DOX decreased ABCC1, ABCG2, and ABCB1 expression. The FUC and DOX combination increased the levels and activity of caspases (CASP3, CASP8) and p53, while decreased the levels and activity of CYP3A4, GST, and PXR in resistant cancer cells. The combination induced early/late apoptosis to 91.9/5.4% compared with 0.0/0.7% of untreated control. CONCLUSION Our data suggests a new dietary and therapeutic approach of combining the FUC with DOX to overcome multidrug resistance in cancer cells. However, animal experiments should be conducted to confirm the findings before applying the results into clinical trials.
Collapse
Affiliation(s)
- Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, K.S.A
| | | | - Mohamed E Abdallah
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, K.S.A
| | - Michael Wink
- Department of Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, K.S.A; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt.
| |
Collapse
|
14
|
Chen L, Chen Z, Zheng S, Fan L, Zhu L, Yu J, Tang C, Liu Q, Xiong Y. Study on mechanism of elemene reversing tumor multidrug resistance based on luminescence pharmacokinetics in tumor cells in vitro and in vivo. RSC Adv 2020; 10:34928-34937. [PMID: 35514396 PMCID: PMC9056898 DOI: 10.1039/d0ra00184h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/28/2020] [Indexed: 01/10/2023] Open
Abstract
While elemene (ELE) can reverse tumor multidrug resistance (MDR), the mechanisms for ELE reversing MDR remain unclear. Numerous studies have suggested that the efflux functionality of ATP-binding cassette (ABC) transporters, not their quantity, is more relevant to tumor MDR. However, no appropriate methods exist for real-time detection of the intracellular drug efflux caused by ABC transporters in vitro, especially in vivo, which hinders the examination of MDR reversal mechanisms. This study directly investigates the correlation between efflux functionality of ABC transporters and MDR reversal via ELE, using d-luciferin potassium salt (d-luc) as the chemotherapeutic substitute to study the intracellular drug efflux. Here, a luciferase reporter assay system combined with bioluminescence imaging confirmed that the efflux of d-luc from MCF-7/DOXFluc cells in vitro and in vivo was significantly reduced by ELE and when combined with Doxorubicin (DOX), ELE showed a synergistically anti-tumor effect in vitro and in vivo. Additionally, the luminescence pharmacokinetics of d-luc in MCF-7/DOXFluc cells and pharmacodynamics of the combined ELE and DOX in vivo showed a great correlation, implying that d-luc might be used as a probe to study ABC transporters-mediated efflux in order to explore mechanisms of traditional Chinese medicines reversing MDR.
Collapse
Affiliation(s)
- Liying Chen
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Zhi Chen
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
- The First People's Hospital of Jiande Jiande 311600 Zhejiang China
| | - Shuang Zheng
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Luhui Fan
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Lixin Zhu
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
- Zhejiang Institute for Food and Drug Control Hangzhou 310004 Zhejiang China
| | - Jiandong Yu
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Chaoyuan Tang
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine Baltimore MD 21231 USA
| | - Yang Xiong
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| |
Collapse
|
15
|
Ashar YV, Zhou J, Gupta P, Teng QX, Lei ZN, Reznik SE, Lusvarghi S, Wurpel J, Ambudkar SV, Chen ZS. BMS-599626, a Highly Selective Pan-HER Kinase Inhibitor, Antagonizes ABCG2-Mediated Drug Resistance. Cancers (Basel) 2020; 12:cancers12092502. [PMID: 32899268 PMCID: PMC7565406 DOI: 10.3390/cancers12092502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary ABC transporters comprise a large group of ATP binding plasma membrane proteins, classified into subfamilies A-G, that transport substrates out of cells to maintain homeostasis. Prolonged exposure to chemotherapeutic drugs leads to increased expression of ABC transporters in cancer cells, resulting in increased efflux and decreased efficacy of anti-neoplastic agents. We found that BMS-599626, at 300 nM, inhibited the function of ABCG2, thereby increasing the efficacy of substrate chemotherapeutic drugs in wild-type as well as mutant ABCG2 overexpressing cells. In addition, BMS-599626 did not alter the expression or intracellular localization of ABCG2 but produced its reversal effect by decreasing efflux and increasing the intracellular accumulation of substrate chemotherapeutic drugs. Finally, BMS-5999626 also inhibited ABCG2 mediated ATP hydrolysis. Overall, our results show that administration of BMS-599626 along with chemotherapeutic drugs can improve the efficacy of chemotherapy in ABC transporter overexpressing cancer cells. Abstract Multidrug resistance (MDR) associated with the overexpression of ABC transporters is one of the key causes of chemotherapy failure. Various compounds blocking the function and/or downregulating the expression of these transporters have been developed over the last few decades. However, their potency and toxicity have always been a concern. In this report, we found that BMS-599626 is a highly potent inhibitor of the ABCG2 transporter, inhibiting its efflux function at 300 nM. Our study repositioned BMS-599626, a highly selective pan-HER kinase inhibitor, as a chemosensitizer in ABCG2-overexpressing cell lines. As shown by the cytotoxicity assay results, BMS-599626, at noncytotoxic concentrations, sensitizes ABCG2-overexpressing cells to topotecan and mitoxantrone, two well-known substrates of ABCG2. The results of our radioactive drug accumulation experiment show that the ABCG2-overexpressing cells, treated with BMS-599626, had an increase in the accumulation of substrate chemotherapeutic drugs, as compared to their parental subline cells. Moreover, BMS-599626 did not change the protein expression or cell surface localization of ABCG2 and inhibited its ATPase activity. Our in-silico docking study also supports the interaction of BMS-599626 with the substrate-binding site of ABCG2. Taken together, these results suggest that administration of chemotherapeutic drugs, along with nanomolar concentrations (300 nM) of BMS-599626, may be effective against ABCG2-mediated MDR in clinical settings.
Collapse
Affiliation(s)
- Yunali V. Ashar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (Y.V.A.); (P.G.); (Q.-X.T.); (Z.-N.L.); (S.E.R.); (J.W.)
| | - Jingchun Zhou
- Department of Otorhinolaryngology, Shenzhen People’s Hospital (The Second Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China;
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (Y.V.A.); (P.G.); (Q.-X.T.); (Z.-N.L.); (S.E.R.); (J.W.)
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (Y.V.A.); (P.G.); (Q.-X.T.); (Z.-N.L.); (S.E.R.); (J.W.)
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (Y.V.A.); (P.G.); (Q.-X.T.); (Z.-N.L.); (S.E.R.); (J.W.)
| | - Sandra E. Reznik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (Y.V.A.); (P.G.); (Q.-X.T.); (Z.-N.L.); (S.E.R.); (J.W.)
- Departments of Pathology and Obstetrics and Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.L.); (S.V.A.)
| | - John Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (Y.V.A.); (P.G.); (Q.-X.T.); (Z.-N.L.); (S.E.R.); (J.W.)
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.L.); (S.V.A.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (Y.V.A.); (P.G.); (Q.-X.T.); (Z.-N.L.); (S.E.R.); (J.W.)
- Correspondence: ; Tel.: +1-718-990-1432; Fax: +1-718-990-1877
| |
Collapse
|
16
|
Zang H, Li Y, Zhang X, Huang G. Circ-RNF111 contributes to paclitaxel resistance in breast cancer by elevating E2F3 expression via miR-140-5p. Thorac Cancer 2020; 11:1891-1903. [PMID: 32445273 PMCID: PMC7327676 DOI: 10.1111/1759-7714.13475] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been demonstrated to act as key regulators in the chemoresistance of human cancers, including breast cancer (BC). Here, we aimed to explore the role of circ‐RNF111 in paclitaxel (PTX) resistance of BC. Methods Quantitative real‐time polymerase chain reaction (qRT‐PCR) was employed to determine the expression of circ‐RNF111, microRNA‐140‐5p (miR‐140‐5p) and E2F transcription factor 3 (E2F3) mRNA. The half maximal inhibitory concentration (IC50) of PTX, cell viability, colony formation and cell invasion were assessed by cell counting kit‐8 (CCK‐8) assay, colony formation assay and transwell assay, respectively. Glucose consumption and lactate production were determined by specific kits. A murine xenograft model was established to investigate the role of circ‐RNF111 in PTX resistance of BC in vivo. Dual‐luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the relationship between miR‐140‐5p and circ‐RNF111 or E2F3. Western blot assay was conducted to examine the protein level of E2F3. Results Circ‐RNF111 was upregulated in PTX‐resistant BC tissues and cells. Circ‐RNF111 knockdown restrained IC50 of PTX, cell viability, colony numbers, cell invasion and glycolysis in PTX‐resistant BC cells in vitro and enhanced PTX sensitivity in vivo. MiR‐140‐5p was a target of circ‐RNF111 and miR‐140‐5p expression was negatively correlated with circ‐RNF111 expression in BC tissues. The effect of circ‐RNF111 knockdown on PTX resistance was rescued by miR‐140‐5p deletion. Additionally, miR‐140‐5p could interact with E2F3 and negatively regulate E2F3 expression. Moreover, miR‐140‐5p suppressed IC50 of PTX, cell viability, colony numbers, cell invasion and glycolysis by targeting E2F3. Conclusions Circ‐RNF111 improved PTX resistance of BC by upregulating E2F3 via sponging miR‐140‐5p.
Collapse
Affiliation(s)
- Hongliang Zang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuhui Li
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xue Zhang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guomin Huang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Engelberg S, Netzer E, Assaraf YG, Livney YD. Selective eradication of human non-small cell lung cancer cells using aptamer-decorated nanoparticles harboring a cytotoxic drug cargo. Cell Death Dis 2019; 10:702. [PMID: 31541073 PMCID: PMC6754387 DOI: 10.1038/s41419-019-1870-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
Abstract
Targeted cancer therapy is currently the leading modality to enhance treatment selectivity and efficacy, as well as to minimize untoward toxicity to healthy tissues. Herein, we devised and studied nanoparticles (NPs) composed of the biocompatible block-copolymer PEG-PCL entrapping the hydrophobic chemotherapeutic drug paclitaxel (PTX), which are targeted to human non-small cell lung cancer (NSCLC) cells. To achieve selective NSCLC targeting, these NPs were decorated with single-stranded oligonucleotide-based S15 aptamers (S15-APTs), which we have recently shown to serve as efficient tumor cell targeting ligands. Prepared without using surfactants, these 15 nm PEG-PCL/PTX NPs entered NSCLC cells via clathrin-mediated endocytosis. These NPs demonstrated efficient encapsulation of PTX, high selectivity to- and potent eradication of human A549 NSCLC cells, with a remarkable half maximal inhibitory concentration (IC50) of 0.03 μM PTX. In contrast, very high IC50 values of 1.7, 4.2, 43, 87, and 980 µM PTX were obtained towards normal human bronchial epithelial BEAS2B, cervical carcinoma HeLa, colon adenocarcinoma CaCo-2, neonatal foreskin fibroblast FSE, and human embryonic kidney HEK-293 cells, respectively. These results demonstrate 2–5 orders of magnitude difference in the selective cytotoxicity towards NSCLCs, reflecting a potentially outstanding therapeutic window. Moreover, the dual utility of aptamer-decorated NPs for both drug stabilization and selective tumor targeting was studied by increasing APT concentrations during NP “decoration”. The optimal aptamer density on the surface of NPs for selective targeting, for high fluorescence diagnostic signal and for maintaining small particle size to enable endocytosis, was achieved by using 30 nM APTs during NP decoration. Collectively, our findings suggest that these APT-decorated NPs hold great preclinical promise in selective targeting and eradication of human NSCLC cells without harming normal tissues.
Collapse
Affiliation(s)
- Shira Engelberg
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200000, Haifa, Israel
| | - Einat Netzer
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200000, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion - Israel Institute of Technology, 3200000, Haifa, Israel.
| | - Yoav D Livney
- The Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200000, Haifa, Israel.
| |
Collapse
|
18
|
Long noncoding RNA CASC2 promotes paclitaxel resistance in breast cancer through regulation of miR-18a-5p/CDK19. Histochem Cell Biol 2019; 152:281-291. [DOI: 10.1007/s00418-019-01794-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
|
19
|
Ye Q, Liu K, Shen Q, Li Q, Hao J, Han F, Jiang RW. Reversal of Multidrug Resistance in Cancer by Multi-Functional Flavonoids. Front Oncol 2019; 9:487. [PMID: 31245292 PMCID: PMC6581719 DOI: 10.3389/fonc.2019.00487] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
Multidrug resistance (MDR) resulting from different defensive mechanisms in cancer is one of the major obstacles of clinical treatment. To circumvent MDR many reversal agents have been developed, but most of them fail in clinical trials due to severely adverse effects. Recently, certain natural products have been reported to overcome MDR, including flavonoids which are abundant in plants, foods, and herbs. The structure of flavonoids can be abbreviated as C6-C3-C6 (C for carbon), and further categorized into flavonoids, iso-flavonoids and neo-flavonoids, according to their structural backbones. Flavonoids possess multiple bioactivities, and a growing body of research has indicated that both flavonoids and iso-flavonoids can either kill or re-sensitize conventional chemotherapeutics to resistant cancer cells. Here, we summarize the research and discuss the underlying mechanisms, concluding that these flavonoids do not function as specific regulators of target proteins, but rather as multi-functional agents that negatively regulate the key factors contributing to MDR.
Collapse
Affiliation(s)
| | - Kai Liu
- Hainan General Hospital, Haikou, China
| | - Qun Shen
- Hainan General Hospital, Haikou, China
| | | | - Jinghui Hao
- Jiaozuo Second People's Hospital, Jiaozuo, China
| | | | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Gao HL, Xia YZ, Zhang YL, Yang L, Kong LY. Vielanin P enhances the cytotoxicity of doxorubicin via the inhibition of PI3K/Nrf2-stimulated MRP1 expression in MCF-7 and K562 DOX-resistant cell lines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152885. [PMID: 31009836 DOI: 10.1016/j.phymed.2019.152885] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer cells that are resistant to structurally and mechanically unrelated anticancer drugs are said to have multidrug resistance (MDR). The overexpression of the ATP-binding cassette (ABC) transporter is one of the most important mechanisms of MDR. Vielanin P (VP), a dimeric guaiane from the leaves of Xylopia vielana, has the potential to reverse multidrug resistance. PURPOSE To evaluate the meroterpenoid compound VP as a low cytotoxicity MDR regulator and the related mechanisms. METHODS Cell viability was determined by CCK-8 and MTT assays. Apoptosis and the accumulation of doxorubicin (DOX) and 5(6)-carboxyfluorescein diacetate (CFDA) were determined by flow cytometry. We determined mRNA levels by quantitative real-time polymerase chain reaction (qRT-PCR). Protein levels were analyzed by Western blotting and immunofluorescence. RESULTS In the MCF-7 and K562 DOX-resistant cell lines, VP treatment (10 μM or 20 μM) enhanced the activity of chemotherapeutic agents. We found that VP selectively inhibited MRP1 mRNA but not MDR1 mRNA. VP enhanced DOX-induced apoptosis and reduced colony formation in the presence of DOX in drug-resistant cells. Moreover, VP increased the accumulation of DOX and the MRP1-specific substrate CFDA. In addition, VP reversed MRP1 protein levels and the accumulation of DOX and CFDA in MRP1-overexpressing MCF-7 and K562 cells. Thus, the mechanism of MDR reversal by VP is MRP1-dependent. Furthermore, we found that the inhibitory effect of VP on MRP1 is PI3K/Nrf2-dependent. CONCLUSION These results support the potential therapeutic value of VP as an MDR-reversal agent by inhibiting MRP1 via PI3K/Nrf2 signaling.
Collapse
Affiliation(s)
- Hong-Liang Gao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ya-Long Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|
21
|
Roles of Renal Drug Transporter in Drug Disposition and Renal Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:341-360. [PMID: 31571169 DOI: 10.1007/978-981-13-7647-4_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kidney plays an important role in maintaining total body homeostasis and eliminating toxic xenobiotics and metabolites. Numerous drugs and their metabolites are ultimately eliminated in the urine. The reabsorption and secretion functions of the nephron are mediated by a variety of transporters located in the basolateral and luminal membranes of the tubular cells. In the past decade, many studies indicated that transporters play important roles in drug pharmacokinetics and demonstrated the impact of renal transporters on the disposition of drugs, drug-drug interactions, and nephrotoxicities. Here, we focus on several important renal transporters and their roles in drug elimination and disposition, drug-induced nephrotoxicities and potential clinical solutions.
Collapse
|
22
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|
23
|
Caetano-Pinto P, Stahl SH. Perspective on the Application of Microphysiological Systems to Drug Transporter Studies. Drug Metab Dispos 2018; 46:1647-1657. [PMID: 30135246 DOI: 10.1124/dmd.118.082750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 02/13/2025] Open
Abstract
Transmembrane flux of a drug within a tissue or organ frequently involves a complex system of transporters from multiple families that have redundant and overlapping specificities. Current in vitro systems poorly represent physiology, with reduced expression and activity of drug transporter proteins; therefore, novel models that recapitulate the complexity and interplay among various transporters are needed. The development of microphysiological systems that bring simulated physiologic conditions to in vitro cell culture models has enormous potential to better reproduce the morphology and transport activity across several organ models, especially in tissues such as the liver, kidney, intestine, or the blood-brain barrier, in which drug transporters play a key role. The prospect of improving the in vitro function of organ models highly prolific in drug transporters holds the promise of implementing novel tools to study these mechanisms with far more representative biology than before. In this short review, we exemplify recent developments in the characterization of perfused microphysiological systems involving the activity of drug transporters. Furthermore, we analyze the challenges and opportunities for the implementation of such systems in the study of transporter-mediated drug disposition and the generation of clinically relevant physiology-based in silico models incorporating relevant drug transport activity.
Collapse
Affiliation(s)
- Pedro Caetano-Pinto
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Simone H Stahl
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
24
|
Oerlemans R, Berkers CR, Assaraf YG, Scheffer GL, Peters GJ, Verbrugge SE, Cloos J, Slootstra J, Meloen RH, Shoemaker RH, Dijkmans BAC, Scheper RJ, Ovaa H, Jansen G. Proteasome inhibition and mechanism of resistance to a synthetic, library-based hexapeptide. Invest New Drugs 2018; 36:797-809. [PMID: 29442210 PMCID: PMC6153520 DOI: 10.1007/s10637-018-0569-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Abstract
Background The hexapeptide 4A6 (Ac-Thr(tBu)-His(Bzl)-Thr(Bzl)-Nle-Glu(OtBu)-Gly-Bza) was isolated from a peptide library constructed to identify peptide-based transport inhibitors of multidrug resistance (MDR) efflux pumps including P-glycoprotein and Multidrug Resistance-associated Protein 1. 4A6 proved to be a substrate but not an inhibitor of these MDR efflux transporters. In fact, 4A6 and related peptides displayed potent cytotoxic activity via an unknown mechanism. Objective To decipher the mode of cytotoxic activity of 4A6. Methods Screening of 4A6 activity was performed against the NCI60 panel of cancer cell lines. Possible interactions of 4A6 with the 26S proteasome were assessed via proteasome activity and affinity labeling, and cell growth inhibition studies with leukemic cells resistant to the proteasome inhibitor bortezomib (BTZ). Results The NCI60 panel COMPARE analysis revealed that 4A6 had an activity profile overlapping with BTZ. Consistently, 4A6 proved to be a selective and reversible inhibitor of β5 subunit (PSMB5)-associated chymotrypsin-like activity of the 26S proteasome. This conclusion is supported by several lines of evidence: (i) inhibition of chymotrypsin-like proteasome activity by 4A6 and related peptides correlated with their cell growth inhibition potencies; (ii) 4A6 reversibly inhibited functional β5 active site labeling with the affinity probe BodipyFL-Ahx3L3VS; and (iii) human myeloid THP1 cells with acquired BTZ resistance due to mutated PSMB5 were highly (up to 287-fold) cross-resistant to 4A6 and its related peptides. Conclusion 4A6 is a novel specific inhibitor of the β5 subunit-associated chymotrypsin-like proteasome activity. Further exploration of 4A6 as a lead compound for development as a novel proteasome-targeted drug is warranted.
Collapse
Affiliation(s)
- Ruud Oerlemans
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - George L Scheffer
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sue Ellen Verbrugge
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | | | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ben A C Dijkmans
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Rik J Scheper
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Chemical Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerrit Jansen
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Wang R, Zhang T, Yang Z, Jiang C, Seng J. Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1. J Cell Mol Med 2018; 22:4068-4075. [PMID: 29971911 PMCID: PMC6111805 DOI: 10.1111/jcmm.13679] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence has indicated the important function of long non-coding RNAs (lncRNAs) in tumour chemotherapy resistance. However, the underlying mechanism is still ambiguous. In this study, we investigate the physiopathologic role of lncRNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) on the paclitaxel (PTX) resistance in breast cancer. Results showed that lncRNA FTH1P3 was up-regulated in paclitaxel-resistant breast cancer tissue and cells (MCF-7/PTX and MDA-MB-231/PTX cells) compared with paclitaxel-sensitive tissue and parental cell lines (MCF-7, MDA-MB-231). Gain- and loss-of-function experiments revealed that FTH1P3 silencing decreased the 50% inhibitory concentration (IC50) value of paclitaxel and induced cell cycle arrest at G2/M phase, while FTH1P3-enhanced expression exerted the opposite effects. In vivo, xenograft mice assay showed that FTH1P3 silencing suppressed the tumour growth of paclitaxel-resistant breast cancer cells and ABCB1 protein expression. Bioinformatics tools and luciferase reporter assay validated that FTH1P3 promoted ABCB1 protein expression through targeting miR-206, acting as a miRNA "sponge." In summary, our results reveal the potential regulatory mechanism of FTH1P3 on breast cancer paclitaxel resistance through miR-206/ABCB1, providing a novel insight for the breast cancer chemoresistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Base Sequence
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- G2 Phase Cell Cycle Checkpoints/drug effects
- G2 Phase Cell Cycle Checkpoints/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Paclitaxel/pharmacology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ruoming Wang
- Department of Thyroid and Breast SurgeryThe First People's Hospital of ShangqiuShangqiuChina
| | - Tengteng Zhang
- Department of OncologyThe First People's Hospital of ShangqiuShangqiuChina
| | - Zhen Yang
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunxia Jiang
- Editorial Board of Journal of Zhengzhou UniversityZhengzhouChina
| | - Jingjing Seng
- Department of Breast SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
26
|
Wu CP, Hsiao SH, Murakami M, Lu MJ, Li YQ, Hsieh CH, Ambudkar SV, Wu YS. Tyrphostin RG14620 selectively reverses ABCG2-mediated multidrug resistance in cancer cell lines. Cancer Lett 2017; 409:56-65. [PMID: 28893612 DOI: 10.1016/j.canlet.2017.08.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
The multidrug resistance (MDR) phenotype associated with the overexpression of ATP-binding cassette (ABC) drug transporters ABCB1, ABCC1 and ABCG2 is a major obstacle in cancer chemotherapy. Numerous epidermal growth factor receptor (EGFR) inhibitors have previously been shown capable of reversing MDR in ABCG2-overexpressing cancer cells. However, most of them are not transporter-specific due to the substantial overlapping substrate specificity among the transporters. In this study, we investigated the interaction between ABCG2 and tyrphostin RG14620, an EGFR inhibitor of the tyrphostin family, in multidrug-resistant cancer cell lines. We found that at nontoxic concentrations, tyrphostin RG14620 enhances drug-induced apoptosis and restores chemosensitivity to ABCG2-overexpressing multidrug-resistant cancer cells. More importantly, tyrphostin RG14620 is selective to ABCG2 relative to ABCB1 and ABCC1. Our findings were further supported by biochemical assays demonstrating that tyrphostin RG14620 stimulates ATP hydrolysis and inhibits photoaffinity labeling of ABCG2 with IAAP, and by a docking analysis of tyrphostin RG14620 in the drug-binding pocket of this transporter. Taken together, our findings indicate that tyrphostin RG14620 is a potent and selective modulator of ABCG2 that may be useful to overcome chemoresistance in patients with drug-resistant tumors.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States
| | - Ming-Jie Lu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Biomedical Informatics, Asia University, Taichung, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, United States
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
27
|
Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, Shen H. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer 2017; 16:148. [PMID: 28851377 PMCID: PMC5576273 DOI: 10.1186/s12943-017-0718-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022] Open
Abstract
Purpose The present review aimed to assess the role of exosomal miRNAs in cancer-associated fibroblasts (CAFs), normal fibroblasts (NFs), and cancer cells. The roles of exosomal miRNAs and miRNA dysregulation in CAF formation and activation were summarized. Methods All relevant publications were retrieved from the PubMed database, with key words such as CAFs, CAF, stromal fibroblasts, cancer-associated fibroblasts, miRNA, exosomal, exosome, and similar terms. Results Recent studies have revealed that CAFs, NFs, and cancer cells can secrete exosomal miRNAs to affect each other. Dysregulation of miRNAs and exosomal miRNAs influence the formation and activation of CAFs. Furthermore, miRNA dysregulation in CAFs is considered to be associated with a secretory phenotype change, tumor invasion, tumor migration and metastasis, drug resistance, and poor prognosis. Conclusions Finding of exosomal miRNA secretion provides novel insights into communication among CAFs, NFs, and cancer cells. MicroRNA dysregulation is also involved in the whole processes of CAF formation and function. Dysregulation of miRNAs in CAFs can affect the secretory phenotype of the latter cells.
Collapse
Affiliation(s)
- Fengming Yang
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Shanghai, China
| | - Zhiqiang Ning
- Department of Oncology, The first People's Hospital of Wujiang district, Suzhou, 215200, China
| | - Ling Ma
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Shanghai, China
| | - Weitao Liu
- Department of Pathology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chuchu Shao
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Shanghai, China
| | - Yongqian Shu
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Shanghai, China.
| | - Hua Shen
- Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Shanghai, China.
| |
Collapse
|
28
|
Jia H, Truica CI, Wang B, Wang Y, Ren X, Harvey HA, Song J, Yang JM. Immunotherapy for triple-negative breast cancer: Existing challenges and exciting prospects. Drug Resist Updat 2017; 32:1-15. [PMID: 29145974 DOI: 10.1016/j.drup.2017.07.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
Patients with breast tumors that do not express the estrogen receptor, the progesterone receptor, nor Her-2/neu are hence termed "triple negatives", and generally have a poor prognosis, with high rates of systemic recurrence and refractoriness to conventional therapy regardless of the choice of adjuvant treatment. Thus, more effective therapeutic options are sorely needed for triple-negative breast cancer (TNBC), which occurs in approximately 20% of diagnosed breast cancers. In recent years, exploiting intrinsic mechanisms of the host immune system to eradicate cancer cells has achieved impressive success, and the advances in immunotherapy have yielded potential new therapeutic strategies for the treatment of this devastating subtype of breast cancer. It is anticipated that the responses initiated by immunotherapeutic interventions will explicitly target and annihilate tumor cells, while at the same time spare normal cells. Various immunotherapeutic approaches have been already developed and tested, which include the blockade of immune checkpoints using neutralizing or blocking antibodies, induction of cytotoxic T lymphocytes (CTLs), adoptive cell transfer-based therapy, and modulation of the tumor microenvironment to enhance the activity of CTLs. One of the most important areas of breast cancer research today is understanding the immune features and profiles of TNBC and devising novel immune-modulatory strategies to tackling TNBC, a subtype of breast cancer notorious for its poor prognosis and its imperviousness to conventional treatments. On the optimal side, one can anticipate that novel, effective, and personalized immunotherapy for TNBC will soon achieve more success and impact clinical treatment of this disease which afflicts approximately 20% of patients with breast cancer. In the present review, we highlight the current progress and encouraging developments in cancer immunotherapy, with a goal to discuss the challenges and to provide future perspectives on how to exploit a variety of new immunotherapeutic approaches including checkpoint inhibitors and neoadjuvant immunotherapy for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Hongyan Jia
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 03001, China.
| | - Cristina I Truica
- Department of Medicine, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Bin Wang
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 03001, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, 03001, China
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Harold A Harvey
- Department of Medicine, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jianxun Song
- Department of Microbiology and Immunology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|