1
|
Cui JJ, Guo CX, Li J, Guo AX, Zhang Z, Li SY, Wang LY, Jia XB, Guo H, Xia K, Hu ZM, Ouyang QY, Wang Y, Xie YT, Liu ZQ, Zhang JT, Wu W, Chen YH, Yin JY. CSDE1 enhances genotoxic drug resistance in cancer by modulating RPA2 through CSDE1-eIF3a regulatory complex. Drug Resist Updat 2025; 81:101249. [PMID: 40398074 DOI: 10.1016/j.drup.2025.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/23/2025]
Abstract
AIMS Genotoxic drug resistance is one of the major obstacles for cancer treatment. Our previous study demonstrates that cold shock domain containing E1 (CSDE1) is associated with drug resistance. In this study, we aim to demonstrate that CSDE1 regulates cellular response to genotoxic drugs and to investigate its mechanism of action in drug resistance. METHODS Tissues and blood samples from cancer patients were used to evaluate the relationship between CSDE1 and genotoxic drug response. Comet and immunofluorescence assays were conducted to investigate the role of CSDE1 in DNA damage repair. Systematic knockout mouse models were used to study the underlying mechanism involved. Biotin pull-down, EMSA and co-IP assays were used to probe the triplex structure of CSDE1-protein (eIF3a)-RNA (RPA2). RESULTS CSDE1 elevation correlates with poor response in patient and increased resistance in cell lines to genotoxic drugs. CSDE1 upregulated the nucleotide excision repair (NER) and homologous recombination (HR) pathways. In X-ray irradiation or bleomycin-induced DNA damage mouse model, systemic CSDE1 knockout resulted in increased DNA damage. In both a CSDE1 knockout mouse model and cancer cell lines, CSDE1 inhibited the cGAS-STING pathway through RPA2. Mechanistic studies indicated that CSDE1 serves as a hub for the binding of the CSDE1-protein (eIF3a)-RNA (RPA2) ternary complex. CONCLUSIONS This study reveals the new role of CSDE1 in enhancing resistance to genotoxic drugs, and the detailed zipper-like cross ternary structural of CSDE1. It provides a new strategy for enhancing genotoxic drugs sensitivity.
Collapse
Affiliation(s)
- Jia-Jia Cui
- Department of Geratic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan 410008, PR China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410008, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan 410000, PR China; Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen 518000, PR China
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, PR China
| | - Jun Li
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Ao-Xiang Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410008, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan 410000, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan 410008, PR China; Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen 518000, PR China
| | - Zhao Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Si-Yu Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410008, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan 410000, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410008, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan 410000, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan 410008, PR China; Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, Hubei 430022, PR China
| | - Xiang-Bin Jia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, PR China
| | - Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, PR China
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, PR China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, PR China; NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410000, PR China
| | - Zheng-Mao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, PR China
| | - Qian-Ying Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410008, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan 410000, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410008, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan 410000, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Yu-Ting Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410008, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan 410000, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan 410008, PR China; Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan 410008, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Wei Wu
- Department of Geratic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan 410008, PR China; Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, PR China.
| | - Yong-Heng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410008, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan 410000, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan 410008, PR China.
| |
Collapse
|
2
|
Ruiz-Martínez S, Ribas X, Costas M, Landberg G, Puig T. Characterization and targeting of chemoresistant triple-negative breast cancer subtypes using amino-pyridine compounds. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167899. [PMID: 40350044 DOI: 10.1016/j.bbadis.2025.167899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/25/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with limited treatment options and high relapse rates due to chemoresistance and the presence of cancer stem cells (CSCs). This study explores the molecular profile and invasive properties of two TNBC cell lines, MDA-MB-231 (Basal-Like 1; BL1 subtype) and HCC1806 (BL2 subtype), as well as their chemotherapy-resistant derivatives (doxorubicin and paclitaxel). Both cell lines exhibited CD44+ and CD24-/low profiles with significant differences in epithelial-mesenchymal transition (EMT) markers. Chemoresistant variants exhibited significant changes in CSC markers, EMT genes, and ALDH activity, particularly the upregulation of CD133, suggesting its role in chemoresistance. Analysis of embryonic pathways revealed a prominent role of Sonic Hedgehog signaling, particularly in the BL2 subtype. Resistant models also exhibited increased Notch receptor expression. This study also examined novel polyamine compounds with an amino-pyridine structure. These compounds showed significant cytotoxicity against both sensitive and resistant TNBC cells, enhancing the efficacy of standard chemotherapeutics (paclitaxel and doxorubicin). Additionally, they reduced stem-like properties and self-renewal capacity of CSCs. This comprehensive characterization of TNBC cell lines and their chemoresistant variants underscores the molecular heterogeneity of TNBC and highlights potential therapeutic targets and strategies to enhance treatment efficacy and overcome resistance.
Collapse
Affiliation(s)
- Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Spain; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Sweden.
| | - Xavi Ribas
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Spain.
| | - Miquel Costas
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Spain.
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Sweden.
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Spain.
| |
Collapse
|
3
|
Mondal S, Das U, Ghosh O, Maiti B, Halder S, Pal U, Mukherjee KK, Ghosh S. Mercury Can Bond to α-Carbon of Curcumin Increasing Stability in Aqueous Medium and Demonstrated Selective Cytotoxicity against Acute Leukemia. ACS OMEGA 2025; 10:17416-17434. [PMID: 40352528 PMCID: PMC12059940 DOI: 10.1021/acsomega.4c10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 05/14/2025]
Abstract
Natural products ranging from phytochemicals to metals are well-known for their therapeutic benefits on different cancer types, including acute leukemia. However, bioavailability significantly limited the applications of various polyphenolic molecules, such as curcumin, while toxicity challenged the medicinal applications of heavy metals, such as mercury (Hg). Specifically, in case of curcumin derivatives, simultaneous solubility, stability, and bioactivity in the aqueous medium remain unachieved, leading to poor clinical translation. We demonstrate for the first time that the above-mentioned challenges could be resolved by covalently bonding mercury to the α-carbon of curcumin. The resultant organomercury compound ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-3,5-dioxohepta-1,6-dien-4-yl)mercury or α-Mercurin is soluble in alkaline conditions and remains stable for at least 24 h. Cell viability assays demonstrated selective cytotoxicity of α-Mercurin against acute leukemia cells, compared to healthy human peripheral blood mononuclear cells, in vitro. Experimental IC50 on MOLT-4 and HL-60 cells remained in the lower micromolar range, and potential mode of action includes apoptosis. Ex vivo analysis also demonstrated that α-Mercurin can eliminate immature blasts from acute lymphoblastic leukemia patients' blood samples and also enhance expression of immune markers, with no notable toxicity on red blood cells as well as lymphocytes. Finally, intravenous administration of α-Mercurin showed no subacute toxicity, in vivo.
Collapse
Affiliation(s)
- Sougata Mondal
- Department
of Anti-Cancer Drug Development and Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Bhowanipore, Kolkata 700026, West Bengal, India
| | - Upasana Das
- Department
of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, USA, 475 Vine Street, Winston
Salem, North Carolina 27157, United States
| | - Oyendrila Ghosh
- Department
of Anti-Cancer Drug Development and Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Bhowanipore, Kolkata 700026, West Bengal, India
| | - Bidisha Maiti
- Department
of Anti-Cancer Drug Development and Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Bhowanipore, Kolkata 700026, West Bengal, India
| | - Shuvam Halder
- Department
of Medical Oncology, Chittaranjan National
Cancer Institute, 37, S. P. Mukherjee Road, Bhowanipore, Kolkata 700026, West Bengal, India
| | - Uttam Pal
- Technical
Research Centre, S.N. Bose National Centre
for Basic Sciences, Salt Lake, JD Block, Sector 3, Bidhannagar, Kolkata 700106, West
Bengal, India
| | - Kalyan Kusum Mukherjee
- Department
of Medical Oncology, Chittaranjan National
Cancer Institute, 37, S. P. Mukherjee Road, Bhowanipore, Kolkata 700026, West Bengal, India
| | - Supratim Ghosh
- Department
of Anti-Cancer Drug Development and Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Bhowanipore, Kolkata 700026, West Bengal, India
| |
Collapse
|
4
|
Murphy G, Brayden DJ, Cheung DL, Liew A, Fitzgerald M, Pandit A. Albumin-based delivery systems: Recent advances, challenges, and opportunities. J Control Release 2025; 380:375-395. [PMID: 39842723 DOI: 10.1016/j.jconrel.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/22/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Albumin and albumin-based biomaterials have been explored for various applications, including therapeutic delivery, as therapeutic agents, as components of tissue adhesives, and in tissue engineering applications. Albumin has been approved as a nanoparticle containing paclitaxel (Abraxane®), as an albumin-binding peptide (Victoza®), and as a glutaraldehyde-crosslinked tissue adhesive (BioGlue®). Albumin is also approved as a supportive therapy for various conditions, including hypoalbuminemia, sepsis, and acute respiratory distress syndrome (ARDS). However, no other new albumin-based systems in a hydrogel format have been used in the clinic. A review of publicly available clinical trials indicates that no new albumin drug delivery formats are currently in the clinical development pipeline. Although albumin has shown promise as a carrier of therapeutics for various diseases, including diabetes, cancers, and infectious diseases, its potential for treating blood-borne diseases such as HIV and leukemia has not been translated. This review offers a perspective on the use of albumin-based drug delivery systems for a broader range of disease applications, considering the protein properties and a review of the currently approved albumin-based technologies. This review supports ongoing efforts to advance biomedical research and clinical interventions through albumin-based delivery systems.
Collapse
Affiliation(s)
- Gillian Murphy
- CÚRAM, the Research Ireland Centre for Medical Devices, University of Galway, Ireland.
| | - David J Brayden
- CÚRAM, the Research Ireland Centre for Medical Devices, University of Galway, Ireland; School of Veterinary Medicine and Conway Institute, University College Dublin, Ireland
| | - David L Cheung
- CÚRAM, the Research Ireland Centre for Medical Devices, University of Galway, Ireland; School of Biological and Chemical Science, University of Galway, Ireland
| | - Aaron Liew
- Diabetes, Endocrinology and General Internal Medicine, Galway University Hospital, Galway, Ireland
| | | | - Abhay Pandit
- CÚRAM, the Research Ireland Centre for Medical Devices, University of Galway, Ireland.
| |
Collapse
|
5
|
Khalaf RN, Hassan AI, El-Shafiey ZA, Faheim AA, Ibrahim SS, Saleh HM. Evaluation of an isatin-derived ligand and its metal complexes as potential anticancer agents in breast adenocarcinoma cells. CHEMICAL PAPERS 2025; 79:1539-1560. [DOI: 10.1007/s11696-024-03873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/19/2024] [Indexed: 03/10/2025]
|
6
|
Markouli M, Skouras P, Piperi C. Impact of cuproptosis in gliomas pathogenesis with targeting options. Chem Biol Interact 2025; 408:111394. [PMID: 39848557 DOI: 10.1016/j.cbi.2025.111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Gliomas constitute the most prevalent primary central nervous system tumors, often characterized by complex metabolic profile, genomic instability, and aggressiveness, leading to frequent relapse and high mortality rates. Traditional treatments are commonly ineffective because of gliomas increased heterogeneity, invasive characteristics and resistance to chemotherapy. Among several pathways affecting cellular homeostasis, cuproptosis has recently emerged as a novel type of programmed cell death, triggered by accumulation of copper ions. Although the precise molecular mechanisms of cuproptosis are not fully elucidated, there is evidence that copper ions can target mitochondrial lipoylated proteins, disrupting the tricarboxylic acid cycle and electron transport chain, thus leading to deregulated mitochondrial metabolism, protein aggregation and cell death. Of importance, altered expression of copper transporters and abnormally high intracellular copper levels have been observed in several cancer types, including gliomas, contributing to tumor growth and metastasis. Furthermore, a range of prognostic models incorporating cuproptosis-related genes and lncRNAs have been proposed and are currently under clinical validation. Drugs modulating cuproptosis or interfering with copper-binding proteins are under development, causing metabolic failure and cell death, thus offering potential new avenues for glioma diagnosis and therapy. In this article, we explore the role of copper metabolism in gliomas and the potential synergistic effects of cuproptosis-based treatments with current therapies, in effective targeting of tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
7
|
Dijkstra M, Schueffl H, Adamova B, Baumfried O, Kastner A, Berger W, Keppler BK, Heffeter P, Kowol CR. Exploring the Structure-Activity Relationships of Albumin-Targeted Picoplatin-Based Platinum(IV) Prodrugs. Inorg Chem 2025; 64:2554-2566. [PMID: 39878587 PMCID: PMC11815855 DOI: 10.1021/acs.inorgchem.4c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Platinum(II) complexes prevail as first-line treatment for many cancers but are associated with serious side effects and resistance development. Picoplatin emerged as a promising alternative to circumvent GSH-induced tumor resistance by introducing a bulky 2-picoline ligand. Although clinical studies were encouraging, picoplatin did not receive approval. Interestingly, the anticancer potential of prodrugs based on picoplatin is widely underexplored, and even less so the respective tumor-targeting approaches. We synthesized two new "hybrid" picoplatin(II) derivatives with an oxalate or cyclobutane dicarboxylate leaving group and their corresponding platinum(IV) prodrugs with an albumin-targeting maleimide moiety or a succinimide as reference. Picoplatin(II) and its derivatives indeed reacted much slower with GSH compared to the respective analogs cisplatin, carboplatin, or oxaliplatin. While PicoCarbo(IV) and PicoOxali(IV) were reduced slowly in the presence of ascorbic acid, picoplatin(IV) was extremely unstable. All three prodrugs were widely inactive in the MTT assays. The platinum(IV)-maleimide complexes rapidly bound to albumin with stable conjugates for >25 h. Albumin-binding resulted in elevated platinum plasma levels, prolonged blood circulation, and enhanced tumor accumulation of the prodrugs in mice bearing CT26 tumors. However, only maleimide-functionalized PicoCarbo(IV) and picoplatin(II) significantly inhibited tumor growth. One possible explanation is that for albumin-binding platinum(IV) prodrugs, the bulky 2-picoline moiety prevents sufficient activation/reduction to unlock their full anticancer potential.
Collapse
Affiliation(s)
- Martijn Dijkstra
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Barbora Adamova
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Oliver Baumfried
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Alexander Kastner
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Walter Berger
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Petra Heffeter
- Center
for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Christian R. Kowol
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Research
Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| |
Collapse
|
8
|
Tang L, Yang X, He L, Zhu C, Chen Q. Preclinical advance in nanoliposome-mediated photothermal therapy in liver cancer. Lipids Health Dis 2025; 24:31. [PMID: 39891269 PMCID: PMC11783920 DOI: 10.1186/s12944-024-02429-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025] Open
Abstract
Liver cancer is a highly lethal malignant tumor with a high incidence worldwide. Therefore, its treatment has long been a focus of medical research. Although traditional treatment methods such as surgery, radiotherapy, and chemotherapy have increased the survival rate of patients, their efficacy remains unsatisfactory owing to the nonspecific distribution of drugs, high toxicity, and drug resistance of tumor tissues. In recent years, the application of nanotechnology in the medical field has opened a new avenue for the treatment of liver cancer. Among these treatment methods, photothermal therapy (PTT) based on nanoliposomes has attracted wide attention owing to its unique targeting and high efficiency. This article reviews the latest preclinical research progress of nanoliposome-based PTT for liver cancer and its metastasis, discusses the preclinical challenges in this field, and proposes directions for improvement, with the aim of improving the effectiveness of liver cancer treatment.
Collapse
Affiliation(s)
- Lixuan Tang
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiao Yang
- The department of oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Liwen He
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chaogeng Zhu
- The department of hepatobiliary pancreatic hernia surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Qingshan Chen
- The department of hepatobiliary pancreatic hernia surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
9
|
Kincses A, Szemerédi N, Benito‐Lama M, Dózsai D, Csonka Á, Domínguez‐Álvarez E, Spengler G. Selenocompounds as Potent Efflux Pump Inhibitors on Gram-positive Bacteria. ChemMedChem 2025; 20:e202400691. [PMID: 39565046 PMCID: PMC11733404 DOI: 10.1002/cmdc.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Indexed: 11/21/2024]
Abstract
In recent years, selenocompounds have gained increasing attention as potential anticancer and antibacterial agents. Several selenoderivatives have been confirmed to act as MDR efflux pump inhibitors, based on their in vitro results against the bacterial AcrAB-TolC system and the cancer MDR efflux pump P-glycoprotein. Efflux pumps can contribute directly or indirectly to the virulence of bacteria, as they can reduce the intracellular concentration of antibacterial substances by expelling them out of the cell. The present work aims to study the antibacterial and efflux pump inhibiting properties of four families of selenoesters, namely aspirin-selenoesters, phenone-selenoesters, hydroxy-selenoesters, and benzyl-selenoesters. The real-time ethidium bromide accumulation assay confirmed that these derivatives inhibited the efflux systems of methicillin-resistant Staphylococcus aureus (MRSA) without exerting any antibacterial effect. The relative expression of efflux pump gene of NorA transporter was also monitored in the presence of the most potent derivatives on reference S. aureus, finding that these derivatives could change the expression of the tested efflux pump gene. Regarding the anti-biofilm activity, aspirin-selenoesters, benzyl-selenoesters, and hydroxy-selenoesters could efficiently inhibit the biofilm production of the MRSA strain. It can be concluded that selenocompounds could act as efflux pump inhibitors, thus reducing the virulence of biofilm-producing bacteria.
Collapse
Affiliation(s)
- Annamária Kincses
- Department of Medical MicrobiologyAlbert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical SchoolUniversity of SzegedSemmelweis street 66725SzegedHungary
- Institute of PharmacognosyFaculty of PharmacyUniversity of SzegedEötvös street 66720SzegedHungary
| | - Nikoletta Szemerédi
- Department of Medical MicrobiologyAlbert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical SchoolUniversity of SzegedSemmelweis street 66725SzegedHungary
| | - Miguel Benito‐Lama
- Instituto de Química Orgánica General (IQOG)Consejo Superior de Organizaciones Científicas (CSIC)Juan de la Cierva 328006MadridSpain
| | - Dávid Dózsai
- Department of TraumatologyAlbert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical SchoolUniversity of SzegedSemmelweis street 66725SzegedHungary
| | - Ákos Csonka
- Department of TraumatologyAlbert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical SchoolUniversity of SzegedSemmelweis street 66725SzegedHungary
| | - Enrique Domínguez‐Álvarez
- Instituto de Química Orgánica General (IQOG)Consejo Superior de Organizaciones Científicas (CSIC)Juan de la Cierva 328006MadridSpain
| | - Gabriella Spengler
- Department of Medical MicrobiologyAlbert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical SchoolUniversity of SzegedSemmelweis street 66725SzegedHungary
| |
Collapse
|
10
|
Jiang Q, Tong F, Xu Y, Liu C, Xu Q. Cuproptosis: a promising new target for breast cancer therapy. Cancer Cell Int 2024; 24:414. [PMID: 39702350 DOI: 10.1186/s12935-024-03572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality among women globally, affecting approximately one-quarter of all female cancer patients and accounting for one-sixth of cancer-related deaths in women. Despite significant advancements in diagnostic and therapeutic approaches, breast cancer treatment remains challenging due to issues such as recurrence and metastasis. Recently, a novel form of regulated cell death, termed cuproptosis, has been identified. This process disrupts mitochondrial respiration by targeting the copper-dependent cellular pathways. The role of cuproptosis has been extensively investigated in various therapeutic contexts, including chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of novel drugs significantly improving clinical outcomes. This article aims to further elucidate the connection between cuproptosis and breast cancer, focusing on its therapeutic targets, signaling pathways, and potential biomarkers that could enhance treatment strategies. These insights may offer new opportunities for improved patient care and outcomes in breast cancer therapy.
Collapse
Affiliation(s)
- Qianqian Jiang
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Changshan, Quzhou, 324200, P.R. China
| | - Fei Tong
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P.R. China
| | - Yun Xu
- Department of Pharmacy, Zhejiang Medical&Health Group Hangzhou Hospital, Hangzhou, Zhejiang, 310022, China
| | - Cheng Liu
- Department of Pharmacy, The Secend People's Hospital Of Jiande, Hangzhou, 311604, P.R. China
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Afliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
11
|
Zhang K, Zhu Z, Zhou J, Shi M, Wang N, Yu F, Xu L. Disulfidptosis-related gene expression reflects the prognosis of drug-resistant cancer patients and inhibition of MYH9 reverses sorafenib resistance. Transl Oncol 2024; 49:102091. [PMID: 39146597 PMCID: PMC11375144 DOI: 10.1016/j.tranon.2024.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024] Open
Abstract
The onset of drug resistance in advanced cancer patients markedly diminishes their prognosis. Recently, disulfidptosis, a novel form of cell death, has been identified, triggered by excessive disulfide formation leading to cell shrinkage and F-actin contraction. Previous studies have identified 15 essential genes (FLNA, FLNB, MYH9, TLN1, ACTB, MYL6, MYH10, CAPZB, DSTN, IQGAP1, ACTN4, PDLIM1, CD2AP, INF2, SLC7A11) associated with disulfidptosis. This study sourced pan-cancer mRNA expression data from Xena to thoroughly evaluate the molecular and clinical characteristics of disulfidptosis-related genes. Through unsupervised clustering, mRNA expression data identified the expression levels of disulfidptosis-related genes and potential clusters related to this form of cell death. Kaplan-Meier survival curves illustrated the correlation between different clusters and overall survival. The findings reveal that high expression of disulfidptosis-related genes is linked to poor survival in liver cancer. The GDSC database was utilized to analyze the relationship between disulfidptosis-related genes and the AUC of 198 drugs. The results demonstrate that 12 disulfidptosis-related genes influence sorafenib resistance, as revealed by the intersection of differential genes related to sorafenib resistance from the GSE109211 dataset. Among them, the MYH9 gene was found to play a crucial role in both. Finally, experimental evidence confirmed that MYH9 mitigates sorafenib resistance in hepatocellular carcinoma through disulfidptosis-like changes. This study identifies disulfidptosis as a promising avenue for enhancing the sensitivity of tumor cells to drugs, offering new therapeutic perspectives for future research on disulfidptosis and drug resistance in cancer patients.
Collapse
Affiliation(s)
- Kangnan Zhang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Zhenhua Zhu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200001, China
| | - Jingyi Zhou
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Min Shi
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Na Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| | - Fudong Yu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Public Health School, Fudan University, Shanghai, 200030, China.
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
12
|
Nguyen MH, Nguyen TYN, Le THN, Le TNT, Chau NTN, Le TMH, Huy Nguyen BQ. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon 2024; 10:e39229. [PMID: 39492898 PMCID: PMC11530815 DOI: 10.1016/j.heliyon.2024.e39229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the challenge of drug resistance, which imposes economic and medical burdens. Natural compounds, particularly secondary metabolites from medicinal plants, present promising avenues for overcoming cancer drug resistance due to their diverse structures and essential pharmacological effects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents. The molecular properties supporting ligand interactions are thoroughly examined, providing a robust theoretical foundation. The review concludes by discussing methods including quantitative structure-activity relationships and molecular docking, offering insights into screening potential candidates. Current trends in clinical treatment, contributing to a holistic understanding of the multifaceted approaches to address cancer drug resistance are also outlined.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Thi Ngoc Tam Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Ngoc Trong Nghia Chau
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Tu Manh Huy Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Bui Quoc Huy Nguyen
- The University of Danang - VN-UK Institute for Research and Executive Education, 41 Le Duan Street, Hai Chau 1 Ward, Hai Chau District, Danang City, Viet Nam
| |
Collapse
|
13
|
Dinić J, Podolski-Renić A, Novaković M, Li L, Opsenica I, Pešić M. Plant-Based Products Originating from Serbia That Affect P-glycoprotein Activity. Molecules 2024; 29:4308. [PMID: 39339303 PMCID: PMC11433820 DOI: 10.3390/molecules29184308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Our review paper evaluates the impact of plant-based products, primarily derived from plants from Serbia, on P-glycoprotein (P-gp) activity and their potential in modulating drug resistance in cancer therapy. We focus on the role and regulation of P-gp in cellular physiology and its significance in addressing multidrug resistance in cancer therapy. Additionally, we discuss the modulation of P-gp activity by 55 natural product drugs, including derivatives for some of them, based on our team's research findings since 2011. Specifically, we prospect into sesquiterpenoids from the genera Artemisia, Curcuma, Ferula, Inula, Petasites, and Celastrus; diterpenoids from the genera Salvia and Euphorbia; chalcones from the genera Piper, Glycyrrhiza, Cullen, Artemisia, and Humulus; riccardins from the genera Lunularia, Monoclea, Dumortiera, Plagiochila, and Primula; and diarylheptanoids from the genera Alnus and Curcuma. Through comprehensive analysis, we aim to highlight the potential of natural products mainly identified in plants from Serbia in influencing P-gp activity and overcoming drug resistance in cancer therapy, while also providing insights into future perspectives in this field.
Collapse
Affiliation(s)
- Jelena Dinić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| | - Miroslav Novaković
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Liang Li
- Key Laboratory of Bioactive Substance and Function of Natural Medicines, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China;
| | - Igor Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (A.P.-R.)
| |
Collapse
|
14
|
Radomska D, Czarnomysy R, Marciniec K, Nowakowska J, Domínguez-Álvarez E, Bielawski K. Short Communication: Novel Di- and Triselenoesters as Effective Therapeutic Agents Inhibiting Multidrug Resistance Proteins in Breast Cancer Cells. Int J Mol Sci 2024; 25:9732. [PMID: 39273679 PMCID: PMC11395623 DOI: 10.3390/ijms25179732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer has the highest incidence rate among all malignancies worldwide. Its high mortality is mainly related to the occurrence of multidrug resistance, which significantly limits therapeutic options. In this regard, there is an urgent need to develop compounds that would overcome this phenomenon. There are few reports in the literature that selenium compounds can modulate the activity of P-glycoprotein (MDR1). Therefore, we performed in silico studies and evaluated the effects of the novel selenoesters EDAG-1 and EDAG-8 on BCRP, MDR1, and MRP1 resistance proteins in MCF-7 and MDA-MB-231 breast cancer cells. The cytometric analysis showed that the tested compounds (especially EDAG-8) are inhibitors of BCRP, MDR1, and MRP1 efflux pumps (more potent than the reference compounds-novobiocin, verapamil, and MK-571). An in silico study correlates with these results, suggesting that the compound with the lowest binding energy to these transporters (EDAG-8) has a more favorable spatial structure affecting its anticancer activity, making it a promising candidate in the development of a novel anticancer agent for future breast cancer therapy.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Justyna Nowakowska
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG-CSIC), Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
15
|
Reyes CP, Ardiles A, Anaissi-Afonso L, González-Bakker A, Padrón JM, Jiménez IA, Machín F, Bazzocchi IL. Exploring the Anticancer Potential of Phenolic nor-Triterpenes from Celastraceae Species. Int J Mol Sci 2024; 25:9470. [PMID: 39273417 PMCID: PMC11395069 DOI: 10.3390/ijms25179470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
To explore new compounds with antitumour activity, fifteen phenolic nor-tripterpenes isolated from Celastraceae species, Maytenus jelskii, Maytenus cuzcoina, and Celastrus vulcanicola, have been studied. Their chemical structures were elucidated through spectroscopic and spectrometric techniques, resulting in the identification of three novel chemical compounds. Evaluation on human tumour cell lines (A549 and SW1573, non-small cell lung; HBL-100 and T-47D, breast; HeLa, cervix, and WiDr, colon) revealed that three compounds, named 6-oxo-pristimerol, demethyl-zeylasteral, and zeylasteral, exhibited significant activity (GI50 ranging from 0.45 to 8.6 µM) on at least five of the cell lines tested. Continuous live cell imaging identified apoptosis as the mode of action of selective cell killing in HeLa cells. Furthermore, their effect on a drug-sensitive Saccharomyces cerevisiae strain has been investigated to deepen on their mechanism of action. In dose-response growth curves, zeylasteral and 7α-hydroxy-blepharodol were markedly active. Additionally, halo assays were conducted to assess the involvement of oxidative stress and/or mitochondrial function in the anticancer profile, ruling out these modes of action for the active compounds. Finally, we also delve into the structure-activity relationship, providing insights into how the molecular structure of these compounds influences their biological activity. This comprehensive analysis enhances our understanding of the therapeutic potential of this triterpene type and underscores its relevance for further research in this field.
Collapse
Affiliation(s)
- Carolina P Reyes
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Bioquímica Microbiología, Biología Celular y Genética, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Alejandro Ardiles
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Iquique, Antofagasta 3991, Chile
| | - Laura Anaissi-Afonso
- Unidad de Investigación, Hospital Universitario Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
| | - Aday González-Bakker
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - José M Padrón
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Ntra Sra de Candelaria, Ctra del Rosario 145, 38010 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 La Laguna, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| |
Collapse
|
16
|
Zhang X, Zhang B, Zhang Y, Ding Y, Zhang Z, Liu Q, Yang Z, Wang L, Gao J. Copper-Induced Supramolecular Peptide Assemblies for Multi-Pathway Cell Death and Tumor Inhibition. Angew Chem Int Ed Engl 2024; 63:e202406602. [PMID: 38837577 DOI: 10.1002/anie.202406602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Although self-assembly has emerged as an effective tool for fabricating biomaterials, achieving precise control over the morphologies and functionalities of the resultant assemblies remains an ongoing challenge. Inspired by the copper peptide naturally present in human plasma, in this study, we designed a synthetic precursor, FcGH. FcGH can self-assemble via two distinct pathways: spontaneous and Cu2+-induced. These two assembly pathways enabled the formation of assemblies with tunable morphologies by adjusting the amount of added Cu2+. We found that the nanoparticles formed by Cu2+-induced self-assembly exhibited a significantly higher cellular uptake efficiency than the wormlike fibers formed spontaneously. Moreover, this Cu2+-induced assembly process occurred spontaneously at a 1 : 1 molar ratio of Cu2+ to FcGH, avoiding the excessive use of Cu2+ and a tedious preparation procedure. By co-assembling with 10-hydroxycamptothecin (HCPT)-conjugated FcGH, Cu2+-induced supramolecular nanodrugs elicited multiple cell death modalities in cancer cells with elevated immunogenicity, enhancing the therapeutic effect compared to free HCPT. This study highlights Cu2+-induced self-assembly as an efficient tool for directing the assembly of nanodrugs and for synergistic tumor therapy.
Collapse
Affiliation(s)
- Xiangyang Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Buyue Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Yinghao Ding
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Zhenghao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University Xuzhou, Jiangsu, 221002, China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai International Advanced Research Institute (SHENZHEN⋅FUTIAN), Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Tianjin, 300071, China
| |
Collapse
|
17
|
Salaroglio IC, Stefanova D, Teixeira RG, Oliveira NFB, Ahmed A, Fusi F, Tzankova V, Yordanov Y, Machuqueiro M, Saponara S, Valente A, Riganti C. A novel combinatory treatment against a CDDP-resistant non-small cell lung cancer based on a Ruthenium(II)-cyclopentadienyl compound. Pharmacol Res 2024; 208:107353. [PMID: 39159730 DOI: 10.1016/j.phrs.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
The therapeutic approach to many solid tumors, including non-small cell lung cancer (NSCLC), is mainly based on the use of platinum-containing anticancer agents and is often characterized by acquired or intrinsic resistance to the drug. Therefore, the search for safer and more effective drugs is still an open challenge. Two organometallic ruthenium(II)-cyclopentadienyl compounds [Ru(η5-C5H4CHO)(Me2bipy)(PPh3)]+ (RT150) and [Ru(η5-C5H4CH2OH)(Me2bipy)(PPh3)][CF3SO3] (RT151) were tested against a panel of cisplatin-resistant NSCLC cell lines and xenografts. They were more effective than cisplatin in inducing oxidative stress and DNA damage, affecting the cell cycle and causing apoptosis. Importantly, they were found to be inhibitors of drug efflux transporters. Due to this property, the compounds significantly increased the retention and cytotoxicity of cisplatin within NSCLC cells. Notably, they did not display high toxicity in vitro against non-transformed cells (red blood cells, fibroblasts, bronchial epithelial cells, cardiomyocytes, and endothelial cells). Both compounds induced vasorelaxation and reduced endothelial cell migration, suggesting potential anti-angiogenic properties. RT151 confirmed its efficacy against NSCLC xenografts resistant to cisplatin. Either alone or combined with low doses of cisplatin, RT151 showed a good biodistribution profile in the liver, kidney, spleen, lung, and tumor. Hematochemical analysis and post-mortem organ pathology confirmed the safety of the compound in vivo, also when combined with cisplatin. To sum up, we have confirmed the effectiveness of a novel class of drugs against cisplatin-resistant NSCLC. Additionally, the compounds have a good biocompatibility and safety profile.
Collapse
Affiliation(s)
- Iris C Salaroglio
- Department of Oncology and Molecular Biotechnology Center "Guido Tarone", University of Torino, piazza Nizza 44, 10126 Torino, Italy
| | - Denitsa Stefanova
- Medical University of Sofia, Faculty of Pharmacy, Department of Pharmacology, Pharmacotherapy and Toxicology, 2 Dunav Str., Sofia 1000, Bulgaria
| | - Ricardo G Teixeira
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Nuno F B Oliveira
- BioISI - Instituto de Biossistemas e Ciências Integrativas, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Amer Ahmed
- University of Siena, Department of Life Sciences, via Aldo Moro, 2, Siena 53100, Italy
| | - Fabio Fusi
- University of Siena, Department of Biotechnologies, Chemistry and Pharmacy, via Aldo Moro 2, Siena 53100, Italy
| | - Virginia Tzankova
- Medical University of Sofia, Faculty of Pharmacy, Department of Pharmacology, Pharmacotherapy and Toxicology, 2 Dunav Str., Sofia 1000, Bulgaria
| | - Yordan Yordanov
- Medical University of Sofia, Faculty of Pharmacy, Department of Pharmacology, Pharmacotherapy and Toxicology, 2 Dunav Str., Sofia 1000, Bulgaria
| | - Miguel Machuqueiro
- BioISI - Instituto de Biossistemas e Ciências Integrativas, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Simona Saponara
- University of Siena, Department of Life Sciences, via Aldo Moro, 2, Siena 53100, Italy
| | - Andreia Valente
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| | - Chiara Riganti
- Department of Oncology and Molecular Biotechnology Center "Guido Tarone", University of Torino, piazza Nizza 44, 10126 Torino, Italy.
| |
Collapse
|
18
|
Tóth S, Szlávik MF, Mandel R, Fekecs F, Tusnády G, Vajda F, Varga N, Apáti Á, Bényei A, Paczal A, Kotschy A, Szakács G. Synthesis and Systematic Investigation of Lepidiline A and Its Gold(I), Silver(I), and Copper(I) Complexes Using In Vitro Cancer Models and Multipotent Stem Cells. ACS OMEGA 2024; 9:32226-32234. [PMID: 39072085 PMCID: PMC11270681 DOI: 10.1021/acsomega.4c05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
The imidazole alkaloid lepidiline A from the root of Lepidium meyenii has a moderate to low in vitro anticancer effect. Our aim was to extend cytotoxicity investigations against a panel of cancer cells, including multidrug-resistant cancer cells, and multipotent stem cells. Lepidiline A is a N-heterocyclic carbene precursor, therefore a suitable ligand source for metal complexes. Thus, we synthesized lepidiline A and its copper(I), gold(I), and silver(I) complexes and tested them against ovarian, gastrointestinal, breast, and uterine cancer cells and bone marrow-derived and adipose-derived mesenchymal stem cells. Lepidiline A and its copper complex demonstrated moderate cytotoxicity, while silver and gold complexes exhibited significantly enhanced and consistent cytotoxicity against both cancer and stem cell lines. ABCB1 in the multidrug-resistant uterine sarcoma line conferred significant resistance against lepidiline A and the copper-lepidiline A complex, but not against the silver and gold complexes. Our results indicate that only the copper complex induced a significant and universal increase in the production of reactive oxygen species within cells. In summary, binding of metal ions to lepidiline A results in enhanced cytotoxicity with the nature of the metal ion playing a critical role in determining its properties.
Collapse
Affiliation(s)
- Szilárd Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Márton F. Szlávik
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Réka Mandel
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Fanni Fekecs
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
| | - Gábor Tusnády
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Flóra Vajda
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Doctoral
School of Molecular Medicine, Semmelweis
University, Budapest H-1089, Hungary
| | - Nóra Varga
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Creative
Cell Ltd., Puskas Tivadar
u. 13, Budapest H-1119, Hungary
| | - Ágota Apáti
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Attila Bényei
- Department
of Physical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Attila Paczal
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
| | - András Kotschy
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
| | - Gergely Szakács
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Center
for Cancer Research, Medical University
of Vienna, Spitalgasse 23, Vienna A-1090, Austria
| |
Collapse
|
19
|
Maged A, Mabrouk M, Nour El-Din HT, Osama L, Badr-Eldin SM, Mahmoud AA. PLGA and PDMS-based in situ forming implants loaded with rosuvastatin and copper-selenium nanoparticles: a promising dual-effect formulation with augmented antimicrobial and cytotoxic activity in breast cancer cells. Front Pharmacol 2024; 15:1397639. [PMID: 38895619 PMCID: PMC11183308 DOI: 10.3389/fphar.2024.1397639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancer is among the most prevalent tumors worldwide. In this study, in-situ forming implants (ISFIs) containing rosuvastatin calcium were prepared using three types of poly (D, L-lactic-co-glycolic acid) (PLGA), namely, PLGA 50/50 with ester terminal and PLGA 75/25 with ester or acid terminal. Additionally, polydimethylsiloxane (PDMS) was added in concentrations of 0, 10, 20, and 30% w/v to accelerate matrix formation. The prepared ISFIs were characterized for their rheological behaviors, rate of matrix formation, and in-vitro drug release. All the prepared formulations revealed a Newtonian flow with a matrix formation rate between 0.017 and 0.059 mm/min. Generally, increasing the concentration of PDMS increased the matrix formation rate. The prepared implants' release efficiency values ranged between 46.39 and 89.75%. The ISFI containing PLGA 50/50 with 30% PDMS was selected for further testing, as it has the highest matrix formation rate and a promising release efficiency value. Copper-selenium nanoparticles were prepared with two different particle sizes (560 and 383 nm for CS1 and CS2, respectively) and loaded into the selected formulation to enhance its anticancer activity. The unloaded and loaded implants with rosuvastatin and copper-selenium nanoparticles were evaluated for their antibacterial activity, against Gram-positive and negative microorganisms, and anticancer efficacy, against MCF-7 and MDA-MB-231 cell lines. The results confirmed the potency of rosuvastatin calcium against cancer cells and the synergistic effect when loaded with smaller particle sizes of copper-selenium nanoparticles. This formulation holds a considerable potential for efficient breast cancer therapy.
Collapse
Affiliation(s)
- Amr Maged
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
- Pharmaceutical Factory, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, Giza, Egypt
| | - Hanzada T. Nour El-Din
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamyaa Osama
- Refractories, Ceramics and Building Materials Department, National Research Centre, Giza, Egypt
| | - Shaimaa M. Badr-Eldin
- Pharmaceutics Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azza A. Mahmoud
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
20
|
Turner RJ. The good, the bad, and the ugly of metals as antimicrobials. Biometals 2024; 37:545-559. [PMID: 38112899 PMCID: PMC11101337 DOI: 10.1007/s10534-023-00565-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
We are now moving into the antimicrobial resistance (AMR) era where more antibiotic resistant bacteria are now the majority, a problem brought on by both misuse and over use of antibiotics. Unfortunately, the antibiotic development pipeline dwindled away over the past decades as they are not very profitable compounds for companies to develop. Regardless researchers over the past decade have made strides to explore alternative options and out of this we see revisiting historical infection control agents such as toxic metals. From this we now see a field of research exploring the efficacy of metal ions and metal complexes as antimicrobials. Such antimicrobials are delivered in a variety of forms from metal salts, alloys, metal complexes, organometallic compounds, and metal based nanomaterials and gives us the broad term metalloantimicrobials. We now see many effective formulations applied for various applications using metals as antimicrobials that are effective against drug resistant strains. The purpose of the document here is to step aside and begin a conversation on the issues of use of such toxic metal compounds against microbes. This critical opinion mini-review in no way aims to be comprehensive. The goal here is to understand the benefits of metalloantimicrobials, but also to consider strongly the disadvantages of using metals, and what are the potential consequences of misuse and overuse. We need to be conscious of the issues, to see the entire system and affect through a OneHealth vision.
Collapse
Affiliation(s)
- Raymond J Turner
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada.
| |
Collapse
|
21
|
Sarkarai Nadar V, Yoshinaga-Sakurai K, Rosen BP. Anticancer Effects of the Trivalent Organoarsenical 2-Amino-4-(dihydroxyarsinoyl) Butanoate. Organometallics 2024; 43:1137-1142. [PMID: 38817537 PMCID: PMC11134607 DOI: 10.1021/acs.organomet.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
According to the National Cancer Institute, breast cancer is a leading cause of death in women. The lack of progesterone and estrogen receptors in triple-negative breast cancer (TNBC) cells results in a lack of response to hormonal, monoclonal, or tyrosine kinase inhibitor therapies. Despite intensive drug discovery, there is still no approved targeted treatment for TNBC. The metalloid arsenic has been used in herbal medicines, antibiotics, and chemotherapeutic drugs for centuries. This paper demonstrates that a trivalent arsenic-containing, nonproteogenic amino acid, R-AST-OH (2-amino-4-(dihydroxyarsinoyl) butanoate), inhibits kidney-type glutaminase (KGA), the enzyme that controls glutamine metabolism and is correlated with tumor malignancy. Cell-based assays using the TNBC MDA-MB-231 and HCC1569 cell lines showed that R-AST-OH kills TNBC cells and is not cytotoxic to a control cell line. The results of in silico molecular docking predictions indicate that R-AST-OH binds to the glutamine binding site and forms a covalent bond with an active site cysteine residue. We hypothesize that R-AST-OH is a single warhead for KGA that irreversibly binds to KGA through the formation of an As-S bond. We propose that R-AST-OH is a promising lead compound for the design of new drugs for the treatment of TNBC.
Collapse
Affiliation(s)
- Venkadesh Sarkarai Nadar
- Department of Cellular and Molecular
Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular and Molecular
Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Barry P. Rosen
- Department of Cellular and Molecular
Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
22
|
Gomes LS, Costa ÉDO, Duarte TG, Charret TS, Castiglione RC, Simões RL, Pascoal VDB, Döring TH, da Silva FDC, Ferreira VF, S. de Oliveira A, Pascoal ACRF, Cruz AL, Nascimento V. New Chalcogen-Functionalized Naphthoquinones: Design, Synthesis, and Evaluation, In Vitro and In Silico, against Squamous Cell Carcinoma. ACS OMEGA 2024; 9:21948-21963. [PMID: 38799368 PMCID: PMC11112715 DOI: 10.1021/acsomega.3c10134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Due to the growth in the number of patients and the complexity involved in anticancer therapies, new therapeutic approaches are urgent and necessary. In this context, compounds containing the selenium atom can be employed in developing new medicines due to their potential therapeutic efficacy and unique modes of action. Furthermore, tellurium, a previously unknown element, has emerged as a promising possibility in chalcogen-containing compounds. In this study, 13 target compounds (9a-i, 10a-c, and 11) were effectively synthesized as potential anticancer agents, employing a CuI-catalyzed Csp-chalcogen bond formation procedure. The developed methodology yielded excellent results, ranging from 30 to 85%, and the compounds were carefully characterized. Eight of these compounds showed promise as potential therapeutic drugs due to their high yields and remarkable selectivity against SCC-9 cells (squamous cell carcinoma). Compound 10a, in particular, demonstrated exceptional selectivity, making it an excellent choice for cancer cell targeting while sparing healthy cells. Furthermore, complementing in silico and molecular docking studies shed light on their physical features and putative modes of action. This research highlights the potential of these compounds in anticancer treatments and lays the way for future drug development efforts.
Collapse
Affiliation(s)
- Luana
da Silva Gomes
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| | - Érica de Oliveira Costa
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| | - Thuany G. Duarte
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| | - Thiago S. Charret
- Research
Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo
Health Institute, Fluminense Federal University
(ISNF-UFF), Nova Friburgo-RJ 28625-650, Brazil
| | - Raquel C. Castiglione
- Laboratory
for Clinical and Experimental Research on Vascular Biology, Biomedical
Center, State University of Rio de Janeiro, Rio de Janeiro-RJ 20550-900, Brazil
| | - Rafael L. Simões
- Laboratory
of Molecular and Cellular Pharmacology, Roberto Alcântara Gomes
Biology Institute, State University of Rio
de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Vinicius D. B. Pascoal
- Research
Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo
Health Institute, Fluminense Federal University
(ISNF-UFF), Nova Friburgo-RJ 28625-650, Brazil
| | - Thiago H. Döring
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, Campus Blumenau, Blumenau-SC, 89036-256, Brazil
| | - Fernando de C. da Silva
- Applied Organic
Synthesis Laboratory (LabSOA), Institute of Chemistry, Universidade Federal Fluminense, Niterói-RJ 24020-141, Brazil
| | - Vitor F. Ferreira
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, Campus Blumenau, Blumenau-SC 89036-256, Brazil
| | - Aldo S. de Oliveira
- Department
of Exact Sciences and Education, Federal
University of Santa Catarina, Campus Blumenau, Blumenau-SC, 89036-256, Brazil
| | - Aislan C. R. F. Pascoal
- Research
Laboratory of Natural Products and Bioactive Molecules, Nova Friburgo
Health Institute, Fluminense Federal University
(ISNF-UFF), Nova Friburgo-RJ 28625-650, Brazil
| | - André L.
S. Cruz
- Physiopathology
Laboratory, Institute of Medical Sciences, Multidisciplinary Center
UFRJ, Federal University of Rio De Janeiro
(UFRJ), Macaé-RJ 27930-560, Brazil
| | - Vanessa Nascimento
- SupraSelen
Laboratory, Department of Organic Chemistry, Institute of Chemistry, Federal University Fluminense, Campus of Valonguinho, Niterói-RJ 24020-141, Brazil
| |
Collapse
|
23
|
Wilke N, Frias C, Berkessel A, Prokop A. (2,6-Dimethylphenyl)arsonic Acid Induces Apoptosis through the Mitochondrial Pathway, Downregulates XIAP, and Overcomes Multidrug Resistance to Cytostatic Drugs in Leukemia and Lymphoma Cells In Vitro. Int J Mol Sci 2024; 25:4713. [PMID: 38731935 PMCID: PMC11083614 DOI: 10.3390/ijms25094713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.
Collapse
Affiliation(s)
- Nathalie Wilke
- Department of Pediatric Hematology/Oncology, Children’s Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
| | - Corazon Frias
- Department of Pediatric Hematology/Oncology, Children’s Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
- Department of Pediatric Oncology/Hematology, Helios Clinics Schwerin, Wismarsche Straße 393–397, 19049 Schwerin, Germany
- Medical School Hamburg (MSH), University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457 Hamburg, Germany
| | - Albrecht Berkessel
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Aram Prokop
- Department of Pediatric Hematology/Oncology, Children’s Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
- Department of Pediatric Oncology/Hematology, Helios Clinics Schwerin, Wismarsche Straße 393–397, 19049 Schwerin, Germany
- Medical School Hamburg (MSH), University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457 Hamburg, Germany
| |
Collapse
|
24
|
Podolski-Renić A, Čipak Gašparović A, Valente A, López Ó, Bormio Nunes JH, Kowol CR, Heffeter P, Filipović NR. Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur J Med Chem 2024; 270:116363. [PMID: 38593587 DOI: 10.1016/j.ejmech.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Óscar López
- Departamento de Química Organica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
25
|
Fuentes-Aguilar A, González-Bakker A, Jovanović M, Stojanov SJ, Puerta A, Gargano A, Dinić J, Vega-Báez JL, Merino-Montiel P, Montiel-Smith S, Alcaro S, Nocentini A, Pešić M, Supuran CT, Padrón JM, Fernández-Bolaños JG, López Ó. Coumarins-lipophilic cations conjugates: Efficient mitocans targeting carbonic anhydrases. Bioorg Chem 2024; 145:107168. [PMID: 38354500 DOI: 10.1016/j.bioorg.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.
Collapse
Affiliation(s)
- Alma Fuentes-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico; Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Mirna Jovanović
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - Sofija Jovanović Stojanov
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Adriana Gargano
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Jelena Dinić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - José L Vega-Báez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Net4Science Academic Spinoff, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Associazione CRISEA - Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo, 88055 Belcastro (CZ), Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
| | - José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain.
| |
Collapse
|
26
|
Chen Q, Fang C, Xia F, Wang Q, Li F, Ling D. Metal nanoparticles for cancer therapy: Precision targeting of DNA damage. Acta Pharm Sin B 2024; 14:1132-1149. [PMID: 38486992 PMCID: PMC10934341 DOI: 10.1016/j.apsb.2023.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer, a complex and heterogeneous disease, arises from genomic instability. Currently, DNA damage-based cancer treatments, including radiotherapy and chemotherapy, are employed in clinical practice. However, the efficacy and safety of these therapies are constrained by various factors, limiting their ability to meet current clinical demands. Metal nanoparticles present promising avenues for enhancing each critical aspect of DNA damage-based cancer therapy. Their customizable physicochemical properties enable the development of targeted and personalized treatment platforms. In this review, we delve into the design principles and optimization strategies of metal nanoparticles. We shed light on the limitations of DNA damage-based therapy while highlighting the diverse strategies made possible by metal nanoparticles. These encompass targeted drug delivery, inhibition of DNA repair mechanisms, induction of cell death, and the cascading immune response. Moreover, we explore the pivotal role of physicochemical factors such as nanoparticle size, stimuli-responsiveness, and surface modification in shaping metal nanoparticle platforms. Finally, we present insights into the challenges and future directions of metal nanoparticles in advancing DNA damage-based cancer therapy, paving the way for novel treatment paradigms.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| |
Collapse
|
27
|
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y, Wang H. Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resist Updat 2024; 72:101018. [PMID: 37979442 DOI: 10.1016/j.drup.2023.101018] [Citation(s) in RCA: 85] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Junjing Zhang
- Department of Hepato-Biliary Surgery, Department of Surgery, Huhhot First Hospital, Huhhot 010030, PR China
| | - Yihui Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China
| | - Yuanfang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China.
| | - Hongquan Wang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
28
|
Jadranin M, Savić D, Lupšić E, Podolski-Renić A, Pešić M, Tešević V, Milosavljević S, Krstić G. LC-ESI QToF MS Non-Targeted Screening of Latex Extracts of Euphorbia seguieriana ssp. seguieriana Necker and Euphorbia cyparissias and Determination of Their Potential Anticancer Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:4181. [PMID: 38140508 PMCID: PMC10747863 DOI: 10.3390/plants12244181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Euphorbia seguieriana ssp. seguieriana Necker (ES) and Euphorbia cyparissias (EC) with a habitat in the Deliblato Sands were the subject of this examination. The latexes of these so far insufficiently investigated species of the Euphorbia genus are used in traditional medicine for the treatment of wounds and warts on the skin. To determine their chemical composition, non-targeted screening of the latexes' chloroform extracts was performed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry employing an electrospray ionization source (LC-ESI QTOF MS). The analysis of the obtained results showed that the latexes of ES and EC represent rich sources of diterpenes, tentatively identified as jatrophanes, ingenanes, tiglianes, myrsinanes, premyrsinanes, and others. Examination of the anticancer activity of the ES and EC latex extracts showed that both extracts significantly inhibited the growth of the non-small cell lung carcinoma NCI-H460 and glioblastoma U87 cell lines as well as of their corresponding multi-drug resistant (MDR) cell lines, NCI-H460/R and U87-TxR. The obtained results also revealed that the ES and EC extracts inhibited the function of P-glycoprotein (P-gp) in MDR cancer cells, whose overexpression is one of the main mechanisms underlying MDR.
Collapse
Affiliation(s)
- Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Danica Savić
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Ema Lupšić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (E.L.); (A.P.-R.); (M.P.)
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (E.L.); (A.P.-R.); (M.P.)
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (E.L.); (A.P.-R.); (M.P.)
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (V.T.); (S.M.)
| | - Slobodan Milosavljević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (V.T.); (S.M.)
- Serbian Academy of Science and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia
| | - Gordana Krstić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (V.T.); (S.M.)
| |
Collapse
|
29
|
Teixeira R, Salaroglio IC, Oliveira NFB, Sequeira JGN, Fontrodona X, Romero I, Machuqueiro M, Tomaz AI, Garcia MH, Riganti C, Valente A. Fighting Multidrug Resistance with Ruthenium-Cyclopentadienyl Compounds: Unveiling the Mechanism of P-gp Inhibition. J Med Chem 2023; 66:14080-14094. [PMID: 37616241 PMCID: PMC10614197 DOI: 10.1021/acs.jmedchem.3c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 08/26/2023]
Abstract
The search for more effective and selective drugs to overcome cancer multidrug resistance is urgent. As such, a new series of ruthenium-cyclopentadienyl ("RuCp") compounds with the general formula [Ru(η5-C5H4R)(4,4'-R'-2,2'-bipy)(PPh3)] were prepared and fully characterized. All compounds were evaluated toward non-small cell lung cancer cells with different degrees of cisplatin sensitivity (A549, NCI-H2228, Calu-3, and NCI-H1975), showing better cytotoxicity than the first-line chemotherapeutic drug cisplatin. Compounds 2 and 3 (R' = -OCH3; R = CHO (2) or CH2OH (3)) further inhibited the activity of P-gp and MRP1 efflux pumps by impairing their catalytic activity. Molecular docking calculations identified the R-site P-gp pocket as the preferred one, which was further validated using site-directed mutagenesis experiments in P-gp. Altogether, our results unveil the first direct evidence of the interaction between P-gp and "RuCp" compounds in the modulation of P-gp activity and establish them as valuable candidates to circumvent cancer MDR.
Collapse
Affiliation(s)
- Ricardo
G. Teixeira
- Centro
de Química Estrutural, Institute of Molecular Sciences and
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | | | - Nuno F. B. Oliveira
- BioISI:
Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João G. N. Sequeira
- BioISI:
Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Xavier Fontrodona
- Departament
de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Isabel Romero
- Departament
de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Miguel Machuqueiro
- BioISI:
Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro
de Química Estrutural, Institute of Molecular Sciences and
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - M. Helena Garcia
- Centro
de Química Estrutural, Institute of Molecular Sciences and
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Chiara Riganti
- Department
of Oncology, University of Torino, 10126 Torino, Italy
- Molecular
Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy
| | - Andreia Valente
- Centro
de Química Estrutural, Institute of Molecular Sciences and
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
30
|
Gadre S, M M, Chakraborty G, Rayrikar A, Paul S, Patra C, Patra M. Development of a Highly In Vivo Efficacious Dual Antitumor and Antiangiogenic Organoiridium Complex as a Potential Anti-Lung Cancer Agent. J Med Chem 2023; 66:13481-13500. [PMID: 37784224 DOI: 10.1021/acs.jmedchem.3c00704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
While the phenomenal clinical success of blockbuster platinum (Pt) drugs is highly encouraging, the inherent and acquired resistance and dose-limiting side effects severely limit their clinical application. To find a better alternative with translational potential, we synthesized a library of six organo-IrIII half-sandwich [(η5-CpX)Ir(N∧N)Cl]+-type complexes. In vitro screening identified two lead candidates [(η5-CpXPh)Ir(Ph2Phen)Cl]+ (5, CpXPh = tetramethyl-phenyl-cyclopentadienyl and Ph2Phen = 4,7-diphenyl-1,10-phenanthroline) and [(η5-CpXBiPh)Ir(Ph2Phen)Cl]+ (6, CpXBiPh = tetramethyl-biphenyl-cyclopentadienyl) with nanomolar IC50 values. Both 5 and 6 efficiently overcame Pt resistance and presented excellent cancer cell selectivity in vitro. Potent antiangiogenic properties of 6 were demonstrated in the zebrafish model. Satisfyingly, 6 and its nanoliposome Lipo-6 presented considerably higher in vivo antitumor efficacy as compared to cisplatin, as well as earlier reported IrIII half-sandwich complexes in mice bearing the A549 non-small lung cancer xenograft. In particular, complex 6 is the first example of this class that exerted dual in vivo antiangiogenic and antitumor properties.
Collapse
Affiliation(s)
- Shubhankar Gadre
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Manikandan M
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Gourav Chakraborty
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Subhadeep Paul
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Malay Patra
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| |
Collapse
|
31
|
Saadh M. Anticancer and antiproliferative activity of ruthenium complex (II) bearing 3,3’-dicarboxy-2,2’-bipyridine ligand. PHARMACIA 2023; 70:803-807. [DOI: 10.3897/pharmacia.70.e111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Even though significant progress has been made in cancer treatment, there is always room for improvement. The experimental drug Ruthenium Complex II shows promise as a cancer treatment. In this article, the dichloro-3,3’-dicarboxy-2,2’-bipyridyl bis(dimethylsulphoxide)ruthenium(II) [RuCl2(3,3’-dcbpy)(DMSO)2], have been synthesized, characterized, and studied for its anticancer activity against MDA-MB-231 and MRC-5 cell lines, as well as its mechanisms of action and selectivity. According to research, [RuCl2 (3,3’-dcbpy)(DMSO)2], is highly cytotoxic to the MDA-MB-231 and minimum cytotoxic to MRC-5 cell lines, with IC50 values of 5.95 and 579.6 μg/ml, respectively. Ruthenium Complex II is exceptionally effective at destroying cancer cells while causing minimal harm to healthy cells. RuCl2(3,3’-dcbpy)(DMSO)2] caused apoptosis, which was confirmed by the activation of caspase-3. Ruthenium complexes hold great promise as powerful anticancer agents. Their unique mechanisms of action, ability to selectively target cancer cells, and versatility in chemical structure make them attractive candidates for the development of targeted therapies.
Collapse
|
32
|
Saadh M. Antiproliferative activity of ruthenium complex II against human cancer cell in vitro. PHARMACIA 2023; 70:797-801. [DOI: 10.3897/pharmacia.70.e111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Despite significant advancements in cancer treatment, there is a constant need for new and effective therapeutic options. One such potential weapon in the fight against cancer is ruthenium complex II. In this article, we synthesized, characterized, and studied the activity of dithiocyanato-N-bis[8-(diphenylphosphino)quinoline]ruthenium (II) [Ru(N-P)2(NCS)2] against MCF-7 human adenocarcinoma cells and the MRC-5 cell lines from fetal lung fibroblast-like cells as normal cells, as well as the mechanisms of action and selectivity. This study demonstrated that [Ru(N-P)2(NCS)2] has cytotoxic activity against MCF-7 with IC50 values of 7.56 µg/ml and cytotoxic activity against MRC-5 cell lines with IC50 values of 576.6 µg/ml. [Ru(N-P)2(NCS)2] showed more selective cytotoxic activity against MCF-7 cancer cell lines than MRC-5 normal cell lines. . This study demonstrated the potent apoptotic activity of ruthenium complex II by determining the activation of caspase-3, highlighting its potential as a therapeutic agent in cancer treatment. The [Ru(N-P)2(NCS)2] is considered promising for researchers investigating putative biological activities, particularly antitumor and immune-related activity.
Collapse
|
33
|
Zheng S, Li G, Shi J, Liu X, Li M, He Z, Tian C, Kamei KI. Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. J Control Release 2023; 361:819-846. [PMID: 37597809 DOI: 10.1016/j.jconrel.2023.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs. However, as "free" molecules, Pt(IV) prodrugs are still subject to unsatisfactory in vivo destiny and antitumor efficacy. Recently, Pt(IV) prodrug nanotherapeutics, inheriting both the merits of Pt(IV) prodrugs and nanotherapeutics, have emerged and demonstrated the promise to address the underexploited dilemma of Pt-based cancer therapy. Herein, we summarize the latest fronts of emerging Pt(IV) prodrug nanotherapeutics. First, the basic outlines of Pt(IV) prodrug nanotherapeutics are overviewed. Afterwards, how versatile Pt(IV) prodrug nanotherapeutics overcome the multiple biological barriers of antitumor drug delivery is introduced in detail. Moreover, advanced combination therapies based on multimodal Pt(IV) prodrug nanotherapeutics are discussed with special emphasis on the synergistic mechanisms. Finally, prospects and challenges of Pt(IV) prodrug nanotherapeutics for future clinical translation are spotlighted.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
34
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
35
|
Musiol R. Efflux systems as a target for anti-biofilm nanoparticles: perspectives on emerging applications. Expert Opin Ther Targets 2023; 27:953-963. [PMID: 37788168 DOI: 10.1080/14728222.2023.2263910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Understanding the role of efflux pumps in biofilm resistance provides valuable insights for developing effective therapeutic strategies. Drugs designed for targeting efflux pumps in drug design holds promise for combating biofilm-related infections. Nanoparticles offer unparalleled advantages in designing drugs targeting efflux pumps. AREAS COVERED This review rigorously examines the existing body of knowledge on the prospective targeting of efflux pumps using metal-based nanoparticles. It includes and analyses the pertinent research findings sourced from the PubMed and SciFinder databases. It covers the experimental studies on efflux inhibition by nanoparticles and provides detailed analyses of their mechanisms of action, elucidating their interactions with the efflux system and their influence on biofilm formation and persistence. EXPERT OPINION The potential of nanoparticles to act as potent antibacterial agents through efflux pump inhibition remains tantalizing, although hindered by limited mechanistic understanding. From the burgeoning research landscape nanoparticles emerge as a novel direction for shaping antimicrobial drug design. Notably, beyond their contribution to drug resistance, efflux pumps play a pivotal role in biofilm development. The deliberate disruption of these pumps can effectively reduce biofilm adhesion and maturation. More details however are needed to exploit this potential.
Collapse
Affiliation(s)
- Robert Musiol
- Institute of Chemistry, Faculty of Science and Technology University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
36
|
Kapitza P, Scherfler A, Salcher S, Sopper S, Cziferszky M, Wurst K, Gust R. Reaction Behavior of [1,3-Diethyl-4,5-diphenyl-1 H-imidazol-2-ylidene] Containing Gold(I/III) Complexes against Ingredients of the Cell Culture Medium and the Meaning on the Potential Use for Cancer Eradication Therapy. J Med Chem 2023. [PMID: 37294951 DOI: 10.1021/acs.jmedchem.3c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The reactivities of halido[1,3-diethyl-4,5-diphenyl-1H-imidazol-2-ylidene]gold(I) (chlorido (5), bromido (6), iodido (7)), bis[1,3-diethyl-4,5-diphenyl-1H-imidazol-2-ylidene]gold(I) (8), and bis[1,3-diethyl-4,5-diphenyl-1H-imidazol-2-ylidene]dihalidogold(III) (chlorido (9), bromido (10), iodido (11)) complexes against ingredients of the cell culture medium were analyzed by HPLC. The degradation in the RPMI 1640 medium was studied, too. Complex 6 quantitatively reacted with chloride to 5, while 7 showed additionally ligand scrambling to 8. Interactions with non-thiol containing amino acids could not be detected. However, glutathione (GSH) reacted immediately with 5 and 6 yielding the (NHC)gold(I)-GSH complex 12. The most active complex 8 was stable under in vitro conditions and strongly participated on the biological effects of 7. The gold(III) species 9-11 were completely reduced by GSH to 8 and are prodrugs. All complexes were tested for inhibitory effects in Cisplatin-resistant cells, as well as against cancer stem cell-enriched cell lines and showed excellent activity. Such compounds are of utmost interest for the therapy of drug-resistant tumors.
Collapse
Affiliation(s)
- Paul Kapitza
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Bioscience Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| | - Amelie Scherfler
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Bioscience Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| | - Stefan Salcher
- Department of Internal Medicine V, Haematology & Oncology, Medical University Innsbruck, Anichstrasse 35, Innsbruck A-6020, Austria
| | - Sieghart Sopper
- Department of Internal Medicine V, Haematology & Oncology, Medical University Innsbruck, Anichstrasse 35, Innsbruck A-6020, Austria
| | - Monika Cziferszky
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Bioscience Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| | - Klaus Wurst
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Bioscience Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| |
Collapse
|
37
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2023; 52:5823-5847. [PMID: 37021641 DOI: 10.1039/d3dt00366c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The platinum drug, cisplatin, is considered as among the most successful medications in cancer treatment. However, due to its inherent toxicity and resistance limitations, research into other metal-based non-platinum anticancer medications with diverse mechanisms of action remains an active field. In this regard, copper complexes feature among non-platinum compounds which have shown promising potential as effective anticancer drugs. Moreover, the interesting discovery that cancer cells can alter their copper homeostatic processes to develop resistance to platinum-based treatments leads to suggestions that some copper compounds can indeed re-sensitize cancer cells to these drugs. In this work, we review copper and copper complexes bearing dithiocarbamate ligands which have shown promising results as anticancer agents. Dithiocarbamate ligands act as effective ionophores to convey the complexes of interest into cells thereby influencing the metal homeostatic balance and inducing apoptosis through various mechanisms. We focus on copper homeostasis in mammalian cells and on our current understanding of copper dysregulation in cancer and recent therapeutic breakthroughs using copper coordination complexes as anticancer drugs. We also discuss the molecular foundation of the mechanisms underlying their anticancer action. The opportunities that exist in research for these compounds and their potential as anticancer agents, especially when coupled with ligands such as dithiocarbamates, are also reviewed.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
38
|
Roldán-Peña JM, Puerta A, Dinić J, Jovanović Stojanov S, González-Bakker A, Hicke FJ, Mishra A, Piyasaengthong A, Maya I, Walton JW, Pešić M, Padrón JM, Fernández-Bolaños JG, López Ó. Biotinylated selenocyanates: Potent and selective cytostatic agents. Bioorg Chem 2023; 133:106410. [PMID: 36822000 DOI: 10.1016/j.bioorg.2023.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Most of the currently available cytotoxic agents for tackling cancer are devoid of selectivity, thus causing severe side-effects. This situation stimulated us to develop new antiproliferative agents with enhanced affinity towards tumour cells. We focused our attention on novel chalcogen-containing compounds (thiosemicarbazones, disulfides, selenoureas, thio- and selenocyanates), and particularly on selenium derivatives, as it has been documented that this kind of compounds might act as prodrugs releasing selenium-based reactive species on tumour cells. Particularly interesting in terms of potency and selectivity was a pharmacophore comprised by a selenocyanato-alkyl fragment connected to a p-phenylenediamine residue, where the nature of the second amino moiety (free, Boc-protected, enamine-protected) provided a wide variety of antiproliferative activities, ranging from the low micromolar to the nanomolar values. The optimized structure was in turn conjugated through a peptide linkage with biotin (vitamin B7), a cellular growth promoter, whose receptor is overexpressed in numerous cancer cells; the purpose was to develop a selective vector towards malignant cells. Such biotinylated derivative behaved as a very strong antiproliferative agent, achieving GI50 values in the low nM range for most of the tested cancer cells; moreover, it was featured with an outstanding selectivity, with GI50 > 100 µM against human fibroblasts. Mechanistic studies on the mode of inhibition of the biotinylated selenocyanate revealed (Annexin-V assay) a remarkable increase in the number of apoptotic cells compared to the control experiment; moreover, depolarization of the mitochondrial membrane was detected by flow cytometry analysis, and with fluorescent microscopy, what supports the apoptotic cell death. Prior to the apoptotic events, cytostatic effects were observed against SW1573 cells using label-free cell-living imaging; therefore, tumour cell division was prevented. Multidrug resistant cell lines exhibited a reduced sensitivity towards the biotinylated selenocyanate, probably due to its P-gp-mediated efflux. Remarkably, antiproliferative levels could be restored by co-administration with tariquidar, a P-gp inhibitor; this approach can, therefore, overcome multidrug resistance mediated by the P-gp efflux system.
Collapse
Affiliation(s)
- Jesús M Roldán-Peña
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain
| | - Jelena Dinić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Sofija Jovanović Stojanov
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain
| | - Francisco J Hicke
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain
| | - Atreyee Mishra
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Akkharadet Piyasaengthong
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK; Bioscience Program, Faculty of Science, Kasetsart University, Bangkok 10900, Chatuchak, Thailand
| | - Inés Maya
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain
| | - James W Walton
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain.
| | - José G Fernández-Bolaños
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain.
| | - Óscar López
- Organic Chemistry Department, Faculty of Chemistry, University of Seville, PO box 1203, E-41071 Seville, Spain.
| |
Collapse
|
39
|
Juszczak M, Das S, Kosińska A, Rybarczyk-Pirek AJ, Wzgarda-Raj K, Tokarz P, Vasudevan S, Chworos A, Woźniak K, Rudolf B. Piano-stool ruthenium(II) complexes with maleimide and phosphine or phosphite ligands: synthesis and activity against normal and cancer cells. Dalton Trans 2023; 52:4237-4250. [PMID: 36897334 DOI: 10.1039/d2dt04083b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In these studies, we designed and investigated cyto- and genotoxic potential of five ruthenium cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All of the complexes were characterized with spectroscopic analysis (NMR, FT-IR, ESI-MS, UV-vis, fluorescence and XRD (for two compounds)). For biological studies, we used three types of cells - normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and doxorubicin-resistance HL-60 cells (HL-60/DR). We compared the results obtained with those obtained for the complex with maleimide ligand CpRu(CO)2(η1-N-maleimidato) 1, which we had previously reported. We observed that the complexes CpRu(CO)(PPh3)(η1-N-maleimidato) 2a and CpRu(CO)(P(OEt)3)(η1-N-maleimidato) 3a were the most cytotoxic for HL-60 cells and non-cytotoxic for normal PBM cells. However, complex 1 was more cytotoxic for HL-60 cells than complexes 2a and 3a (IC50 = 6.39 μM vs. IC50 = 21.48 μM and IC50 = 12.25 μM, respectively). The complex CpRu(CO)(P(OPh)3)(η1-N-maleimidato) 3b is the most cytotoxic for HL-60/DR cells (IC50 = 104.35 μM). We found the genotoxic potential of complexes 2a and 3a only in HL-60 cells. These complexes also induced apoptosis in HL-60 cells. Docking studies showed that complexes 2a and CpRu(CO)(P(Fu)3)(η1-N-maleimidato) 2b have a small ability to degrade DNA, but they may cause a defect in DNA damage repair mechanisms leading to cell death. This hypothesis is corroborated with the results obtained in the plasmid relaxation assay in which ruthenium complexes bearing phosphine and phosphite ligands induce DNA breaks.
Collapse
Affiliation(s)
- Michał Juszczak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Genetics, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Sujoy Das
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland.
| | - Aneta Kosińska
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland.
| | - Agnieszka J Rybarczyk-Pirek
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Pomorska 163/165, 90-236 Lodz, Poland
| | - Kinga Wzgarda-Raj
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Pomorska 163/165, 90-236 Lodz, Poland
| | - Paulina Tokarz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Genetics, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Saranya Vasudevan
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Katarzyna Woźniak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Genetics, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Bogna Rudolf
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403 Lodz, Poland.
| |
Collapse
|
40
|
Sharma VK, Assaraf YG, Gross Z. Hallmarks of anticancer and antimicrobial activities of corroles. Drug Resist Updat 2023; 67:100931. [PMID: 36739808 DOI: 10.1016/j.drup.2023.100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corroles provide a remarkable opportunity for the development of cancer theranostic agents among other porphyrinoids. While most transition metal corrole complexes are only therapeutic, post-transition metallocorroles also find their applications in bioimaging. Moreover, corroles exhibit excellent photo-physicochemical properties, which can be harnessed for antitumor and antimicrobial interventions. Nevertheless, these intriguing, yet distinct properties of corroles, have not attained sufficient momentum in cancer research. The current review provides a comprehensive summary of various cancer-relevant features of corroles ranging from their structural and photophysical properties, chelation, protein/corrole interactions, to DNA intercalation. Another aspect of the paper deals with the studies of corroles conducted in vitro and in vivo with an emphasis on medical imaging (optical and magnetic resonance), photo/sonodynamic therapies, and photodynamic inactivation. Special attention is also given to a most recent finding that shows the development of pH-responsive phosphorus corrole as a potent antitumor drug for organelle selective antitumor cytotoxicity in preclinical studies. Another biomedical application of corroles is also highlighted, signifying the application of water-soluble and completely lipophilic corroles in the photodynamic inactivation of microorganisms. We strongly believe that future studies will offer a greater possibility of utilizing advanced corroles for selective tumor targeting and antitumor cytotoxicity. In the line with future developments, an ideal pipeline is envisioned on grounds of cancer targeting nanoparticle systems upon decoration with tumor-specific ligands. Hence, we envision that a bright future lies ahead of corrole anticancer research and therapeutics.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
41
|
Mendrina T, Poetsch I, Schueffl H, Baier D, Pirker C, Ries A, Keppler BK, Kowol CR, Gibson D, Grusch M, Berger W, Heffeter P. Influence of the Fatty Acid Metabolism on the Mode of Action of a Cisplatin(IV) Complex with Phenylbutyrate as Axial Ligands. Pharmaceutics 2023; 15:677. [PMID: 36839999 PMCID: PMC9967619 DOI: 10.3390/pharmaceutics15020677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
For a variety of cancer types, platinum compounds are still among the best treatment options. However, their application is limited by side effects and drug resistance. Consequently, multi-targeted platinum(IV) prodrugs that target specific traits of the malignant tissue are interesting new candidates. Recently, cisPt(PhB)2 was synthesized which, upon reduction in the malignant tissue, releases phenylbutyrate (PhB), a metabolically active fatty acid analog, in addition to cisplatin. In this study, we in-depth investigated the anticancer properties of this new complex in cell culture and in mouse allograft experiments. CisPt(PhB)2 showed a distinctly improved anticancer activity compared to cisplatin as well as to PhB alone and was able to overcome various frequently occurring drug resistance mechanisms. Furthermore, we observed that differences in the cellular fatty acid metabolism and mitochondrial activity distinctly impacted the drug's mode of action. Subsequent analyses revealed that "Warburg-like" cells, which are characterized by deficient mitochondrial function and fatty acid catabolism, are less capable of coping with cisPt(PhB)2 leading to rapid induction of a non-apoptotic form of cell death. Summarizing, cisPt(PhB)2 is a new orally applicable platinum(IV) prodrug with promising activity especially against cisplatin-resistant cancer cells with "Warburg-like" properties.
Collapse
Affiliation(s)
- Theresa Mendrina
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Isabella Poetsch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Dina Baier
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Alexander Ries
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bernhard K. Keppler
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Christian R. Kowol
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, 1090 Vienna, Austria
| |
Collapse
|
42
|
Li J, Chen M, Jiang J, Huang J, Chen H, Pan L, Nesterov DS, Ma Z, Pombeiro AJL. A New Concept of Enhancing the Anticancer Activity of Manganese Terpyridine Complex by Oxygen-Containing Substituent Modification. Int J Mol Sci 2023; 24:ijms24043903. [PMID: 36835315 PMCID: PMC9963696 DOI: 10.3390/ijms24043903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Eleven manganese 4'-substituted-2,2':6',2″-terpyridine complexes (1a-1c and 2a-2h) with three non-oxygen-containing substituents (L1a-L1c: phenyl, naphthalen-2-yl and naphthalen-1-yl, L1a-L1c) and eight oxygen-containing substituents (L2a-L2h: 4-hydroxyl-phenyl, 3-hydroxyl-phenyl, 2-hydroxyl-phenyl, 4-methoxyl-phenyl, 4-carboxyl-phenyl, 4-(methylsulfonyl)phenyl, 4-nitrophenyl and furan-2-yl) were prepared and characterized by IR, elemental analysis or single crystal X-ray diffraction. In vitro data demonstrate that all of these show higher antiproliferative activities than cisplatin against five human carcinoma cell lines: A549, Bel-7402, Eca-109, HeLa and MCF-7. Compound 2d presents the strongest antiproliferative effect against A549 and HeLa cells, with IC50 values being 0.281 μM and 0.356 μM, respectively. The lowest IC50 values against Bel-7402 (0.523 μM) Eca-109 (0.514 μM) and MCF-7 (0.356 μM) were obtained for compounds 2h, 2g and 2c, respectively. Compound 2g with a nitro group showed the best results on the whole, with relevantly low IC50 values against all the tested tumor cells. The DNA interactions with these compounds were studied by circular dichroism spectroscopic and molecular modeling methods. Spectrophotometric results revealed that the compounds have strong affinities in binding with DNA as intercalators, and the binding induces DNA conformational transition. Molecular docking studies indicate that the binding is contributed by the π-π stacking and hydrogen bonds. The anticancer activities of the compounds are correlated with their DNA binding ability, and the modification of oxygen-containing substituents significantly enhanced the anticancer activity, which could provide a new rationale for the future design of terpyridine-based metal complexes with antitumor potential.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Min Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jinzhang Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jieyou Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (L.P.); or (Z.M.)
| | - Dmytro S. Nesterov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Correspondence: (L.P.); or (Z.M.)
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
| |
Collapse
|
43
|
Dömötör O, Teixeira RG, Spengler G, Avecilla F, Marques F, Lenis-Rojas OA, Matos CP, de Almeida RFM, Enyedy ÉA, Tomaz AI. Ruthenium(II) polypyridyl complexes with benzothiophene and benzimidazole derivatives: Synthesis, antitumor activity, solution studies and biospeciation. J Inorg Biochem 2023; 238:112058. [PMID: 36375357 DOI: 10.1016/j.jinorgbio.2022.112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
With the aim to incorporate pharmacophore motifs into the Ru(II)-polypyridyl framework, compounds [Ru(II)(1,10-phenantroline)2(2-(2-pyridyl)benzo[b]thiophene)](CF3SO3)2 (1) and [Ru(II)(1,10-phenantroline)2(2-(2-pyridyl)benzimidazole)](CF3SO3)2 (2) were prepared, characterized and tested for their antitumor potential. The solid-state structure of the compounds was confirmed by single-crystal X-ray diffraction analysis. The solution behavior of both complexes was investigated, namely their solubility, stability, and lipophilicity in physiological mimetic conditions, as well as an eventual uptake by passive diffusion. In vitro anticancer activity of the complexes on ovarian and different colon cancer cells and apoptosis induction by the complexes were studied. A slow transformation process was observed for complex 1 in aqueous solution when exposed to sunlight, while complex 2 undergoes deprotonation (pKa = 7.59). The lipophilicity of this latter complex depends strongly on the pH and ionic strength. In contrast, 1 is rather hydrophilic under various conditions. Complex 1 was highly cytotoxic on Colo-205 human colon (IC50 = 7.87 μM) and A2780 ovarian (IC50 = 2.2 μM) adenocarcinoma cell lines, while 2 displayed moderate anticancer activity (30.9 μM and 18.0 μM, respectively). The complexes induced late apoptosis and necrosis. Only a weak binding of the complexes to human serum albumin, the main transport protein in blood serum, was found. However, a more significant binding to calf thymus DNA was observed in UV-visible titrations and fluorometric dye displacement studies. Detailed analysis of fluorescence lifetime data collected for the latter systems reveals not only the partial intercalation of the complexes, but goes beyond the usual simplified interpretations.
Collapse
Affiliation(s)
- Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| | - Ricardo G Teixeira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruña, 15071A Coruña, Spain
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Ciências e Engenharia Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN 10 (km 139,7), 2695-066 Bobadela, Loures, Portugal
| | - Oscar A Lenis-Rojas
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Cristina P Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Ana Isabel Tomaz
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal.
| |
Collapse
|
44
|
Su Y, Zhang Z, Lee LTO, Peng L, Lu L, He X, Zhang X. Amphiphilic Dendrimer Doping Enhanced pH-Sensitivity of Liposomal Vesicle for Effective Co-delivery toward Synergistic Ferroptosis-Apoptosis Therapy of Hepatocellular Carcinoma. Adv Healthc Mater 2023; 12:e2202663. [PMID: 36653312 DOI: 10.1002/adhm.202202663] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Ferroptosis, characterized by the accumulation of reactive oxygen species and lipid peroxides, has emerged as an attractive strategy to reverse drug resistance. Of particular interest is the ferroptosis-apoptosis combination therapy for cancer treatment. Herein, a nanoplatform is reported for effective co-delivery of the anticancer drug sorafenib (S) and the ferroptosis inducer hemin (H), toward synergistic ferroptosis-apoptosis therapy of advanced hepatocellular carcinoma (HCC) as a proof-of-concept study. Liposome is an excellent delivery system; however, it is not sufficiently responsive to the acidic tumor microenvironment (TME) for tumor-targeted drug delivery. The pH-sensitive vesicles are therefore developed (SH-AD-L) by incorporating amphiphilic dendrimers (AD) into liposomes for controlled and pH-stimulated release of sorafenib and hemin in the acidic TME, thanks to the protonation of numerous amine functionalities in AD. Importantly, SH-AD-L not only blocked glutathione synthesis to disrupt the antioxidant system, but also increased intracellular Fe2+ and ·OH concentrations to amplify oxidative stress, both of which contribute to enhanced ferroptosis. Remarkably, high levels of ·OH also augmented sorafenib-mediated apoptosis in tumor cells. This study demonstrates the efficacy of ferroptosis-apoptosis combination therapy, as well as the promise of the AD-doped TME-responsive vesicles for drug delivery in combination therapy to treat advanced HCC.
Collapse
Affiliation(s)
- Yanhong Su
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, P. R. China.,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Zhao Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, P. R. China
| | - Leo Tsz On Lee
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, P. R. China.,MOE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau, 999078, P. R. China
| | - Ling Peng
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Xu He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, P. R. China.,MOE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau, 999078, P. R. China
| |
Collapse
|
45
|
(Salen)osmium(VI) nitrides catalyzed glutathione depletion in chemotherapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Van Thong P, Van Meervelt L, Chi NTT. Cyclometalated platinum(II) complexes bearing natural arylolefin and quinolines ligands: Synthesis, characterizations, and in vitro cytotoxicity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Liang L, Wu X, Shi C, Wen H, Wu S, Chen J, Huang C, Wang Y, Liu Y. Synthesis and characterization of polypyridine ruthenium(II) complexes and anticancer efficacy studies in vivo and in vitro. J Inorg Biochem 2022; 236:111963. [PMID: 35988387 DOI: 10.1016/j.jinorgbio.2022.111963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
In this article, ligand IPP (IPP = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline) and its three Ru(II) complexes: [Ru(bpy)2(IPP)](ClO4)2 (1) (bpy = 2,2'-bipyridine), [Ru(dmbpy)2(IPP)](ClO4)2 (2) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), and [Ru(phen)2(IPP)](ClO4)2 (3) (phen = 1,10-phenanthroline) were synthesized and characterized. The anticancer activity in vitro of the complexes was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The scratching and colony-forming experiments confirmed the complexes 1, 2, 3 interfered with the proliferation and migration ability of cells. The accumulation of the complexes in cells was researched and we found that these complexes directly accumulated in mitochondria, then the complexes cause a decline of the mitochondrial membrane potential and induce an increase of intracellular reactive oxygen species (ROS) levels. The growth of B16 cells were inhibited by 1, 2 and 3 at G0/G1 phase. Apoptosis was induced through mitochondrial pathway and the expression of apoptosis-related factors was regulated. In addition, the complexes promoted the transition of poly(ADP-ribose)polymerase (PARP) into the cleaved form (Cleaved PARP), downregulated the anti-apoptotic proteins, and upregulated the pro-apoptotic proteins. Consequently, complexes 1, 2 and 3 exerted their anticancer activity by regulating B-cell lymphoma-2 (Bcl-2) family proteins. Complex 2 showed excellent antitumor effects with a high inhibitory rate of 65.95% in vivo. Taken together, the complexes cause apoptosis in B16 cells through a ROS-mediated mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoyun Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chuanling Shi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haoyu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shouhai Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China.
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
48
|
Electrochemical determination of glucose and H2O2 using Co(II), Ni(II), Cu(II) complexes of novel 2-(1,3-benzothiazol-2-ylamino)–N-(5-chloro-2-hydroxyphenyl)acetamide: Synthesis, structural characterization, antimicrobial, anticancer activity and docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Morán-Serradilla C, Angulo-Elizari E, Henriquez-Figuereo A, Sanmartín C, Sharma AK, Plano D. Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses? Metabolites 2022; 12:874. [PMID: 36144278 PMCID: PMC9504997 DOI: 10.3390/metabo12090874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se activity is related to multiple factors, such as its chemical form, dose, and its metabolism. The understanding of its complex biochemistry is necessary as it has been demonstrated that the metabolites of the Se molecules used to be the ones that exert the biological activity. Therefore, the aim of this review is to summarize the recent information about its most remarkable metabolites of acknowledged biological effects: hydrogen selenide (HSe-/H2Se) and methylselenol (CH3SeH). In addition, special attention is paid to the main seleno-containing precursors of these derivatives and their role in different pathologies.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Eduardo Angulo-Elizari
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
50
|
Xin S, Mao J, Cui K, Li Q, Chen L, Li Q, Tu B, Liu X, Wang T, Wang S, Liu J, Song X, Song W. A cuproptosis-related lncRNA signature identified prognosis and tumour immune microenvironment in kidney renal clear cell carcinoma. Front Mol Biosci 2022; 9:974722. [PMID: 36188220 PMCID: PMC9515514 DOI: 10.3389/fmolb.2022.974722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is a heterogeneous malignant tumor with high incidence, metastasis, and mortality. The imbalance of copper homeostasis can produce cytotoxicity and cause cell damage. At the same time, copper can also induce tumor cell death and inhibit tumor transformation. The latest research found that this copper-induced cell death is different from the known cell death pathway, so it is defined as cuproptosis. We included 539 KIRC samples and 72 normal tissues from the Cancer Genome Atlas (TCGA) in our study. After identifying long non-coding RNAs (lncRNAs) significantly associated with cuproptosis, we clustered 526 KIRC samples based on the prognostic lncRNAs and obtained two different patterns (Cuproptosis.C1 and C2). C1 indicated an obviously worse prognostic outcome and possessed a higher immune score and immune cell infiltration level. Moreover, a prognosis signature (CRGscore) was constructed to effectively and accurately evaluate the overall survival (OS) of KIRC patients. There were significant differences in tumor immune microenvironment (TIME) and tumor mutation burden (TMB) between CRGscore-defined groups. CRGscore also has the potential to predict medicine efficacy.
Collapse
Affiliation(s)
- Sheng Xin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jiaquan Mao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qian Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bocheng Tu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaodong Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xiaodong Song, ; Wen Song,
| | - Wen Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xiaodong Song, ; Wen Song,
| |
Collapse
|