1
|
Jiang H, Hou R, Wu X, Ding K, Zhu Y, Wang H, Ding J, Xu J. DNA-methylation-mediated silencing of lncRNA PP7080 promotes the progression of gastric cancer by regulating ANKRD1 expression. Transl Oncol 2025; 59:102440. [PMID: 40516143 DOI: 10.1016/j.tranon.2025.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 05/18/2025] [Accepted: 06/05/2025] [Indexed: 06/16/2025] Open
Abstract
Gastric cancer (GC) is a major public health issue due to its high morbidity and mortality rates. The role of long noncoding RNAs (lncRNAs) in GC progression has received extensive attention. However, the underlying mechanisms by which lncRNAs mediates GC development remain poorly characterized. Through the analysis of database and the detection of GC tissue samples, we found that the expression of lncRNA PP7080 was significantly downregulated in GC. Moreover, an abnormally high level of DNA methylation was detected within the promoter region of lncRNA PP7080 in GC by bioinformatics analysis and bisulfite sequencing. Functional experiments indicated that overexpression of PP7080 inhibited GC cell proliferation and migration, induced cell apoptosis and decreased tumorigenicity in nude mice. Further RNA sequencing revealed that ankyrin repeat protein 1 (ANKRD1) was the crucial target of PP7080. Mechanistically, PP7080 executed its functions via promoting ubiquitination of EZH2 and sponging miR-3614-5p to regulate the downstream target gene ANKRD1. Taken together, these findings suggest that PP7080 is a novel and effective biomarker for GC therapy and may facilitate the development of lncRNA-directed diagnostics and therapeutics against GC.
Collapse
Affiliation(s)
- Huning Jiang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Rui Hou
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Xi Wu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Kun Ding
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yiyao Zhu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Huiyu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Junli Ding
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| |
Collapse
|
2
|
Gong L, Wu L, Zhao S, Xiao S, Chu X, Zhang Y, Li F, Li S, Yang H, Jiang P. Epigenetic regulation of ferroptosis in gastrointestinal cancers (Review). Int J Mol Med 2025; 55:93. [PMID: 40242977 PMCID: PMC12045471 DOI: 10.3892/ijmm.2025.5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Ferroptosis is a type of iron‑dependent cell death characterized by excessive lipid peroxidation and may serve as a potential therapeutic target in cancer treatment. While the mechanisms governing ferroptosis continue to be explored and elucidated, an increasing body of research highlights the significant impact of epigenetic modifications on the sensitivity of cancer cells to ferroptosis. Epigenetic processes, such as DNA methylation, histone modifications and non‑coding RNAs, have been identified as key regulators that modulate the expression of ferroptosis‑related genes. These alterations can either enhance or inhibit the sensitivity of gastrointestinal cancer (GIC) cells to ferroptosis, thereby affecting the fate of GICs. Drugs that target epigenetic markers for advanced‑stage cancer have shown promising results in enhancing ferroptosis and inhibiting tumor growth. This review explores the intricate relationship between epigenetic regulation and ferroptosis in GICs. Additionally, the potential of leveraging epigenetic modifications to trigger ferroptosis in GICs is investigated. This review highlights the importance of further research to elucidate the specific mechanisms underlying epigenetic control of ferroptosis and to advance the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Linlin Wu
- Oncology Department, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Shiyuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong 272000, P.R. China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, Shandong 272000, P.R. China
| | - Shuai Xiao
- Department of Intensive Care Medicine, Tengzhou Central People's Hospital, Jining Medical University, Tengzhou, Shandong 277500, P.R. China
| | - Xue Chu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong 272000, P.R. China
| | - Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Fengfeng Li
- Neurosurgery Department, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Shuhui Li
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Hui Yang
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong 272000, P.R. China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, Shandong 272000, P.R. China
| |
Collapse
|
3
|
Zhang J, Wei X, Xie Y, Peng S, Yang P, Chen Y, Huang X, Wu J, Hong L, Guo Z, Huang X, Lin Z, Zhi F, Liu S, Xiang L, Lin J, Li A, Wang J. Long non-coding RNA-MIR181A1HG acts as an oncogene and contributes to invasion and metastasis in gastric cancer. Oncogene 2025; 44:1517-1529. [PMID: 40044982 PMCID: PMC12075001 DOI: 10.1038/s41388-025-03323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 05/15/2025]
Abstract
Dysregulation of long non-coding RNAs (lncRNA) plays an essential role in cancer development and progression. However, their functions and mechanisms of action in gastric cancer (GC) remain largely unknown. Gene expression in GC was evaluated using quantitative real-time PCR, western blotting, immunofluorescence, immunohistochemistry, and RNA in situ hybridization. The impact of MIR181A1HG on GC cells was explored in vitro and in vivo using cell proliferation, migration, invasion assays and animal models. Biotinylated RNA pull-down, RNA immunoprecipitation, co-immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter assays were performed to evaluate the molecular interactions. LncRNA-MIR181A1HG was upregulated in GC and associated with malignant progression. MIR181A1HG physically interacts with ELAVL1 to regulate epithelial-mesenchymal transition (EMT) in GC cells. MIR181A1HG intron-derived miR-181a-5p/miR-181b-5p triggers MIR181A1HG transcription through binding to and destabilizing SOCS3 messenger RNA. Specifically, SOCS3 interacts with NFATC2 and downregulated SOCS3 enhances the NFATC2-mediated transcriptional activation of the MIR181A1HG promoter. Collectively, MIR181A1HG, activated by miR-181a-5p/miR-181b-5p-SOCS3-NFATC2 positive feedback loop, contributes to GC progression through stabilizing ELAVL1. MIR181A1HG expression correlates positively with ELAVL1, miR-181a-5p, miR-181b-5p, and NFATC2 and negatively with SOCS3 in fresh GC samples. These data demonstrate that MIR181A1HG plays an important role in tumor progression by promoting invasion, metastasis, and EMT, indicating its potential as a prognostic biomarker in GC.
Collapse
Affiliation(s)
- Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiangyang Wei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanci Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siyang Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yidong Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaodong Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jieke Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zheng Guo
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518000, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510000, China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Li Xiang
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Jianjiao Lin
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
4
|
Fan B, Wang L, Hu T, Zheng L, Wang J. Exosomal miR-196a-5p Secreted by Bone Marrow Mesenchymal Stem Cells Inhibits Ferroptosis and Promotes Drug Resistance of Acute Myeloid Leukemia. Antioxid Redox Signal 2025. [PMID: 40388337 DOI: 10.1089/ars.2024.0882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Background: Ferroptosis is a nonapoptotic type of cell death characterized by an increase in lipid reactive oxygen species (ROS). Acute myeloid leukemia (AML)-derived bone marrow mesenchymal stem cells (AML-BMSCs) support the progression and drug resistance of AML by secreting various bioactive substances, including exosomes. However, the role of BMSCs in regulating lipid metabolism and ferroptosis in AML remains unexplored. Results: Exosomes secreted by AML-BMSCs increased the expression of miR-196a-5p in AML cells. MiR-196a-5p promoted the proliferation of AML cells, reduced lipid ROS and ferroptosis, and was associated with poor prognosis in AML patients. Mechanistically, miR-196a-5p inhibited the expression level of neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L). Co-immunoprecipitation (CO-IP) analysis showed that NEDD4L was bound to long-chain acyl-CoA synthetase (ACSL)3 and promoted ubiquitin-mediated degradation of ACSL3 protein. In addition, we also demonstrated that AML-BMSCs highly expressed Ras-associated binding protein 7A (RAB7A), which was associated with exosomal miR-196a-5p release. Importantly, cytarabine (Ara-C) activated the expression of RAB7A and promoted the secretion of exosomal miR-196a-5p, which weakened the ubiquitination of ACSL3 by NEDD4L, leading to ferroptosis inhibition and Ara-C resistance in AML. Innovation: This is the first time that exosomes secreted by BMSCs (BMSCs-exos) have been linked to ferroptosis in AML cells, thereby expanding our understanding of the mechanism of drug resistance in AML cells. High miR-196a-5p expression reduced lipid ROS levels and ferroptosis in AML cells by inhibiting NEDD4L-mediated ubiquitination of ACSL3. Conclusion: This study identified a new network through which BMSCs-exos regulate ferroptosis in AML cells. We combined BMSCs and AML cells to provide new ideas for drug research targeting exosome secretion and ferroptosis. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Bingjie Fan
- Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, China
| | - Li Wang
- Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tianzhen Hu
- Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lin Zheng
- Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Liu J, Gao S, Liu X, Dong J, Zhen D, Liu T. Exosomes: their role and therapeutic potential in overcoming drug resistance of gastrointestinal cancers. Front Oncol 2025; 15:1540643. [PMID: 40432919 PMCID: PMC12106034 DOI: 10.3389/fonc.2025.1540643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Gastrointestinal cancers are prevalent malignant neoplasms in clinical medicine. The development of drug resistance in gastrointestinal cancers result in tumor recurrence and metastasis and greatly diminish the efficacy of treatment. Exosomes, as the shuttle of intercellular molecular cargoes in tumor micro-environment, secreted from tumor and stromal cells mediate drug resistance by regulating epithelial-mesenchymal transition, drug efflux, stem-like phenotype and cell metabolism. Meanwhile, exosomes have already received tremendous attention in biomedical study as potential drug resistant biomarkers as well as treatment strategy in gastrointestinal cancers. Primary challenge to implement this potential is the ability to obtain high-grade exosomes efficiently; however, exosomes lack standard protocols for their processing and characterization. Furthermore, this field suffers from insufficient standardized reference materials and workflow for purification, detection and analysis of exosomes with defined biological properties. This review summarize the unique biogenesis, composition and novel detection methods of exosomes and informed the underlying correlation between exosomes and drug resistance of gastrointestinal cancers. Moreover, the clinical applications of exosomes are also summarized, might providing novel therapy for the individual treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Jiulian Liu
- Department of Anorectal Surgery, The Fourth People’s Hospital of Jinan, Jinan, China
| | - Shanyu Gao
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoming Liu
- Department of Health Care, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxin Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dingwei Zhen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Department of Clinical Laboratory, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| |
Collapse
|
6
|
Liu G, Liu J, Li S, Zhang Y, He R. Exosome-Mediated Chemoresistance in Cancers: Mechanisms, Therapeutic Implications, and Future Directions. Biomolecules 2025; 15:685. [PMID: 40427578 PMCID: PMC12108986 DOI: 10.3390/biom15050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Chemotherapy resistance represents a formidable obstacle in oncological therapeutics, substantially compromising the efficacy of adjuvant chemotherapy regimens and contributing to unfavorable clinical prognoses. Emerging evidence has elucidated the pivotal involvement of exosomes in the dissemination of chemoresistance phenotypes among tumor cells and within the tumor microenvironment. This review delineates two distinct intra-tumoral resistance mechanisms orchestrated by exosomes: (1) the exosome-mediated sequestration of chemotherapeutic agents coupled with enhanced drug efflux in neoplastic cells, and (2) the horizontal transfer of chemoresistance to drug-sensitive cells through the delivery of bioactive molecular cargo, thereby facilitating the propagation of resistance phenotypes across the tumor population. Furthermore, the review covers current in vivo experimental data focusing on targeted interventions against specific genetic elements and exosomal secretion pathways, demonstrating their potential in mitigating chemotherapy resistance. Additionally, the therapeutic potential of inhibiting exosome-mediated transporter transfer strategy is particularly examined as a promising strategy to overcome tumor resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | - Yumiao Zhang
- School of Chemical Engineering and Technology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (Ministry of Education) and State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300350, China; (G.L.); (J.L.); (S.L.)
| | - Ren He
- School of Chemical Engineering and Technology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (Ministry of Education) and State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300350, China; (G.L.); (J.L.); (S.L.)
| |
Collapse
|
7
|
Liu N, Wu T, Han G, Chen M. Exosome-mediated ferroptosis in the tumor microenvironment: from molecular mechanisms to clinical application. Cell Death Discov 2025; 11:221. [PMID: 40328736 PMCID: PMC12056189 DOI: 10.1038/s41420-025-02484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Ferroptosis in the tumor microenvironment (TME) plays a crucial role in the development, metastasis, immune escape, and drug resistance of various types of cancer. A better understanding of ferroptosis in the TME could illuminate novel aspects of this process and promote the development of targeted therapies. Compelling evidence indicates that exosomes are key mediators in regulating the TME. In this respect, it is now understood that exosomes can deliver biologically functional molecules to recipient cells, influencing cancer progression by reprogramming the metabolism of cancer cells and their surrounding stromal cells through ferroptosis. In this review, we focus on the role of exosomes in the TME and describe how they contribute to tumor reprogramming, immunosuppression, and the formation of pre-metastatic niches through ferroptosis. In addition, we highlight exosome-mediated ferroptosis as a potential target for cancer therapy and discuss strategies employing exosomes in ferroptosis treatment. Finally, we outline the current applications and challenges of targeted exosome-mediated ferroptosis therapy in tumor immunotherapy and chemotherapy. Our aim is to advance research on the link between exosomes and ferroptosis in the TME, and we pose questions to guide future studies in this area.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Tianqing Wu
- XJTLU Wisdom Lake Academy of Pharmacy, Suzhou, Jiangsu Province, China
| | - Guohu Han
- Department of Oncology, Jingjiang People's Hospital Affiliated with Yangzhou University, Jingjiang, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
8
|
Liu M, Li TZ, Xu C. The role of tumor-associated fibroblast-derived exosomes in chemotherapy resistance of colorectal cancer and its application prospect. Biochim Biophys Acta Gen Subj 2025; 1869:130796. [PMID: 40122307 DOI: 10.1016/j.bbagen.2025.130796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer (CRC) is the second most common malignant tumor in the world. With its increasing incidence and younger age trend, its impact on human health has been paid more and more attention. Currently, we have a variety of chemotherapy drugs that can be used to treat colorectal cancer. However, the drug resistance of colorectal cancer has become a significant factor affecting its cure rate. Some studies have reported that exosomes are related to the occurrence of drug resistance. However, the exact mechanism is not precise. Therefore, we focused on the role of cancer associated-fibroblast-derived (CAFs-derived) exosomes in colorectal progression. It was found that cancer cells transmit information through exosome interaction and induce chemotherapy resistance by promoting epithelial-mesenchymal transition (EMT), up-regulating the Wnt/β-catenin signaling pathway, transforming growth factor-β1 (TGF-β1) pathway, promoting angiogenesis and other possible molecular mechanisms. In addition, in terms of clinical significance and therapeutic strategies, we explore the clinical relevance of CAFs-derived exosomes in colorectal cancer patients and their potential as potential biomarkers for predicting chemotherapy response. We also provide a new possible direction for overcoming chemotherapy resistance in colorectal cancer by targeting CAFs-derived exosomes.
Collapse
Affiliation(s)
- Meichen Liu
- The Second Clinical Medical College, Nanchang University, NanChang, China
| | - Teng-Zheng Li
- Department of Gastroenterology, The second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, NanChang, China
| | - Congcong Xu
- Department of Cardiovascular Medicine, The second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, NanChang, China.
| |
Collapse
|
9
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Joshi KK, Sameer HN, Yaseen A, Athab ZH, Adil M. The hidden messengers: Tumor microenvironment-derived exosomal ceRNAs in gastric cancer progression. Pathol Res Pract 2025; 269:155905. [PMID: 40073646 DOI: 10.1016/j.prp.2025.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in the development and progression of gastric cancer (GC). The TME comprises a network of cancer cells, immune cells, fibroblasts, endothelial cells, and extracellular matrix components, which provide a supportive niche for cancer cells. This study investigates the role of TME-derived exosomal competitive endogenous RNAs (ceRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as major regulating agents in GC development. Exosomal ceRNAs control gene expression across several TME components, amplifying cancer hallmarks like cell proliferation, invasion, metastases, and chemoresistance. They promote dynamic interplay between cancer cells and adjacent stromal cells, enabling tumor development through immune suppression, angiogenesis, and epithelial-mesenchymal transition (EMT). Exosomal ceRNAs can modify the TME, creating a pro-tumorigenic milieu and preparing cancer cells to avoid immunological responses, defy death, and adapt to therapeutic pressures. This review highlights the understudied interactions between the TME and exosomal ceRNAs in gastric cancer and emphasizes their potential utility as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand 248002, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
10
|
Ma C, Hu H, Liu H, Zhong C, Wu B, Lv C, Tian Y. Lipotoxicity, lipid peroxidation and ferroptosis: a dilemma in cancer therapy. Cell Biol Toxicol 2025; 41:75. [PMID: 40285867 PMCID: PMC12033115 DOI: 10.1007/s10565-025-10025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
The vulnerability of tumor cells to lipid peroxidation, driven by redox imbalance and lipid overabundance within the tumor microenvironment (TME), has become a focal point for novel antitumor strategies. Ferroptosis, a form of regulated cell death predicated on lipid peroxidation, is emerging as a promising approach. Beyond their role in directly eliminating tumor cells, lipid peroxidation and its products, such as 4-hydroxynonenal (HNE), exert an additional influence by damaging DNA and shaping an environment conducive to tumor growth and metastasis. This process polarizes macrophages towards a pro-inflammatory phenotype, dampens the antigen-presenting capacity of dendritic cells (DCs), and undermines the cytotoxic functions of T and NK cells. Furthermore, it transforms neutrophils into pro-tumorigenic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). The lipid peroxidation of stroma cells also contributes to tumor progression. Although advanced nanotherapies have shown the ability to target tumor cells precisely, they often overlook the nuanced effects of lipid peroxidation products. In this review, we highlight a synergistic mechanism in which lipid peroxidation products and ferroptosis contribute to an immunosuppressive state that is temporally distinct from cell death. This insight broadens our understanding of ferroptosis-derived immunosuppression, encompassing all types of immune cells within the TME. This review aims to catalyze further research in this underexplored area, emphasizing the potential of lipid peroxidation products to hinder the clinical translation of ferroptosis-based therapies.
Collapse
Affiliation(s)
- Chuhan Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Huixin Hu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Hao Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
11
|
Xia H, Liu H, Gong P, Li P, Xu Q, Zhang Q, Yang C, Meng Q. Applying bio-organic fertilizer improved saline alkaline soil properties and cotton yield in Xinjiang. Sci Rep 2025; 15:13235. [PMID: 40247074 PMCID: PMC12006539 DOI: 10.1038/s41598-025-97776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
Bio-organic fertilizers have demonstrated significant potential in enhancing saline-alkali soil properties, boosting crop yield, and reducing chemical fertilizer dependency. However, the extent of improvement and optimal application rates for varying saline-alkali soil conditions remain unclear. We conducted a 2-year field experiment (2022-2023) to evaluate the effects of different bio-organic fertilizer application rates on soil properties, nutrient availability, and cotton yield across three saline-alkali cotton fields with varying salinity levels 4.58, 9.07, and 12.76 g·kg⁻¹ (T1-T3). Four treatments were implemented, involving chemical fertilizer reductions of 0% (CK), 20% (F1), 40% (F2), and 60% (F3). Results indicated that, compared to CK, bio-organic fertilizer application reduced soil bulk density, salinity, and pH by an average of 15.84%, 53.86%, and 7.5%, respectively. Concurrently, soil moisture content, organic matter, nitrogen, phosphorus, potassium, and cotton yield increased by 36.72%, 58.4%, 59.4%, 77.9%, 88.7%, and 50.32%, respectively. Notably, the improvements in soil properties and cotton yield were more pronounced in 2023 compared to 2022. Principal component analysis revealed that a 60% bio-organic fertilizer application rate was optimal for mild, moderate, and severely salinized cotton fields. These findings provide a scientific basis for reducing chemical fertilizer use while improving the productivity and sustainability of saline-alkali soils.
Collapse
Affiliation(s)
- Hanji Xia
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi, 832000, China
| | - Hongguang Liu
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi, 832000, China.
| | - Ping Gong
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi, 832000, China
| | - Pengfei Li
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi, 832000, China
| | - Qiang Xu
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi, 832000, China
| | - Qian Zhang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi, 832000, China
| | - Changkun Yang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi, 832000, China
| | - Qiang Meng
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi, 832000, China
| |
Collapse
|
12
|
Li X, Lu X, Liu M, Chen J, Lu X. Extracellular vesicles: messengers of cross-talk between gastric cancer cells and the tumor microenvironment. Front Cell Dev Biol 2025; 13:1561856. [PMID: 40309240 PMCID: PMC12040901 DOI: 10.3389/fcell.2025.1561856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Gastric cancer is a common malignancy characterized by an insidious onset and high mortality rate. Exosomes, a special type of extracellular vesicle, contain various bioactive molecules and have been found to play crucial roles in maintaining normal physiological functions and homeostasis in the body. Recent research has shown that the contents of exosome play a significant role in the progression and metastasis of gastric cancer through communication and regulatory functions. These mechanisms involve promoting gastric cancer cell proliferation and drug resistance. Additionally, other cells in the gastric cancer microenvironment can regulate the progression of gastric cancer through exosomes. These include exosomes derived from fibroblasts and immune cells, which modulate gastric cancer cells. Therefore, in this review, we provide a brief overview of recent advances in the contents and occurrence mechanisms of exosome. This review specifically focused on the regulatory mechanisms of exosomes derived from gastric cancer and other cellular subtypes in the tumor microenvironment. Subsequently, we summarize the latest research progress on the use of exosomes in liquid biopsy, discussing the potential of gastric cancer exosomes in clinical applications.
Collapse
Affiliation(s)
- Xiwen Li
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Xian Lu
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Mi Liu
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Junjie Chen
- Department of Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Xirong Lu
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| |
Collapse
|
13
|
Sun Y, Fang W, Peng J, Liu X, Wang C, Song L, Deng Z. Potential role of CFLAR in enhancing 5-FU sensitivity and modulating immune cell infiltration in breast cancer. Eur J Med Res 2025; 30:265. [PMID: 40211399 PMCID: PMC11983979 DOI: 10.1186/s40001-025-02532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Breast cancer (BRCA), the most common malignancy among women, is a highly heterogeneous disease. Chemoresistance is a major factor leading to treatment failure in BRCA. However, mechanisms underlying the development of chemoresistance remain unclear. METHODS In this study, we performed a comprehensive bioinformatic analysis to examine the role of cell death-associated genes in BRCA treatment. Specifically, we focused on caspase 8 and Fas-associated protein with death domain-like apoptosis regulator (CFLAR), which was identified as a co-differentially expressed cell death-associated molecule with potential prognostic values. We then validated these findings through in vitro experiments in BT- 549 and MDA-MB- 231 breast cancer cells. RESULTS Based on bioinformatics analysis, CFLAR expression was found to be downregulated in patients with BRCA, whereas its high expression was significantly associated with improved prognosis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that aberrantly expressed CFLAR was potentially associated with oxidative phosphorylation, T cell receptor signaling, and NADH dehydrogenase (ubiquinone) activity. In vitro experiments demonstrated that overexpression of CFLAR inhibited the generation of reactive oxygen species (ROS), consequently promoting 5-fluorouracil (5-FU) sensitivity in BT- 549 and MDA-MB- 231 breast cancer cells. The expression of CFLAR was positively correlated with the abundance of several tumor-infiltrating immune cells, especially CD8 + T cells, further supporting the role of CFLAR in immune regulation. CONCLUSION In conclusion, this study reveals the novel roles of CFLAR in enhancing chemotherapy sensitivity and patient outcome in BRCA and underscores its potential as a therapeutic target. These results supported CFLAR as a therapeutic target and prognostic biomarker in BRCA patients.
Collapse
Affiliation(s)
- Yuwei Sun
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Weilun Fang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Xingling Liu
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Chunjiang Wang
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Liying Song
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhenzhen Deng
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
14
|
Lu Y, Liu Y, Zuo X, Li G, Wang J, Liu J, Wang X, Wang S, Zhang W, Zhang K, Lei X, Hao Q, Li W, Liu L, Li M, Zhang C, Zhang HM, Zhang Y, Gao Y. CXCL12 + tumor-associated endothelial cells promote immune resistance in hepatocellular carcinoma. J Hepatol 2025; 82:634-648. [PMID: 39393439 DOI: 10.1016/j.jhep.2024.09.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND & AIMS The tumor microenvironment (TME) plays a crucial role in the limited efficacy of existing treatments for hepatocellular carcinoma (HCC), with tumor-associated endothelial cells (TECs) serving as fundamental TME components that substantially influence tumor progression and treatment efficacy. However, the precise roles and mechanisms of TECs in HCC remain inadequately understood. METHODS We employed a multi-omics profiling strategy to investigate the single-cell and spatiotemporal evolution of TECs within the microenvironment of HCC tumors, showcasing varied responses to immunotherapy. Through an analysis of a clinical cohort of patients with HCC, we explored the correlation between TEC subpopulations and immunotherapy outcomes. The influence of TEC subsets on the immune microenvironment was confirmed through comprehensive in vitro and in vivo studies. To further explore the mechanisms of distinct TEC subpopulations in microenvironmental modulation and their impact on immunotherapy, we utilized TEC subset-specific knockout mouse models as well as humanized mouse models. RESULTS In this study, we identified a new subset of CXCL12+ TECs that exert a crucial role in immune suppression within the HCC TME. Functionally, CXCL12+ TECs impede the differentiation of CD8+ naïve T cells into CD8+ cytotoxic T cells by secreting CXCL12. Furthermore, they attract myeloid-derived suppressor cells (MDSCs). A bispecific antibody was developed to target both CXCL12 and PD1 specifically, showing significant promise in bolstering anti-tumor immune responses and advancing HCC therapy. CONCLUSIONS CXCL12+ TECs are pivotal in mediating immunosuppression within the HCC microenvironment and targeting CXCL12+ TECs presents a promising approach to augment the efficacy of immunotherapies in patients with HCC. IMPACT AND IMPLICATIONS This investigation reveals a pivotal mechanism wherein CXCL12+ tumor-associated endothelial cells (TECs) emerge as crucial modulators of immune suppression in the tumor microenvironment of hepatocellular carcinoma (HCC). The discovery of CXCL12+ TECs as inhibitors of CD8+ naïve T cell activation and recruiters of myeloid-derived suppressor cells significantly advances our grasp of the dynamic between HCC and immune regulation. Moreover, the development and application of a bispecific antibody precisely targeting CXCL12 and PD1 has proven to enhance immune responses in a humanized mouse HCC model. This finding underscores a promising therapeutic direction for HCC, offering the potential to amplify the impact of current immunotherapies.
Collapse
Affiliation(s)
- Yajie Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China; The Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032 Xi'an, People's Republic of China
| | - Yunpeng Liu
- The Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | - Xiaoshuang Zuo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | - Guodong Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | - Jianlin Wang
- The Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | - Jianshan Liu
- The Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | - Xiangxu Wang
- The Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032 Xi'an, People's Republic of China
| | - Shuning Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | - Wangqian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | - Kuo Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | - Xiaoying Lei
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | - Qiang Hao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | - Weina Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | - Lei Liu
- Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032 Xi'an, People's Republic of China
| | - Meng Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China
| | - Cun Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China.
| | - Hong-Mei Zhang
- The Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China.
| | - Yingqi Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China.
| | - Yuan Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032 Xi'an, People's Republic of China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, 710032 Xi'an, People's Republic of China.
| |
Collapse
|
15
|
Mo H, Fang H, Jia L, Zhou S, Feng M, Wu X, Yuan W. Enhancing sensitivity to oxaliplatin in tongue squamous cell carcinoma: mechanistic insights and therapeutic potential of DHA combination therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4393-4407. [PMID: 39476243 DOI: 10.1007/s00210-024-03548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 04/10/2025]
Abstract
Squamous cell carcinoma of the tongue, a common and aggressive malignancy, poses a substantial threat to health and well-being. Despite the promising results of combination therapy with dihydroartemisinin (DHA) and oxaliplatin (Oxa) in various cancers, its effectiveness in treating tongue squamous cell carcinoma had not been explored prior to this study. Our research found that DHA significantly enhances the sensitivity of tongue squamous cell carcinoma cells to Oxa, even at very low concentrations. The combination treatment was observed to modulate the activity of CDK1 and Cyclin B1, arresting the cell cycle in the G2 phase. Additionally, it reduces mitochondrial membrane potential, prompting the release of cytochrome c and activating cleaved caspase-3, which promotes apoptosis. Notably, surface plasmon resonance and immunoprecipitation experiments revealed that DHA targets and attenuates CDK1 modification, weakening its interaction with STAT3 protein. This leads to reduced expression of anti-apoptotic genes and facilitates programmed cell death in CAL-27 cells. The findings underscore the potential of DHA and Oxa as a potent therapeutic strategy for tongue squamous cell carcinoma, opening avenues for clinical application and further exploration into its mechanistic pathways.
Collapse
Affiliation(s)
- Hailan Mo
- Chongqing Medical University, Chongqing, 400016, China
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Hongyan Fang
- Chongqing Medical University, Chongqing, 400016, China
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Lifeng Jia
- Chongqing Medical University, Chongqing, 400016, China
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Shitong Zhou
- Chongqing Medical University, Chongqing, 400016, China
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Menglong Feng
- Chongqing Medical University, Chongqing, 400016, China
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Xiaolu Wu
- Chongqing Medical University, Chongqing, 400016, China
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Wei Yuan
- Chongqing Medical University, Chongqing, 400016, China.
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China.
| |
Collapse
|
16
|
Huang J, Xie H, Li J, Huang X, Cai Y, Yang R, Yang D, Bao W, Zhou Y, Li T, Lu Q. Histone lactylation drives liver cancer metastasis by facilitating NSF1-mediated ferroptosis resistance after microwave ablation. Redox Biol 2025; 81:103553. [PMID: 39970777 PMCID: PMC11876915 DOI: 10.1016/j.redox.2025.103553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025] Open
Abstract
Insufficient microwave ablation (IMWA) is linked to aggressive hepatocellular carcinoma (HCC) progression. An increase in lactate levels after sublethal heat stress (HS) has been confirmed in HCC. However, the role of lactate-related histone lactylation in the progression of HCC caused by sublethal HS remains unclear. Here, we found that the metastatic potential of HCC increased in a lactate-dependent manner after IMWA. Moreover, sublethal HS triggered an increase in H3K18la modification, as validated in a cell-derived xenograft mouse model and human HCC samples. By performing an integrated analysis of proteomic and transcriptomic profiles, we revealed that HCC cells exhibited increased intracellular iron ion homeostasis and developed resistance to platinum-based drugs after exposure to sublethal HS. We subsequently integrated proteomic and transcriptomic data with H3K18la-specific chromatin immunoprecipitation (ChIP) sequencing to identify candidate genes involved in sublethal heat treatment-induced HCC cell metastasis. Mechanically, an increase in H3K18la modification enhanced the transcriptional activity of NFS1 cysteine desulfurase (NFS1), a key player in iron‒sulfur cluster biosynthesis, thereby reducing the susceptibility of HCC to ferroptosis after IMWA. Knocking down NFS1 diminished the metastatic potential of sublethally heat-treated HCC cells. Additionally, NFS1 deficiency exhibited a synergistic effect with oxaliplatin, leading to the significant inhibition of the metastatic capability of HCC cells both in vitro and in vivo, regardless of sublethal HS treatment. In conclusion, our study revealed the oncogenic role of histone lactylation in HCC after IMVA. We also bridged histone lactylation with ferroptosis, providing novel therapeutic targets for HCC following microwave ablation, particularly when combined with oxaliplatin-based chemotherapy.
Collapse
Affiliation(s)
- Jiayan Huang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huijing Xie
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ju Li
- Laboratory of Ultrasound Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaotong Huang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yunshi Cai
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Yang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Dongmei Yang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wuyongga Bao
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yongjie Zhou
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, 641400, China
| | - Tao Li
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Qiang Lu
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Cao Q, Sun D, Tu C, Wang J, Fu R, Gong R, Xiao Y, Liu Q, Li X. Defining gastric cancer ecology: the crucial roles of TREM2 + macrophages and fibroblasts in tumor microenvironments. Commun Biol 2025; 8:514. [PMID: 40155473 PMCID: PMC11953254 DOI: 10.1038/s42003-025-07512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/10/2025] [Indexed: 04/01/2025] Open
Abstract
Gastric cancer (GC) remains a major global health challenge, characterized by a complex tumor microenvironment (TME) that significantly influences disease progression and therapeutic outcomes. This study focuses on TREM2+ lipid-associated macrophages (LAM) and cancer-associated fibroblasts (CAFs) in modulating the GC microenvironment. Utilizing advanced single-cell RNA sequencing and bulk RNA analyses, we elucidated the interactive mechanisms through which CAFs enhance the immunosuppressive capabilities of TREM2+ LAMs via the CXCL12-CXCR4 signaling axis. Our findings reveal that this interaction facilitates tumor proliferation and inhibits apoptotic processes in GC cells. In vitro experiments confirmed the modulation of this pathway significantly affects tumor cell viability and invasiveness, underscoring the critical roles of these cellular interactions in promoting GC progression. These insights present TREM2+ LAMs and CAFs as potential therapeutic targets, offering new avenues for improving outcomes in GC treatment.
Collapse
Affiliation(s)
- Qianqian Cao
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Dianshui Sun
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Can Tu
- Vascular Intervention Department, The First Affiliated Hospital of Ningbo University, Ningbo, PR China
| | - Jihua Wang
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Runjia Fu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Rumei Gong
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yueying Xiao
- Department of Spine Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Qin Liu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaomei Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| |
Collapse
|
18
|
Zhang Y, Kong F, Li N, Tao L, Zhai J, Ma J, Zhang S. Potential role of SIRT1 in cell ferroptosis. Front Cell Dev Biol 2025; 13:1525294. [PMID: 40109363 PMCID: PMC11919884 DOI: 10.3389/fcell.2025.1525294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Ferroptosis is a novel form of cell death that uniquely requires iron and is characterized by iron accumulation, the generation of free radicals leading to oxidative stress, and the formation of lipid peroxides, which distinguish it from other forms of cell death. The regulation of ferroptosis is extremely complex and is closely associated with a spectrum of diseases. Sirtuin 1 (SIRT1), a NAD + -dependent histone deacetylase, has emerged as a pivotal epigenetic regulator with the potential to regulate ferroptosis through a wide array of genes intricately associated with lipid metabolism, iron homeostasis, glutathione biosynthesis, and redox homeostasis. This review provides a comprehensive overview of the specific mechanisms by which SIRT1 regulates ferroptosis and explores its potential therapeutic value in the context of multiple disease pathologies, highlighting the significance of SIRT1-mediated ferroptosis in treatment strategies.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Jilin, China
| | - Fanxiao Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Li
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Jilin, China
| | - Lina Tao
- Department of Pharmacy, The First Hospital of Jilin University, Jilin, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Jilin, China
| | - Jie Ma
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Jilin, China
| | - Sixi Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
19
|
Zhang Y, Wang B, Chen J, Li T. Role of exosomal miRNAs and macrophage polarization in gastric cancer: A novel therapeutic strategy. Eur J Pharmacol 2025; 990:177268. [PMID: 39805486 DOI: 10.1016/j.ejphar.2025.177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal cancers worldwide, with consistently high morbidity and mortality rates and poor prognosis. Most patients are diagnosed at an advanced stage due to the lack of specific presentation in the early stages. Exosomes are a class of extracellular vesicles (EVs) widely found in body fluids and can release genetic material or multiple proteins to facilitate intercellular communication. In recent years, exosomal miRNAs have gained attention for their role in various cancers. These exosomal miRNAs can impact GC development and progression by targeting specific genes or influencing signaling pathways and cytokines involved in Angiogenesis, epithelial-mesenchymal transition (EMT), drug resistance, and immune regulation. They show great potential in terms of diagnosis, prognosis, and treatment of GC. Notably, the gastrointestinal tract has the largest number of macrophages, which play a significant role in GC progression. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and can influence macrophage programming through various mediators, including macrophage polarization. Macrophage polarization is involved in inflammatory responses and significantly impacts the GC process.
Collapse
Affiliation(s)
- Yun Zhang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; General Hospital of Ningxia Medical University, Ningxia, China
| | - Baozhen Wang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; General Hospital of Ningxia Medical University, Ningxia, China
| | - Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| | - Tao Li
- Department of Surgical Oncology, Tumor Hospital, The General Hospital of Ningxia Medical University, Ningxia, China.
| |
Collapse
|
20
|
Fan X, Han F, Wang H, Shu Z, Qiu B, Zeng F, Chen H, Wu Z, Lin Y, Lan Z, Ye Z, Ying Y, Geng T, Xian Z, Niu X, Wu J, Mo K, Zheng K, Ye Y, Cui C. YTHDF2-mediated m 6A modification of ONECUT2 promotes stemness and oxaliplatin resistance in gastric cancer through transcriptionally activating TFPI. Drug Resist Updat 2025; 79:101200. [PMID: 39823826 DOI: 10.1016/j.drup.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
AIMS Chemoresistance results in poor outcomes of patients with gastric cancer (GC). This study aims to identify oxaliplatin resistance-related cell subpopulations in the tumor microenvironment (TME) and decipher the involved molecular mechanisms. METHODS Through single-cell RNA sequencing, a unique ONECUT2+TFPI+ GC cell subset was identified in the oxaliplatin-resistant TME. The functional roles and molecular mechanisms of ONECUT2 in oxaliplatin resistance were investigated in cellular and mouse models. Therapeutic efficacy of small molecule inhibitor of ONECUT2 was also evaluated. RESULTS The abundance of ONECUT2+TFPI+ GC cell subset was elevated in oxaliplatin-resistant GC tumors. ONECUT2 was up-regulated and associated with undesirable prognostic outcomes of patients with GC. ONECUT2 facilitated GC cell migration, stemness properties and oxaliplatin resistance. YTHDF2, an m6A "reader", was down-regulated in GC, and its overexpression facilitated ONECUT2 mRNA degradation through m6A modification. Furthermore, ONECUT2 transcriptionally activated TFPI through binding to its promoter. Small molecule inhibitor CSRM617 targeting ONECUT2 was well tolerated in GC mouse models, and could effectively improve therapeutic efficacy of oxaliplatin against GC. CONCLUSIONS Our study demonstrates that YTHDF2-mediated m6A modification of ONECUT2 results in stemness and oxaliplatin resistance in GC through transcriptionally activating TFPI, which provides a novel therapeutic target against oxaliplatin-resistant GC.
Collapse
Affiliation(s)
- Xingdi Fan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Fangyi Han
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haocheng Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhilin Shu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Bowen Qiu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Fanan Zeng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Hongzhen Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Ziying Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yongwei Lin
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhien Lan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhiwei Ye
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yao Ying
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Tiansu Geng
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ziqian Xian
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xing Niu
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong
| | - Junming Wu
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong
| | - Ke Mo
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong.
| | - Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
21
|
Hushmandi K, Alimohammadi M, Heiat M, Hashemi M, Nabavi N, Tabari T, Raei M, Aref AR, Farahani N, Daneshi S, Taheriazam A. Targeting Wnt signaling in cancer drug resistance: Insights from pre-clinical and clinical research. Pathol Res Pract 2025; 267:155837. [PMID: 39954370 DOI: 10.1016/j.prp.2025.155837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/22/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Cancer drug resistance, encompassing both acquired and intrinsic chemoresistance, remains a significant challenge in the clinical management of tumors. While advancements in drug discovery and the development of various small molecules and anti-cancer compounds have improved patient responses to chemotherapy, the frequent and prolonged use of these drugs continues to pose a high risk of developing chemoresistance. Therefore, understanding the primary mechanisms underlying drug resistance is crucial. Wnt proteins, as secreted signaling molecules, play a pivotal role in transmitting signals from the cell surface to the nucleus. Aberrant expression of Wnt proteins has been observed in a variety of solid and hematological tumors, where they contribute to key processes such as proliferation, metastasis, stemness, and immune evasion, often acting in an oncogenic manner. Notably, the role of the Wnt signaling pathway in modulating chemotherapy response in human cancers has garnered significant attention. This review focuses on the involvement of Wnt signaling and its related molecular pathways in drug resistance, highlighting their associations with cancer hallmarks, stemness, and tumorigenesis linked to chemoresistance. Additionally, the overexpression of Wnt proteins has been shown to accelerate cancer drug resistance, with regulation mediated by non-coding RNAs. Elevated Wnt activity reduces cell death in cancers, particularly by affecting mechanisms like apoptosis, autophagy, and ferroptosis. Furthermore, pharmacological compounds and small molecules have demonstrated the potential to modulate Wnt signaling in cancer therapy. Given its impact, Wnt expression can also serve as a prognostic marker and a factor influencing survival outcomes in human cancers.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
22
|
Wang X, Men C, Shan S, Yang J, Zhang S, Ji X, Li C, Wang Y. EGFR upregulates miRNA subset to inhibit CYBRD1 and cause DDP resistance in gastric cancer. Gene 2025; 933:149005. [PMID: 39419238 DOI: 10.1016/j.gene.2024.149005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Chemoresistance is a considerable challenge for gastric cancer (GC), and the combination of cisplatin (DDP) and anti-EGFR therapy failed to show remarkable benefit. So other targets in EGFR-overexpressed and DDP-resistant GC need to be explored. Both cytological experiments and database bioinformatics analysis were applied in this study. It was confirmed that the prognosis of GC patients with EGFR oe was poor. EGFR regulated intracellular redox metabolism, enhanced GSH content and led to DDP resistance. A subset of miRNAs including miR-135b, miR-106a, miR-29a, miR-23a and miR-15a was upregulated in EGFR-overexpressed and DDP-resistant GC cells. Furthermore, EGFR inhibited CYBRD1 via enhancing the miRNA subset and scavenged the redundant ROS to cause DDP resistance. Therefore, to inhibit the miRNA subset at the same time of anti-EGFR therapy might reverse DDP resistance, serving as a potential novel drug for the future treatment of EGFR-overexpressed and DDP-resistant GC.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Gastroenterology, Tianjin First Central Hospital, Tianjin, China
| | - Changjun Men
- Department of Gastroenterology, Tianjin First Central Hospital, Tianjin, China
| | - Shuxuan Shan
- Department of Gastroenterology, Tianjin First Central Hospital, Tianjin, China
| | - Jiayu Yang
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shuangxia Zhang
- Department of Gastroenterology, Tianjin First Central Hospital, Tianjin, China
| | - Xingming Ji
- Department of Gastroenterology, Tianjin First Central Hospital, Tianjin, China
| | - Cheng Li
- Department of Gastroenterology, Tianjin First Central Hospital, Tianjin, China
| | - Ye Wang
- Department of Gastroenterology, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
23
|
Song Z, Zhang Y, Luo W, Sun C, Lv C, Wang S, He Q, Xu R, Bai Z, Chang X, Yang Y. HAND2-AS1 Promotes Ferroptosis to Reverse Lenvatinib Resistance in Hepatocellular Carcinoma by TLR4/NOX2/DUOX2 Axis. Curr Cancer Drug Targets 2025; 25:144-158. [PMID: 38465433 DOI: 10.2174/0115680096279597240219055135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Lenvatinib resistance causes less than 40% of the objective response rate. Therefore, it is urgent to explore new therapeutic targets to reverse the lenvatinib resistance for HCC. HAND2-AS1 is a critical tumor suppressor gene in various cancers. METHODS Here, we investigated the role of HAND2-AS1 in the molecular mechanism of lenvatinib resistance in HCC. It was found that HAND2-AS1 was lowly expressed in the HepG2 lenvatinib resistance (HepG2-LR) cells and HCC tissues and associated with progression-free intervals via TCGA. Overexpression of HAND2-AS1 (OE-HAND2-AS1) decreased the IC50 of lenvatinib in HepG2-LR cells to reverse lenvatinib resistance. Moreover, OE-HAND2-AS1 induced intracellular concentrations of malondialdehyde (MDA) and lipid ROS and decreased the ratio of glutathione to glutathione disulfide (GSH/GSSG) to promote ferroptosis. RESULTS A xenograft model in which nude mice were injected with OE-HAND2-AS1 HepG2-LR cells confirmed that OE-HAND2-AS1 could reverse lenvatinib resistance and decrease tumor formation in vivo. HAND2-AS1 promoted the expression of ferroptosis-related genes (TLR4, NOX2, and DUOX2) and promoted ferroptosis to reverse lenvatinib resistance by increasing TLR4/ NOX2/DUOX2 via competing endogenous miR-219a-1-3p in HCC cells. Besides, patients with a low HAND2-AS1 level had early recurrence after resection. CONCLUSION HAND2-AS1 promotes ferroptosis in HCC cells and reverses lenvatinib resistance by regulating TLR4/NOX2/DUOX2 axis. It suggested that HAND2-AS1 may be a potential therapeutic target and an indicator of early recurrence for HCC.
Collapse
Affiliation(s)
- Zheng Song
- Peking University 302 Clinical Medical School, Beijing, China
- Department of Liver Disease of Chinese PLA General Hospital, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yu Zhang
- Peking University 302 Clinical Medical School, Beijing, China
- Department of Liver Disease of Chinese PLA General Hospital, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Luo
- Department of Liver Disease of Chinese PLA General Hospital, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Chao Sun
- Department of Liver Disease of Chinese PLA General Hospital, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China
| | - Caihong Lv
- Peking University 302 Clinical Medical School, Beijing, China
- Department of Liver Disease of Chinese PLA General Hospital, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Sihao Wang
- Department of Liver Disease of Chinese PLA General Hospital, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China
| | - Quanwei He
- Department of Liver Disease of Chinese PLA General Hospital, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China
| | - Ran Xu
- Department of Liver Disease of Chinese PLA General Hospital, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China
| | - Zhaofang Bai
- Department of Liver Disease of Chinese PLA General Hospital, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiujuan Chang
- Department of Liver Disease of Chinese PLA General Hospital, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yongping Yang
- Peking University 302 Clinical Medical School, Beijing, China
- Department of Liver Disease of Chinese PLA General Hospital, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| |
Collapse
|
24
|
Chen Y, Mi Y, Tan S, Chen Y, Liu S, Lin S, Yang C, Hong W, Li W. CEA-induced PI3K/AKT pathway activation through the binding of CEA to KRT1 contributes to oxaliplatin resistance in gastric cancer. Drug Resist Updat 2025; 78:101179. [PMID: 39644827 DOI: 10.1016/j.drup.2024.101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The serum level of carcinoembryonic antigen (CEA) has prognostic value in patients with gastric cancer (GC) receiving oxaliplatin-based chemotherapy. As the molecular functions of CEA are increasingly uncovered, its role in regulating oxaliplatin resistance in GC attracts attention. METHODS The survival analysis adopted the KaplanMeier method. Effects of CEA on proliferative capacity were investigated using CCK8, colony formation, and xenograft assays. Oxaliplatin sensitivity was identified through IC50 detection, apoptosis analysis, comet assay, organoid culture model, and xenograft assay. Multi-omics approaches were utilized to explore CEA's downstream effects. The binding of CEA to KRT1 was confirmed through proteomic analysis and Co-IP, GST pull-down, and immunofluorescence colocalization assays. Furthermore, small molecule inhibitors were identified using virtual screening and surface plasmon resonance. RESULTS Starting from clinical data, we confirmed that CEA demonstrated superior ability to predict the prognosis of patients with GC who received oxaliplatin-based chemotherapy, particularly in predicting recurrence-free survival based on serum CEA level. In vitro and in vivo experiments revealed CEAhigh GC cells presented increased proliferative capacity and decreased oxaliplatin sensitivity. The resistance phenotype was transmitted through secreted CEA. Multi-omics analysis revealed that CEA activated the PI3K/AKT pathway by binding to KRT1, leading to oxaliplatin resistance. Finally, the small molecule inhibitor evacetrapib, which competitively inhibits the CEA-KRT1 interaction, was identified and validated in vitro. CONCLUSIONS In summary, the CEA-KRT1-PI3K/AKT axis regulates oxaliplatin sensitivity in GC cells. Treatment with small molecule inhibitors such as evacetrapib to inhibit this interaction constitutes a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yifan Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Yulong Mi
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Song Tan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Yizhen Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Shaolin Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Shengtao Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Changshun Yang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Weifeng Hong
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310005, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310005, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310005, China.
| | - Weihua Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350013, China; Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou 350001, China.
| |
Collapse
|
25
|
Xia H, Liu H, Gong P, Li P, Xu Q, Zhang Q, Sun M, Meng Q, Ye F, Yin W. Study of the mechanism by which Bacillus subtilis improves the soil bacterial community environment in severely saline-alkali cotton fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178000. [PMID: 39671925 DOI: 10.1016/j.scitotenv.2024.178000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Soil salinization severely damages the soil bacterial community environment. Bacillus subtilis can improve bacterial communities and enhance crop nutrient absorption. However, the mechanism by which B. subtilis improves the bacterial community environment in heavily saline-alkali-treated cotton fields is currently unclear. Therefore, this study adopted a field plot experiment and established four bacterial treatments (0, 9, 12, and 15 kg·ha-1) to investigate the environmental improvement mechanism of B. subtilis on soil bacterial communities in severely saline alkali cotton fields was studied. Compared with the CK treatment, the application of B. subtilis significantly increased the available nitrogen (25.34 %), available phosphorus (50.894 %), available potassium (86.87 %), and urease (112.961 %) contents but significantly reduced the soil pH (1.07 %) and salt content (39.73 %) and significantly increased the proline (245.116 %) and superoxide dismutase (237.46 %) contents in the leaves and significantly reduced the malondialdehyde content (47.30 %). This is mainly because B. subtilis enhances the diversity of bacterial communities and affects catalase, urease, phosphatase, and protease activities, thereby promoting nutrient release in the soil and improving soil fertility; specifically, B. subtilis promotes the secretion of oxalic acid, formic acid, malic acid, and soluble total sugars in cotton roots. The organic acids in root exudates lower the soil pH and chelate with salt ions in the soil, reducing the concentration of soluble salts and providing a suitable environment for B. subtilis. Soluble total sugars can provide energy and carbon sources for bacteria, maintaining the health and diversity of rhizosphere bacterial communities. The results of the principal component analysis revealed that the application rate of B. subtilis was 12 kg·ha-1, which had the greatest effect on improving the soil bacterial community in severely saline-alkali cotton fields. The research results provide a theoretical basis and practical reference for microbial improvement in severely saline-alkali land in arid areas.
Collapse
Affiliation(s)
- Hanji Xia
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Hongguang Liu
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China.
| | - Ping Gong
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Pengfei Li
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Qiang Xu
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Qian Zhang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Mingyue Sun
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Qiang Meng
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Fuhai Ye
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi 832000, China
| | - Weizhen Yin
- Shihezi Boli Engineering Management Co., Ltd., China
| |
Collapse
|
26
|
Bai Z, Wang H, Han J, An J, Yang Z, Mo X. Multiomics integration and machine learning reveal prognostic programmed cell death signatures in gastric cancer. Sci Rep 2024; 14:31060. [PMID: 39730893 DOI: 10.1038/s41598-024-82233-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Gastric cancer (GC) is characterized by notable heterogeneity and the impact of molecular subtypes on treatment and prognosis. The role of programmed cell death (PCD) in cellular processes is critical, yet its specific function in GC is underexplored. This study applied multiomics approaches, integrating transcriptomic, epigenetic, and somatic mutation data, with consensus clustering algorithms to classify GC molecular subtypes and assess their biological and immunological features. A machine learning model was developed to create the Gastric Cancer Multi-Omics Programmed Cell Death Signature (GMPS), targeting PCD-related genes. We verified the expression of the GMPS hub genes using the RT-qPCR method. The prognostic influence of GMPS on GC was then evaluated. Single-cell analysis was performed to examine the heterogeneity of PCD characteristics in GC. Findings indicate that GMPS notably correlates with patient survival rates, tumor mutational burden (TMB), and copy number variations (CNV), demonstrating substantial prognostic predictive power. Moreover, GMPS is closely associated with the tumor microenvironment (TME) and immune therapy response. This research elucidates the molecular subtypes of GC, highlighting PCD's critical role in prognosis assessment. The relationship between GMPS and immune therapy response, alongside gastric cancer's microenvironmental features, provides insights for personalized treatment.
Collapse
Affiliation(s)
- Zihao Bai
- Clinical Teaching Hospital of Medical School, Nanjing Children's Hospital, Nanjing University, Nanjing, 210008, China
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Hao Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Jingru Han
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Jia An
- Clinical Teaching Hospital of Medical School, Nanjing Children's Hospital, Nanjing University, Nanjing, 210008, China
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Xuming Mo
- Clinical Teaching Hospital of Medical School, Nanjing Children's Hospital, Nanjing University, Nanjing, 210008, China.
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
27
|
Zemanek T, Danisovic L, Nicodemou A. Exosomes, their sources, and possible uses in cancer therapy in the era of personalized medicine. J Cancer Res Clin Oncol 2024; 151:16. [PMID: 39724442 PMCID: PMC11671574 DOI: 10.1007/s00432-024-06066-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
Despite significant advances in immunotherapy, its efficacy in solid tumors remains limited. Exosomes, a primary type of extracellular vesicles, can transport diverse intracellular molecules to nearby or distant cells and organs, facilitating numerous biological functions. Research has shown that exosomes have the dual ability to both activate and suppress the immune system. Their potential as anticancer vaccines arise from the capacity to carry antigens and major histocompatibility complex (MHC) molecules. Exosomes derived from blood, saliva, urine, and cerebrospinal fluid serve as promising biomarkers for cancer diagnosis and prognosis. Recent advancements in exosome-based therapy have highlighted its utility in drug delivery and immunotherapy. This review examines the composition and sources of exosomes within the immune microenvironment of solid tumors and delves into the mechanisms and pathways through which exosomes impact immunotherapy. We further explore the clinical potential of engineered exosomes and exosome vaccines in solid tumor immunotherapy. These insights may pave the way for exosome-based strategies in cancer diagnosis, treatment, and prognosis, enhancing the effectiveness of immunotherapy for solid tumors.
Collapse
Affiliation(s)
- Tomas Zemanek
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- GAMMA - ZA s.r.o, Trencin, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Andreas Nicodemou
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
- GAMMA - ZA s.r.o, Trencin, Slovakia.
| |
Collapse
|
28
|
Gu X, Weng R, Deng Q, Rao J, Zhao J, Hou J, Liu S. Interleukin-17D accelerates atherosclerosis through promoting endothelial cells ferroptosis via CD93/miR-181a-5p/SLC7A11 signaling. Int Immunopharmacol 2024; 143:113558. [PMID: 39510035 DOI: 10.1016/j.intimp.2024.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
IL-17D has been found to induce inflammatory cytokines in endothelial cells, but its exact role in atherosclerosis (AS) is unclear. This study aims to explore IL-17D' function in AS development. The expression of IL-17D was examined in AS patients and mice, and its clinical significance was evaluated in patients with acute coronary syndrome (ACS). Apolipoprotein E and IL-17D deficient mice (ApoE-/-IL-17D-/-) were generated for this study. The inflammation response and ferroptosis status in vascular endothelial cells were assessed following IL-17D treatment. Flow cytometry was used to identify the functional receptor of IL-17D. Additionally, RNA-seq was utilized to analyze the miRNA expression profiles induced by IL-17D. Plasma levels of IL-17D were elevated in both AS patients and mice, and were correlated with an increased incidence of major adverse cardiovascular events (MACEs). ApoE-/-IL-17D-/- mice displayed reduced inflammation and fewer atherosclerotic lesions. Treatment with IL-17D resulted in elevated levels of IL-6, IL-8, and ROS, as well as impaired cell viability and GSH production in endothelial cells. Ferroptosis inhibitor (Fer-1) suppressed the proinflammatory effects by IL-17D. Furthermore, CD93 was identified as the functional receptor for IL-17D in endothelial cells. The inhibition of miR-181a-5p led to a significant increase in cell viability and GSH levels, alongside a reduction in ROS and IL-6/IL-8 levels, while the suppression of SLC7A11 abolished these effects. Our findings suggest that IL-17D promotes endothelial inflammation by causing ferroptosis via CD93/miR-181a-5p/SLC7A11 signaling pathway. These insights advance our understanding of the pathophysiology of AS and identify a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Xiaodong Gu
- Meizhou Clinical Institute, Shantou University Medical College, Meizhou 514000, PR China; Institute of Basic Medical Sciences, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514000, China; Guangdong Engineering Technology Research Center of Molecular Diagnostics for Cardiovascular Diseases, Meizhou 514000, PR China
| | - Ruiqiang Weng
- Meizhou Clinical Institute, Shantou University Medical College, Meizhou 514000, PR China; Institute of Basic Medical Sciences, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514000, China; Guangdong Engineering Technology Research Center of Molecular Diagnostics for Cardiovascular Diseases, Meizhou 514000, PR China
| | - Qiaoting Deng
- Meizhou Clinical Institute, Shantou University Medical College, Meizhou 514000, PR China; Institute of Basic Medical Sciences, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514000, China; Guangdong Engineering Technology Research Center of Molecular Diagnostics for Cardiovascular Diseases, Meizhou 514000, PR China
| | - Jiawei Rao
- Meizhou Clinical Medical School, Guangdong Medical University, Meizhou 514000, PR China
| | - Junli Zhao
- Meizhou Clinical Institute, Shantou University Medical College, Meizhou 514000, PR China
| | - Jingyuan Hou
- Meizhou Clinical Institute, Shantou University Medical College, Meizhou 514000, PR China; Guangdong Engineering Technology Research Center of Molecular Diagnostics for Cardiovascular Diseases, Meizhou 514000, PR China; Cardiovascular Disease Research Institute, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514000, China.
| | - Sudong Liu
- Meizhou Clinical Institute, Shantou University Medical College, Meizhou 514000, PR China; Institute of Basic Medical Sciences, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514000, China; Guangdong Engineering Technology Research Center of Molecular Diagnostics for Cardiovascular Diseases, Meizhou 514000, PR China.
| |
Collapse
|
29
|
Yang C, Shu J, Li Y, Zhao N, Liu X, Tian X, Sun Z, Tabish MS, Hong Y, Chen K, Sun M. Long non-coding RNAs are involved in the crosstalk between cancer-associated fibroblasts and tumor cells. Front Immunol 2024; 15:1469918. [PMID: 39717771 PMCID: PMC11663902 DOI: 10.3389/fimmu.2024.1469918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
The proliferation of tumors is not merely self-regulated by the cancer cells but is also intrinsically connected to the tumor microenvironment (TME). Within this complex TME, cancer-associated fibroblasts (CAFs) are pivotal in the modulation of tumor onset and progression. Rich signaling interactions exist between CAFs and tumor cells, which are crucial for tumor regulation. Long non-coding RNAs (LncRNAs) emerge from cellular transcription as a class of functionally diverse RNA molecules. Recent studies have revealed that LncRNAs are integral to the crosstalk between CAFs and tumor cells, with the capacity to modify cellular transcriptional activity and secretion profiles, thus facilitating CAFs activation, tumor proliferation, metastasis, drug resistance, and other related functionalities. This comprehensive review revisits the latest research on LncRNA-mediated interactions between CAFs and tumor cells, encapsulates the biological roles of LncRNAs, and delves into the molecular pathways from a broader perspective, aspiring to offer novel perspectives for a deeper comprehension of the etiology of tumors and the enhancement of therapeutic approaches.
Collapse
Affiliation(s)
- Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Yiwei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Xiaonan Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Xiangyu Tian
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Zexin Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Muhammad Saud Tabish
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Yichen Hong
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Liu C, Guo H, Jin F. Research trends and hotspots in gastric carcinoma associated exosome: a bibliometric analysis. Front Oncol 2024; 14:1457346. [PMID: 39703839 PMCID: PMC11655325 DOI: 10.3389/fonc.2024.1457346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024] Open
Abstract
Background Stomach cancer is considered the fifth most common cancer worldwide. This study utilized bibliometric analysis to construct a visualization map of the relationship between stomach cancer and exosomes, aiming to reveal research trends and emerging themes, and provide direction for future research. Method Retrieve relevant literature on gastric cancer exosomes in the Web of Science Core Collection (WoSCC) over the past 25 years according to search criteria, and conduct bibliometric and visualization analysis using bibliometric software VOSviewer and CiteSpace. Results This study included a total of 727 articles, with an overall increasing trend in annual publication output. There were 68 countries involved, with China having the largest number of publications followed by the United States. A total of 957 research institutions were involved, with most of the top 10 institutions in terms of publication output being universities in China. The top 5 journals are Molecular Cancer, Cell death & disease, Cancers, International journal of molecular sciences, and Frontiers in oncology. A total of 4529 authors were involved, with 5 authors having a publication output of no less than 13 articles. A total of 35516 references were cited, with a total number of citations. The top publication is "Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells". Conclusion Over the past 25 years, researchers have been dedicated to studying the field of exosomes related to gastric cancer, and research in this area is currently progressing steadily. Based on previous studies, exosomes in gastric adenocarcinoma serve as biomarkers, potential therapeutic targets, and post-resistance treatment, which represents current hotspots and emerging frontiers in research.
Collapse
Affiliation(s)
- Chunqiu Liu
- Integrated Traditional Chinese and Western Medicine Oncology Department, Tangshan People’s Hospital, Tangshan, Hebei, China
| | - Honglei Guo
- Department of Chinese Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Fangzhou Jin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
31
|
Zhou Y, Li R. Exosomal miR-502-5p suppresses the progression of gastric cancer by repressing angiogenesis through the Wnt/β-catenin pathway. Ir J Med Sci 2024; 193:2681-2694. [PMID: 39325329 DOI: 10.1007/s11845-024-03789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a significant global health concern, ranking as the fifth most common cancer and the third leading cause of cancer-related deaths. The role of miR-502-5p in various cancers has been studied, but its specific impact on gastric cancer through exosomes is not well understood. This study aimed to investigate the role and mechanism of exosome-derived miR-502-5p in gastric cancer. METHODS Differential expression of miR-502-5p in tissues or serum of GC patients was determined using qRT-PCR. The impact of miR-502-5p on cell proliferation, migration, and invasion was assessed through in vitro and in vivo experiments. The potential of exosome-miR-502-5p to inhibit metastatic ability was also explored by using vivo and vitro assay. Furthermore, the underlying mechanism of miR-502-5p in gastric cancer was investigated using western blotting. RESULTS It was found that miR-502-5p suppressed the proliferation, migration, and invasion of gastric cancer cells. Exosome-miR-502-5p expression was negatively linked to metastatic ability and demonstrated inhibition of metastasis in vitro and in vivo. Additionally, miR-502-5p appeared to inhibit angiogenesis through the Wnt/β-catenin pathway in gastric cancer. CONCLUSIONS Exosomal miR-502-5p acts as a suppressor in the development and progression of gastric cancer, suggesting its potential as a target for anti-cancer therapy or as a diagnostic biomarker.
Collapse
Affiliation(s)
- Yanwu Zhou
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Rong Li
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, People's Republic of China.
| |
Collapse
|
32
|
Zou Y, Yang A, Chen B, Deng X, Xie J, Dai D, Zhang J, Tang H, Wu T, Zhou Z, Xie X, Wang J. crVDAC3 alleviates ferroptosis by impeding HSPB1 ubiquitination and confers trastuzumab deruxtecan resistance in HER2-low breast cancer. Drug Resist Updat 2024; 77:101126. [PMID: 39243601 DOI: 10.1016/j.drup.2024.101126] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
AIMS With the wide application of trastuzumab deruxtecan (T-DXd), the survival of HER2-low breast cancer patients is dramatically improved. However, resistance to T-DXd still exists in a subset of patients, and the molecular mechanism remains unclear. METHODS An in vivo shRNA lentiviral library functional screening was performed to identify potential circular RNA (crRNA) that mediates T-DXd resistance. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and co-immunoprecipitation assays were conducted to investigate the molecular mechanism. Ferroptosis was detected using C11-BODIPY, Liperfluo, FerroOrange staining, glutathione quantification, malondialdehyde quantification, and transmission electron microscopy. Molecular docking, virtual screening, and patient-derived xenograft (PDX) models were used to validate therapeutic agents. RESULTS VDAC3-derived crRNA (crVDAC3) ranked first in functional shRNA library screening. Knockdown of crVDAC3 increased the sensitivity of HER2-low breast cancer cells to T-DXd treatment. Further mechanistic research revealed that crVDAC3 specifically binds to HSPB1 protein and inhibits its ubiquitination degradation, leading to intracellular accumulation and increased levels of HSPB1 protein. Notably, suppression of crVDAC3 dramatically increases excessive ROS levels and labile iron pool accumulation. Inhibition of crVDAC3 induces ferroptosis in breast cancer cells by reducing HSPB1 expression, thereby mediating T-DXd resistance. Through virtual screening and experimental validation, we identified that paritaprevir could effectively bind to crVDAC3 and prevent its interaction with HSPB1 protein, thereby increasing ubiquitination degradation of HSPB1 protein to overcome T-DXd resistance. Finally, we validated the enhanced therapeutic efficacy of T-DXd by paritaprevir in a HER2-low PDX model. CONCLUSION This finding reveals the molecular mechanisms underlying T-DXd resistance in HER2-low breast cancer. Our study provides a new strategy to overcome T-DXd resistance by inhibiting the interaction between crVDAC3 and HSPB1 protein.
Collapse
Affiliation(s)
- Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Anli Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bo Chen
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Danian Dai
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tao Wu
- Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde, China.
| | - Zhigang Zhou
- Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde, China.
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Jin Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
33
|
Yan H, Wang P, Zhou Q, Dong X, Wang Q, Yuan Z, Zhai B, Zhou Y. Eupafolin hinders cross-talk between gastric cancer cells and cancer-associated fibroblasts by abrogating the IL18/IL18RAP signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155984. [PMID: 39265444 DOI: 10.1016/j.phymed.2024.155984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 08/25/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are involved in the progression of gastric cancer (GC) as a critical component of the tumor microenvironment (TME), yet specific interventions remain limited. Natural products hold a promising application prospect in the field of anti-tumor in view of their high activity and ease of binding with biological macromolecules. However, the role of natural products in modulating the cross-talk between CAFs and GC cells has not been fully investigated. PURPOSE The aim of this study was to identify a potential therapeutic target in CAFs and then screen for natural small molecule drugs with anti-tumor activity against this target. METHODS Integrating bioinformatics analysis of public databases and experimental validation of human samples and cell lines to identify a candidate target in CAFs. Molecular docking and biolayer interferometry technique were utilized for screening potential natural small molecule drugs. The efficacy and underlying mechanisms of the candidates were explored in vitro and in vivo through techniques such as lentiviral infection, cell spheroids culture, immunoprecipitation and cells-derived xenografts. RESULTS IL18 receptor accessory protein (IL18RAP) was found to be overexpressed in CAFs derived from GC tissues and facilitated the protumor function of CAFs on GC. Based on virtual screening and experimental validation, we identified a natural product, eupafolin, that interfered with IL18 signaling. Phenotyping studies confirmed that the proliferation, spheroids formation and tumorigenesis of GC cells facilitated by CAFs were greatly attenuated by eupafolin both in vitro and in vivo. Mechanistically, eupafolin impeded the formation of IL18 receptor (IL18R) complex by directly binding to IL18RAP, thus blocking IL18-mediated nuclear factor kappa B (NF-κB) activation and reduced the synthesis and secretion of IL6 in CAFs. As a consequence, it inactivated signal transducer and activator of transcription 3 (STAT3) in GC cells. CONCLUSION This study provides new evidence that IL18 signaling regulates the cross-talk between GC cells and CAFs. And it highlights a novel pharmacological role of eupafolin in inhibiting IL18 signaling, thereby curbing the development of GC via modulating CAFs.
Collapse
Affiliation(s)
- Hui Yan
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Penggao Wang
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qiang Zhou
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiangyang Dong
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qionglin Wang
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Bo Zhai
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Yang Zhou
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
34
|
He J, Li M, Bao J, Peng Y, Xue W, Chen J, Zhao J. β-Elemene promotes ferroptosis and reverses radioresistance in gastric cancer by inhibiting the OTUB1-GPX4 interaction. Front Pharmacol 2024; 15:1469180. [PMID: 39484165 PMCID: PMC11524901 DOI: 10.3389/fphar.2024.1469180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction β-Elemene, derived from Curcuma zedoaria (Wenyujin), is clinically recognized for inducing apoptosis, inhibiting cell cycle progression, and reversing chemotherapy resistance in various cancers. However, its effects on radioresistant gastric cancer (GC) remain unclear. Methods In this study, radioresistant GC cell lines (MKN45/IR and AGS/IR) were established via multiple low-dose radiations. The impact of β-elemene on radiosensitivity was assessed using CCK-8 and clonogenic assays, with ferroptosis markers such as ROS, MDA, and Fe2+ levels measured. Additionally, the influence of β-elemene on GPX4 and its interaction with OTUB1 was examined through qRT-PCR, Western blot, immunofluorescence, co-immunoprecipitation, and in vivo studies. Results Our findings indicate that β-elemene reverses radioresistance in GC cells and significantly inhibits cell growth when combined with radiotherapy. β-Elemene treatment elevated ROS, MDA, and Fe2+ levels, enhancing ferroptosis, which was confirmed by Ferrostatin-1 and Deferoxamine inhibition studies. Mechanistic analysis revealed that β-elemene disrupts the OTUB1-GPX4 interaction, leading to increased GPX4 ubiquitination and degradation, thus promoting ferroptosis. In vivo studies further demonstrated that β-elemene combined with radiotherapy significantly suppressed tumor growth compared to radiotherapy alone. Discussion These results suggest that β-elemene effectively modulates radioresistance in GC by targeting the GPX4 pathway and inducing ferroptosis. This highlights its potential as a therapeutic adjunct in radiotherapy for resistant GC cases.
Collapse
Affiliation(s)
- Jiancheng He
- Department of Gastrointestinal Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, China
| | - Ming Li
- Department of Gastrointestinal Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, China
| | - Jiapeng Bao
- Department of Gastrointestinal Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, China
| | - Yifeng Peng
- Department of Gastrointestinal Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, China
| | - Wanjiang Xue
- Department of Gastrointestinal Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, China
| | - Junjie Chen
- Research Center of Clinical Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, China
| | - Jun Zhao
- Department of Pediatric Surgery,Affiliated Hospital and Medical School of Nantong University, Nantong, China
| |
Collapse
|
35
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
36
|
Wilczyński B, Dąbrowska A, Kulbacka J, Baczyńska D. Chemoresistance and the tumor microenvironment: the critical role of cell-cell communication. Cell Commun Signal 2024; 22:486. [PMID: 39390572 PMCID: PMC11468187 DOI: 10.1186/s12964-024-01857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Resistance of cancer cells to anticancer drugs remains a major challenge in modern medicine. Understanding the mechanisms behind the development of chemoresistance is key to developing appropriate therapies to counteract it. Nowadays, with advances in technology, we are paying more and more attention to the role of the tumor microenvironment (TME) and intercellular interactions in this process. We also know that important elements of the TME are not only the tumor cells themselves but also other cell types, such as mesenchymal stem cells, cancer-associated fibroblasts, stromal cells, and macrophages. TME elements can communicate with each other indirectly (via cytokines, chemokines, growth factors, and extracellular vesicles [EVs]) and directly (via gap junctions, ligand-receptor pairs, cell adhesion, and tunnel nanotubes). This communication appears to be critical for the development of chemoresistance. EVs seem to be particularly interesting structures in this regard. Within these structures, lipids, proteins, and nucleic acids can be transported, acting as signaling molecules that interact with numerous biochemical pathways, thereby contributing to chemoresistance. Moreover, drug efflux pumps, which are responsible for removing drugs from cancer cells, can also be transported via EVs.
Collapse
Affiliation(s)
- Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, Wroclaw, 50-367, Poland
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, Wroclaw, 50-367, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wroclaw, 50-556, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, Vilnius, LT-08406, Lithuania.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wroclaw, 50-556, Poland
| |
Collapse
|
37
|
Liu Y, Liang J, Zhang Y, Guo Q. Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). Int J Oncol 2024; 65:96. [PMID: 39219258 PMCID: PMC11387120 DOI: 10.3892/ijo.2024.5684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The use of antitumor drugs represents a reliable strategy for cancer therapy. Unfortunately, drug resistance has become increasingly common and contributes to tumor metastasis and local recurrence. The tumor immune microenvironment (TME) consists of immune cells, cytokines and immunomodulators, and collectively they influence the response to treatment. Epigenetic changes including DNA methylation and histone modification, as well as increased drug exportation have been reported to contribute to the development of drug resistance in cancers. In the past few years, the majority of studies on tumors have only focused on the development and progression of a tumor from a mechanistic standpoint; few studies have examined whether the changes in the TME can also affect tumor growth and drug resistance. Recently, emerging evidence have raised more concerns regarding the role of TME in the development of drug resistance. In the present review, it was discussed how the suppressive TME adapts to drug resistance characterized by the cooperation of immune cells, cytokines, immunomodulators, stromal cells and extracellular matrix. Furthermore, it was reviewed how these immunological or metabolic changes alter immuno‑surveillance and thus facilitate tumor drug resistance. In addition, potential targets present in the TME for developing novel therapeutic strategies to improve individualized therapy for cancer treatment were revealed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jun Liang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Yanping Zhang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
38
|
Almutairy B, Alzahrani MS, Waggas DS, Alsaab HO. Particular exosomal micro-RNAs and gastrointestinal (GI) cancer cells' roles: Current theories. Exp Cell Res 2024; 442:114278. [PMID: 39383930 DOI: 10.1016/j.yexcr.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
A diverse range of gastrointestinal tract disorders are called gastrointestinal (GI) malignancies. The transformation of normal cells into precursor cells, precursor cells into premalignant cells, and premalignant cells into cancerous cells is facilitated by the interaction of many modifiable and non-modifiable risk factors. Developing relevant therapy alternatives based on a better knowledge of the illness's aetiology is essential to enhance patient outcomes. The exosome is crucial in regulating intercellular interaction because it may send molecular signals to nearby or distant cells. Exosomes produced from cancer can introduce a variety of chemicals and vast concentrations of microRNA (miRNA) into the tumour microenvironment. These miRNAs significantly impact immunological evasion, metastasis, apoptosis resistance, and cell growth. Exosomal miRNAs, or exosomal miRNAs, are essential for controlling cancer resistance to apoptosis, according to mounting data. Exosomal miRNAs function as an interaction hub between cancerous cells and the milieu around them, regulating gene expression and various signalling pathways. Our research examines the regulatory function of exosomal miRNAs in mediating interactions between cancer cells and the stromal and immunological cells that make up the surrounding milieu.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah University, Saudi Arabia.
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
39
|
Zhang Y, Qian J, Fu Y, Wang Z, Hu W, Zhang J, Wang Y, Guo Y, Chen W, Zhang Y, Wang X, Xie Z, Ye H, Ye F, Zuo Z. Inhibition of DDR1 promotes ferroptosis and overcomes gefitinib resistance in non-small cell lung cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167447. [PMID: 39089636 DOI: 10.1016/j.bbadis.2024.167447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Gefitinib is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), which serves the critical pillar for the treatment of non-small cell lung cancer (NSCLC). However, the acquired resistance remains a challenge for its clinical application, for which, practical strategies to reverse gefitinib resistance in NSCLC are necessary. Ferroptosis, a programmed cell death driven by ferritin-dependent lipid peroxidation, involves in NSCLC progression and related chemoresistance. In our previous work, the self-synthesised EGFR inhibitor Yfq07 (N4, N6-disubstituted pyrimidine-4,6-diamine derivatives) displayed a considerable inhibitory effect on NSCLC both in vitro and in vivo. Herein, we observed that Yfq07 suppressed the proliferation of PC-9GR and HCC827GR cells, two gefitinib resistance NSCLC cell lines. Mechanically, Yfq07 inhibited the phosphorylation of the Discoidin Domain Receptor 1 (DDR1), a receptor tyrosine kinase (RTK) highly expressed in multiple cancers, accompanied by downregulated miR-3648 and upregulated SOCS2. Inhibition or knockdown of DDR1 suppressed the proliferation, migration, and invasion of gefitinib-resistant NSCLC cells, and on the other hand, also downregulated miR-3648 and promoted SOCS2 expression. More specifically, miR-3648 targeted the 3'UTR segment of SOCS2 mRNA and thus affecting the P-ERK signalling pathway to regulate the malignant behaviors of gefitinib-resistant NSCLC cells. Furthermore, Yfq07 also indirectly induced the ferroptosis of gefitinib-resistant NSCLC cells via SOCS2 triggered inhibition of xCT-GPX4 pathway. In conclusion, our study indicates that DDR1 inhibitor Yfq07 promotes ferroptosis and reverses gefitinib-resistance of NSCLC through DDR1-miR-3648-SOCS2 signalling pathway, which provides insights for targeted therapy of gefitinib-resistant NSCLC and drug developments targeting ferroptosis.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinheng Qian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanneng Fu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wanping Hu
- Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinxia Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuexuan Wang
- Laocheng District, Luoyang Maternal and child health family planning service center, Laocheng, Luoyang, Henan 471000, China
| | - Yangyang Guo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weikang Chen
- Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yejun Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuebao Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zixin Xie
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hui Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Faqing Ye
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhigui Zuo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
40
|
Zhong S, Wang Z, Yang J, Jiang D, Wang K. Ferroptosis-related oxaliplatin resistance in multiple cancers: Potential roles and therapeutic Implications. Heliyon 2024; 10:e37613. [PMID: 39309838 PMCID: PMC11414570 DOI: 10.1016/j.heliyon.2024.e37613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Oxaliplatin (OXA)-based therapy is effective in the treatment of multiple cancers. However, primary or acquired OXA resistance remains an emerging challenge for its clinical application. Ferroptosis is an iron-dependent mode of cell death that has been demonstrated to play an essential role in the chemoresistance of many drugs, including OXA. In particular, dysregulation of SLC7A11-GPX4, one of the major antioxidant systems of ferroptosis, was found in the OXA resistance of colorectal cancer (CRC) and hepatocellular carcinoma (HCC). In addition, Nrf2, the upstream regulator of GPX4 and many other antioxidant factors, is also involved in the OXA resistance of CRC and HCC. Inhibition of SLC7A11-GPX4 or Nrf2 by genetic deletion of pharmaceutical inhibition could significantly reverse OXA resistance. Long noncoding RNA (lncRNA) also participates in chemoresistance and ferroptosis of cancer cells. Specifically, LINC01134 promotes the recruitment of Nrf2 to the promoter of GPX4, thereby exerting transcriptional regulation of GPX4, which eventually increases the OXA sensitivity of HCC through upregulation of ferroptosis. On the other hand, a novel lncRNA DACT3-AS1 sensitizes gastric cancer cells to OXA through miR-181a-5p/sirtuin 1(SIRT1)-mediated ferroptosis. Therapies based on ferroptosis or a combination of OXA and ferroptosis enhancers could provide new therapeutic insights to overcome OXA resistance. In the present review, we present the current understanding of ferroptosis-related OXA resistance, highlight ferroptosis pathogenesis in OXA chemoresistance, and summarize available therapies that target OXA resistance by enhancing ferroptosis.
Collapse
Affiliation(s)
- Sijia Zhong
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Zihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, 110122, China
| | - Jiaxi Yang
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Di Jiang
- China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, China
| | - Kewei Wang
- Department of Gastrointestinal Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| |
Collapse
|
41
|
Tong W, Wang T, Bai Y, Yang X, Han P, Zhu L, Zhang Y, Shen Z. Spatial transcriptomics reveals tumor-derived SPP1 induces fibroblast chemotaxis and activation in the hepatocellular carcinoma microenvironment. J Transl Med 2024; 22:840. [PMID: 39267037 PMCID: PMC11391636 DOI: 10.1186/s12967-024-05613-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) exerts profound effects on tumor progression and therapeutic efficacy. In hepatocellular carcinoma (HCC), the TME is enriched with cancer-associated fibroblasts (CAFs), which secrete a plethora of cytokines, chemokines, and growth factors that facilitate tumor cell proliferation and invasion. However, the intricate architecture of the TME in HCC, as well as the mechanisms driving interactions between tumor cells and CAFs, remains largely enigmatic. METHODS We analyzed 10 spatial transcriptomics and 12 single-cell transcriptomics samples sourced from public databases, complemented by 20 tumor tissue samples from liver cancer patients obtained in a clinical setting. RESULTS Our findings reveal that tumor cells exhibiting high levels of SPP1 are preferentially localized adjacent to hepatic stellate cells (HSCs). The SPP1 secreted by these tumor cells interacts with the CD44 receptor on HSCs, thereby activating the PI3K/AKT signaling pathway, which promotes the differentiation of HSCs into CAFs. Notably, blockade of the CD44 receptor effectively abrogates this interaction. Furthermore, in vivo studies demonstrate that silencing SPP1 expression in tumor cells significantly impairs HSC differentiation into CAFs, leading to a reduction in tumor volume and collagen deposition within the tumor stroma. CONCLUSIONS This study delineates the SPP1-CD44 signaling axis as a pivotal mechanism underpinning the interaction between tumor cells and CAFs. Targeting this pathway holds potential to mitigate liver fibrosis and offers novel therapeutic perspectives for liver cancer management.
Collapse
Affiliation(s)
- Wen Tong
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Tianze Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xingpeng Yang
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Pinsheng Han
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liuyang Zhu
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Zhongyang Shen
- Organ Transplantation Centre, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
42
|
Lin Z, Li G, Jiang K, Li Z, Liu T. Cancer therapy resistance mediated by cancer-associated fibroblast-derived extracellular vesicles: biological mechanisms to clinical significance and implications. Mol Cancer 2024; 23:191. [PMID: 39244548 PMCID: PMC11380334 DOI: 10.1186/s12943-024-02106-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a diverse stromal cell population within the tumour microenvironment, where they play fundamental roles in cancer progression and patient prognosis. Multiple lines of evidence have identified that CAFs are critically involved in shaping the structure and function of the tumour microenvironment with numerous functions in regulating tumour behaviours, such as metastasis, invasion, and epithelial-mesenchymal transition (EMT). CAFs can interact extensively with cancer cells by producing extracellular vesicles (EVs), multiple secreted factors, and metabolites. Notably, CAF-derived EVs have been identified as critical mediators of cancer therapy resistance, and constitute novel therapy targets and biomarkers in cancer management. This review aimed to summarize the biological roles and detailed molecular mechanisms of CAF-derived EVs in mediating cancer resistance to chemotherapy, targeted therapy agents, radiotherapy, and immunotherapy. We also discussed the therapeutic potential of CAF-derived EVs as novel targets and clinical biomarkers in cancer clinical management, thereby providing a novel therapeutic strategy for enhancing cancer therapy efficacy and improving patient prognosis.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Guoqing Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Ke Jiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| |
Collapse
|
43
|
Zhong X, Wang Y, He X, He X, Hu Z, Huang H, Chen J, Chen K, Wei P, Zhao S, Wang Y, Zhang H, Feng B, Li D. HIF1A-AS2 promotes the metabolic reprogramming and progression of colorectal cancer via miR-141-3p/FOXC1 axis. Cell Death Dis 2024; 15:645. [PMID: 39227375 PMCID: PMC11372083 DOI: 10.1038/s41419-024-06958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
lncRNA can regulate tumorigenesis development and distant metastasis of colorectal cancer (CRC). However, the detailed molecular mechanisms are still largely unknown. Using RNA-sequencing data, RT-qPCR, and FISH assay, we found that HIF1A-AS2 was upregulated in CRC tissues and associated with poor prognosis. Functional experiments were performed to determine the roles of HIF1A-AS2 in tumor progression and we found that HIF1A-AS2 can promote the proliferation, metastasis, and aerobic glycolysis of CRC cells. Mechanistically, HIF1A-AS2 can promote FOXC1 expression by sponging miR-141-3p. SP1 can transcriptionally activate HIF1A-AS2. Further, HIF1A-AS2 can be packaged into exosomes and promote the malignant phenotype of recipient tumor cells. Taken together, we discovered that SP1-induced HIF1A-AS2 can promote the metabolic reprogramming and progression of CRC via miR-141-3p/FOXC1 axis. HIF1A-AS2 is a promising diagnostic marker and treatment target in CRC.
Collapse
Affiliation(s)
- Xinyang Zhong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Yaxian Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Xuefeng He
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin He
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zijuan Hu
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Huixia Huang
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Jiayu Chen
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Keji Chen
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Ping Wei
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Yilin Wang
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China.
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Hong Zhang
- Colorectal Tumor Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Liu X, Wu F, Pan W, Liu G, Zhang H, Yan D, Zheng S, Ma Z, Ren X. Tumor-associated exosomes in cancer progression and therapeutic targets. MedComm (Beijing) 2024; 5:e709. [PMID: 39247621 PMCID: PMC11380050 DOI: 10.1002/mco2.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Exosomes are small membrane vesicles that are released by cells into the extracellular environment. Tumor-associated exosomes (TAEs) are extracellular vesicles that play a significant role in cancer progression by mediating intercellular communication and contributing to various hallmarks of cancer. These vesicles carry a cargo of proteins, lipids, nucleic acids, and other biomolecules that can be transferred to recipient cells, modifying their behavior and promoting tumor growth, angiogenesis, immune modulation, and drug resistance. Several potential therapeutic targets within the TAEs cargo have been identified, including oncogenic proteins, miRNAs, tumor-associated antigens, immune checkpoint proteins, drug resistance proteins, and tissue factor. In this review, we will systematically summarize the biogenesis, composition, and function of TAEs in cancer progression and highlight potential therapeutic targets. Considering the complexity of exosome-mediated signaling and the pleiotropic effects of exosome cargoes has challenge in developing effective therapeutic strategies. Further research is needed to fully understand the role of TAEs in cancer and to develop effective therapies that target them. In particular, the development of strategies to block TAEs release, target TAEs cargo, inhibit TAEs uptake, and modulate TAEs content could provide novel approaches to cancer treatment.
Collapse
Affiliation(s)
- Xiaomin Liu
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Guangchao Liu
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Hui Zhang
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Dawei Yan
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Saijing Zheng
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Xiaojun Ren
- Department of Chemistry College of Chemistry and Life Sciences Beijing University of Technology Beijing China
| |
Collapse
|
45
|
Chen M, Deng S, Cao Y, Wang J, Zou F, Gu J, Mao F, Xue Y, Jiang Z, Cheng D, Huang N, Huang L, Cai K. Mitochondrial DNA Copy Number as a Biomarker for Guiding Adjuvant Chemotherapy in Stages II and III Colorectal Cancer Patients with Mismatch Repair Deficiency: Seeking Benefits and Avoiding Harms. Ann Surg Oncol 2024; 31:6320-6330. [PMID: 38985229 PMCID: PMC11300489 DOI: 10.1245/s10434-024-15759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) patients with mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) status are conventionally perceived as unresponsive to adjuvant chemotherapy (ACT). The mitochondrial transcription factor A (TFAM) is required for mitochondrial DNA copy number (mtDNA-CN) expression. In light of previous findings indicating that the frequent truncating-mutation of TFAM affects the chemotherapy resistance of MSI CRC cells, this study aimed to explore the potential of mtDNA-CN as a predictive biomarker for ACT efficacy in dMMR CRC patients. METHODS Levels of MtDNA-CN were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) in a cohort of 308 CRC patients with dMMR comprising 180 stage II and 128 stage III patients. Clinicopathologic and therapeutic data were collected. The study examined the association between mtDNA-CN levels and prognosis, as well as the impact of ACT benefit on dMMR CRC patients. Subgroup analyses were performed based mainly on tumor stage and mtDNA-CN level. Kaplan-Meier and Cox regression models were used to evaluate the effect of mtDNA-CN on disease-free survival (DFS) and overall survival (OS). RESULTS A substantial reduction in mtDNA-CN expression was observed in tumor tissue, and higher mtDNA-CN levels were correlated with improved DFS (73.4% vs 85.7%; P = 0.0055) and OS (82.5% vs 90.3%; P = 0.0366) in dMMR CRC patients. Cox regression analysis identified high mtDNA-CN as an independent protective factor for DFS (hazard ratio [HR] 0.547; 95% confidence interval [CI] 0.321-0.934; P = 0.0270) and OS (HR 0.520; 95% CI 0.272-0.998; P = 0.0492). Notably, for dMMR CRC patients with elevated mtDNA-CN, ACT significantly improved DFS (74.6% vs 93.4%; P = 0.0015) and OS (81.0% vs 96.7%; P = 0.0017), including those with stage II or III disease. CONCLUSIONS The mtDNA-CN levels exhibited a correlation with the prognosis of stage II or III CRC patients with dMMR. Elevated mtDNA-CN emerges as a robust prognostic factor, indicating improved ACT outcomes for stages II and III CRC patients with dMMR. These findings suggest the potential utility of mtDNA-CN as a biomarker for guiding personalized ACT treatment in this population.
Collapse
Affiliation(s)
- Mian Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, China
| | - Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yinghao Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Falong Zou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junnang Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Denglong Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Huang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, Guangzhou, China.
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
46
|
Li P, Zhang H, Chen T, Zhou Y, Yang J, Zhou J. Cancer-associated fibroblasts promote proliferation, angiogenesis, metastasis and immunosuppression in gastric cancer. Matrix Biol 2024; 132:59-71. [PMID: 38936680 DOI: 10.1016/j.matbio.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Despite advances in surgery, radiotherapy and immunotherapy, the mortality rate for gastric cancer remains one of the highest in the world. A large body of evidence has demonstrated that cancer-associated fibroblasts (CAFs), as core members of the stroma, can secrete cytokines, proteins and exosomes to create a tumour microenvironment that is conducive to cancer cell survival. CAFs can also interact with cancer cells to form a complex signalling network, enabling cancer cells to more easily metastasise to other organs and tissues in the body and develop metastatic foci. In this review, we provide an overview of the CAFs concept and activators. We focus on elucidating their effects on immune cells, intratumoural vasculature, extracellular matrix, as well as cancer cell activity, metastatic power and metabolism, and on enhancing the metastatic ability of cancer cells through activation of JAK/STAT, NF/κB and CXCL12/CXCR4. Various therapeutic agents targeting CAFs are also under development and are expected to improve the prognosis of gastric cancer in combination with existing treatment options.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of general surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Huan Zhang
- Department of general surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Tao Chen
- Department of general surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Yajing Zhou
- Department of general surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Jiaoyang Yang
- Department of general surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Jin Zhou
- Department of general surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China.
| |
Collapse
|
47
|
Wang H, Fleishman JS, Cheng S, Wang W, Wu F, Wang Y, Wang Y. Epigenetic modification of ferroptosis by non-coding RNAs in cancer drug resistance. Mol Cancer 2024; 23:177. [PMID: 39192329 DOI: 10.1186/s12943-024-02088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The development of drug resistance remains a major challenge in cancer treatment. Ferroptosis, a unique type of regulated cell death, plays a pivotal role in inhibiting tumour growth, presenting new opportunities in treating chemotherapeutic resistance. Accumulating studies indicate that epigenetic modifications by non-coding RNAs (ncRNA) can determine cancer cell vulnerability to ferroptosis. In this review, we first summarize the role of chemotherapeutic resistance in cancer growth/development. Then, we summarize the core molecular mechanisms of ferroptosis, its upstream epigenetic regulation, and its downstream effects on chemotherapeutic resistance. Finally, we review recent advances in understanding how ncRNAs regulate ferroptosis and from such modulate chemotherapeutic resistance. This review aims to enhance general understanding of the ncRNA-mediated epigenetic regulatory mechanisms which modulate ferroptosis, highlighting the ncRNA-ferroptosis axis as a key druggable target in overcoming chemotherapeutic resistance.
Collapse
Affiliation(s)
- Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Weixue Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| | - Yu Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| |
Collapse
|
48
|
He XQ, Wu YJ. Engineered small extracellular vesicle-mediated ferroptosis: A new frontier in cancer immunotherapy. Int Immunopharmacol 2024; 139:112621. [PMID: 39013216 DOI: 10.1016/j.intimp.2024.112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Ferroptosis is a novel iron-dependent form of cell death discovered in recent years, characterized by the accumulation of ferrous iron, the production of reactive oxygen species (ROS) through the Fenton reaction, and lipid peroxidation, ultimately leading to the disruption of the antioxidant system and cell membrane damage. Extensive research has found that ferroptosis plays a significant role in regulating tumor cell immune evasion, tumor development, and remodeling the tumor microenvironment. Small Extracellular vesicles (sEVs), carrying various bioactive molecules (ncRNA, DNA, proteins), are key nanoscale mediators of intercellular communication. Increasing evidence confirms that EVs can regulate the ferroptosis pathway in tumors, promoting tumor cell immune evasion and reshaping the tumor microenvironment. This article aims to comprehensively review the key mechanisms by which sEVs mediate ferroptosis in cancer and provide new insights into targeting tumor immunotherapy.
Collapse
Affiliation(s)
- Xiao-Qi He
- Department of Pharmacy, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, Zhejiang Province, China
| | - Ya-Jun Wu
- Department of Pharmacy, Hangzhou Ninth People's Hospital, 98 Yilong Road, Hangzhou 311225, Zhejiang Province, China.
| |
Collapse
|
49
|
Lv X, Lan G, Zhu L, Guo Q. Breaking the Barriers of Therapy Resistance: Harnessing Ferroptosis for Effective Hepatocellular Carcinoma Therapy. J Hepatocell Carcinoma 2024; 11:1265-1278. [PMID: 38974015 PMCID: PMC11227329 DOI: 10.2147/jhc.s469449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Ferroptosis is a type of cell death that relies on iron and is distinguished by the occurrence of lipid peroxidation and the buildup of reactive oxygen species. Ferroptosis has been demonstrated to have a significant impact on the advancement and resistance to treatment of hepatocellular carcinoma (HCC), thereby highlighting its potential as a viable therapeutic target. Ferroptosis was observed in HCC tissues in contrast to normal liver tissue. The inhibition of ferroptosis has been found to increase the viability of HCC cells and decrease their susceptibility to various anticancer therapies, including chemotherapy, radiotherapy, and immune checkpoint blockade. The administration of drugs that directly modulate ferroptosis regulators or induce excessive production of lipid-reactive oxygen species has demonstrated the potential to enhance the responsiveness of drug-resistant HCC cells to treatment. However, the precise mechanism underlying this phenomenon remains ambiguous. This review presents a comprehensive overview of the crucial role played by ferroptosis in enhancing the efficacy of treatment for hepatocellular carcinoma (HCC). The main aim of this study is to examine the feasibility of utilizing ferroptosis as a therapeutic approach to improve the efficacy of HCC treatment and overcome drug resistance.
Collapse
Affiliation(s)
- Xianmei Lv
- Department of Radiotherapy, Jinhua People’s Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| | - Gaochen Lan
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, People’s Republic of China
| | - Lujian Zhu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, People’s Republic of China
| | - Qiusheng Guo
- Department of Radiotherapy, Jinhua People’s Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China
| |
Collapse
|
50
|
Zeng X, Lu Y, Zeng T, Liu W, Huang W, Yu T, Tang X, Huang P, Li B, Wei H. RNA demethylase FTO participates in malignant progression of gastric cancer by regulating SP1-AURKB-ATM pathway. Commun Biol 2024; 7:800. [PMID: 38956367 PMCID: PMC11220007 DOI: 10.1038/s42003-024-06477-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Gastric cancer (GC) is the 5th most prevalent cancer and the 4th primary cancer-associated mortality globally. As the first identified m6A demethylase for removing RNA methylation modification, fat mass and obesity-associated protein (FTO) plays instrumental roles in cancer development. Therefore, we study the biological functions and oncogenic mechanisms of FTO in GC tumorigenesis and progression. In our study, FTO expression is obviously upregulated in GC tissues and cells. The upregulation of FTO is associated with advanced nerve invasion, tumor size, and LNM, as well as the poor prognosis in GC patients, and promoted GC cell viability, colony formation, migration and invasion. Mechanistically, FTO targeted specificity protein 1 and Aurora Kinase B, resulting in the phosphorylation of ataxia telangiectasia mutated and P38 and dephosphorylation of P53. In conclusion, the m6A demethylase FTO promotes GC tumorigenesis and progression by regulating the SP1-AURKB-ATM pathway, which may highlight the potential of FTO as a diagnostic biomarker for GC patients' therapy response and prognosis.
Collapse
Affiliation(s)
- Xueliang Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yao Lu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Taohui Zeng
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Wenyu Liu
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weicai Huang
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xuerui Tang
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Panpan Huang
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Bei Li
- Department of Pharmacy, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|