1
|
Mukherjee R, Rana R, Mehan S, Khan Z, Das Gupta G, Narula AS, Samant R. Investigating the Interplay Between the Nrf2/Keap1/HO-1/SIRT-1 Pathway and the p75NTR/PI3K/Akt/MAPK Cascade in Neurological Disorders: Mechanistic Insights and Therapeutic Innovations. Mol Neurobiol 2025; 62:7597-7646. [PMID: 39920438 DOI: 10.1007/s12035-025-04725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Neurological illnesses are debilitating diseases that affect brain function and balance. Due to their complicated aetiologies and progressive nature, neurodegenerative and neuropsychiatric illnesses are difficult to treat. These incurable conditions damage brain functions like mobility, cognition, and emotional regulation, but medication, gene therapy, and physical therapy can manage symptoms. Disruptions in cellular signalling pathways, especially those involving oxidative stress response, memory processing, and neurotransmitter modulation, contribute to these illnesses. This review stresses the interplay between key signalling pathways involved in neurological diseases, such as the Nrf2/Keap1/HO-1/SIRT-1 axis and the p75NTR/PI3K/Akt/MAPK cascade. To protect neurons from oxidative damage and death, the Nrf2 transcription factor promotes antioxidant enzyme production. The Keap1 protein releases Nrf2 during oxidative stress for nuclear translocation and gene activation. The review also discusses how neurotrophin signalling through the p75 neurotrophin receptor (p75NTR) determines cell destiny, whether pro-survival or apoptotic. The article highlights emerging treatment approaches targeting these signalling pathways by mapping these connections. Continued research into these molecular pathways may lead to new neurological disease treatments that restore cellular function and neuronal survival. In addition to enhanced delivery technologies, specific modulators and combination therapies should be developed to fine-tune signalling responses. Understanding these crosstalk dynamics is crucial to strengthening neurological illness treatment options and quality of life.
Collapse
Affiliation(s)
- Ritam Mukherjee
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ravi Rana
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | - Rajaram Samant
- Chief Scientific Officer, Celagenex Research, Mumbai, India
| |
Collapse
|
2
|
Arumugam M, Pachamuthu RS, Rymbai E, Jha AP, Rajagopal K, Kothandan R, Muthu S, Selvaraj D. Gene network analysis combined with preclinical studies to identify and elucidate the mechanism of action of novel irreversible Keap1 inhibitor for Parkinson's disease. Mol Divers 2025; 29:2081-2098. [PMID: 39145879 DOI: 10.1007/s11030-024-10965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The cysteine residues of Keap1 such as C151, C273, and C288 are critical for its repressor activity on Nrf2. However, to date, no molecules have been identified to covalently modify all three cysteine residues for Nrf2 activation. Hence, in this study, our goal is to discover new Keap1 covalent inhibitors that can undergo a Michael addition with all three cysteine residues. The Keap1's intervening region was modeled using Modeller v10.4. Covalent docking and binding free energy were calculated using CovDock. Molecular dynamics (MD) was performed using Desmond. Various in-vitro assays were carried out to confirm the neuroprotective effects of the hit molecule in 6-OHDA-treated SH-SY5Y cells. Further, the best hit was evaluated in vivo for its ability to improve rotenone-induced postural instability and cognitive impairment in male rats. Finally, network pharmacology was used to summarize the complete molecular mechanism of the hit molecule. Chalcone and plumbagin were found to form the necessary covalent bonds with all three cysteine residues. However, MD analysis indicated that the binding of plumbagin is more stable than chalcone. Plumbagin displayed neuroprotective effects in 6-OHDA-treated SH-SY5Y cells at concentrations 0.01 and 0.1 μM. Plumbagin at 0.1 µM had positive effects on reactive oxygen species formation and glutathione levels. Plumbagin also improved postural instability and cognitive impairment in rotenone-treated male rats. Our network analysis indicated that plumbagin could also improve dopamine signaling. Additionally, plumbagin could exhibit anti-oxidant and anti-inflammatory activity through the activation of Nrf2. Cumulatively, our study suggests that plumbagin is a novel Keap1 covalent inhibitor for Nrf2-mediated neuroprotection in PD.
Collapse
Affiliation(s)
- Monisha Arumugam
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ranjith Sanjeeve Pachamuthu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Aditya Prakash Jha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Santhoshkumar Muthu
- Department of Biochemistry, Kongunadu Arts and Science College, GN Mills, Coimbatore, Tamil Nadu, India.
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
3
|
Choudhary D, Nasiruddin Khan MD, Khan Z, Mehan S, Gupta GD, Narula AS, Samant R. Navigating the complexities of neuronal signaling and targets in neurological disorders: From pathology to therapeutics. Eur J Pharmacol 2025; 995:177417. [PMID: 40010482 DOI: 10.1016/j.ejphar.2025.177417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Neurological disorders arising from structural and functional disruptions in the nervous system present major global health challenges. This review examines the intricacies of various cellular signaling pathways, including Nrf2/Keap1/HO-1, SIRT-1, JAK/STAT3/mTOR, and BACE-1/gamma-secretase/MAPT, which play pivotal roles in neuronal health and pathology. The Nrf2-Keap1 pathway, a key antioxidant response mechanism, mitigates oxidative stress, while SIRT-1 contributes to mitochondrial integrity and inflammation control. Dysregulation of these pathways has been identified in neurodegenerative and neuropsychiatric disorders, including Alzheimer's and Parkinson's diseases, characterized by inflammation, protein aggregation, and mitochondrial dysfunction. Additionally, the JAK/STAT3 signaling pathway emphasizes the connection between cytokine responses and neuroinflammation, further compounding disease progression. This review explores the crosstalk among these signaling networks, elucidating how their disruption leads to neuronal decline. It also addresses the dual roles of these pathways, presenting challenges in targeting them for therapeutic purposes. Despite the potential benefits of activating neuroprotective pathways, excessive stimulation may cause deleterious effects, including tumorigenesis. Future research should focus on designing multi-targeted therapies that enhance the effectiveness and safety of treatments, considering individual variabilities and the obstacles posed by the blood-brain barrier to drug delivery. Understanding these complex signaling interactions is crucial for developing innovative and effective neuroprotective strategies that could significantly improve the management of neurological disorders.
Collapse
Affiliation(s)
- Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - M D Nasiruddin Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | | |
Collapse
|
4
|
Lee H, Ju IG, Kim JH, Choi Y, Lee S, Park HJ, Oh MS. Artemisiae Iwayomogii Herba Protects Dopaminergic Neurons Against 1-Methyl-4-phenylpyridinium/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Neurotoxicity in Models of Parkinson's Disease. Nutrients 2025; 17:1672. [PMID: 40431412 PMCID: PMC12114580 DOI: 10.3390/nu17101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/05/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a common neurodegenerative disease characterized by motor symptoms caused by the loss of dopaminergic neurons. While the pathophysiology of PD is still not fully understood, it is recognized that oxidative stress plays a major role in its progression. Previous studies have shown that the aerial parts of Artemisia iwayomogi Kitamura (AIK) possess medicinal properties, including antioxidant activity. This study aimed to investigate whether AIK can alleviate neuronal loss and motor symptoms in a PD model and to explore its therapeutic mechanisms. Methods: For the in vitro study, PC12 cells were treated with AIK and 1-methyl-4-phenylpyridinium (MPP+). For the in vivo study, C57BL/6J mice were orally administered AIK for 12 days; they received intraperitoneal injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 5 consecutive days, starting on the 8th day of AIK administration. Results: AIK treatment to PC12 cells in the presence of MPP+ enhanced the phosphorylation of the protein kinase B/glycogen synthase kinase-3β signaling pathway, which is a crucial regulator of nuclear factor erythroid 2-related factor 2 (Nrf2) translocation. Additionally, AIK treatment increased cell survival and induced an antioxidant response involving heme oxygenase-1, via increasing the level of Nrf2 in the nucleus. In an MPTP-induced mouse model of PD, AIK administration activated Nrf2 in dopaminergic neurons and prevented the loss of dopaminergic neurons in the brain, which in turn alleviated motor dysfunction. Conclusions: Collectively, these findings suggest that AIK is a potential botanical candidate for PD treatment by protecting dopaminergic neurons through antioxidant activity.
Collapse
Affiliation(s)
- Hanbyeol Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Rana R, Mukherjee R, Mehan S, Khan Z, Das Gupta G, Narula AS. Molecular mechanisms of neuroprotection: The interplay of Klotho, SIRT-1, Nrf2, and HO-1 in neurological health. Behav Brain Res 2025; 485:115545. [PMID: 40120944 DOI: 10.1016/j.bbr.2025.115545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Neurological disorders significantly impair neuronal function and lead to cognitive and motor deficits. This review manuscript explores the therapeutic potential of key proteins-Klotho, SIRT-1, Nrf2, and HO-1-in combating these disorders. Neurological conditions encompass neurotraumatic, neurodegenerative, and neuropsychiatric diseases, all characterized by neuronal loss and dysfunction. The complex functions of Klotho, an anti-aging protein, and SIRT-1, a histone deacetylase, highlight their roles in neuronal survival and neuroprotection through the enhancement of antioxidant defences and the modulation of stress responses. Nrf2 functions as the principal regulator of the antioxidant response, whereas HO-1 facilitates the control of oxidative stress and the resolution of inflammation. Evidence suggests that the interplay between these proteins facilitates neuroprotection by decreasing oxidative damage and promoting cognitive function. The study emphasises the significance of signalling pathways, particularly the Nrf2/HO-1 axis, which are essential in mitigating oxidative stress and inflammation linked to neurodegenerative disorders. Future therapeutic strategies must consider personalized approaches, innovative drug delivery systems, and early intervention to optimize outcomes. This review provides a comprehensive framework for understanding how targeting these pathways can mitigate the burden of neurological disorders, advancing the development of effective interventions for enhancing brain health.
Collapse
Affiliation(s)
- Ravi Rana
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ritam Mukherjee
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
6
|
Upadhayay S, Uttam V, Kumar P. G-Protein-Coupled Estrogen Receptor 1 (GPER1) Activation Mitigates Haloperidol-Induced Neurotoxicity in SHSY-5Y Cells and Improves Motor Functions in Adult Zebrafish. Neurochem Res 2025; 50:119. [PMID: 40087195 DOI: 10.1007/s11064-025-04369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Haloperidol (Halo) is a typical antipsychotic medication used to treat schizophrenia, but its long-term treatment causes neurotoxicity, leading to irregular involuntary movements called Tardive Dyskinesia. Raloxifene (Ralo) and fulvestrant (Fulve) are G-protein-coupled estrogen receptor 1 (GPER1) activators and show similar pharmacological properties as identified in 17β-estradiol. It is reported to have anti-oxidant, anti-inflammatory, and anti-apoptotic properties against neurological disorders. Our study aimed to investigate the neuroprotective effect of ralo and fulve against halo-induced neurotoxicity in SHSY-5Y cells and adult zebrafish. In this study, SHSY-5Y cell lines were treated with ralo (0.01 µM), fulve (0.01 µM), G-15 (1 µM), and G-1 (2 µM) 1 h before halo (100 µM) exposure. Moreover, cell viability was analyzed using MTT assay; apoptosis was done using a confocal microscope, and molecular mechanism investigated through Western Blot and qRT-PCR analysis. For in-vivo study, zebrafish were divided into six groups (n = 12). Treatment with ralo and fulve significantly improved the viability of halo-exposed cells, while it was reduced by G15 treatment. Moreover, ralo and fulve substantially reversed ROS generation, and apoptosis by enhancing the qRT-PCR expression of Nrf2/HO-1/Bcl2 and reduced Bax expression in halo-treated cells. In addition, ralo and fulve treatment enhanced GPER1 expression in halo-treated cells, while G15 treatment reduced it. Furthermore, ralo and fulve injections improved total distance travelled, mean speed, and catalepsy-like behaviour, restoring antioxidant activity in halo-treated zebrafish. Findings suggest that ralo and fulve can activate GPER1/Nrf2/HO-1 signaling pathways and show neuroprotection against halo-induced neurotoxicity. It could be used in the management of neurological disorders.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bhatinda, 151401, Punjab, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Ghudda, Bhatinda, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bhatinda, 151401, Punjab, India.
| |
Collapse
|
7
|
Shi Y, Zhou Q, Wu C, Liu J, Yang C, Yang T, Zhang R. Effects of rhamnolipid replacement of chlortetracycline on growth performance, slaughtering traits, meat quality and antioxidant function in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:858-865. [PMID: 39243159 DOI: 10.1002/jsfa.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Rhamnolipids (RLS) are surfactants that improve the growth performance of poultry by improving the absorption of nutrients. This study aims to investigate the effects of RLS replacement of chlortetracycline (CTC) on growth performance, slaughtering traits, meat quality, antioxidant function and nuclear-factor-E2-related factor 2 (Nrf2) signaling pathway in broilers. A total of 600 one-day-old Arbor Acres chicks were randomly assigned to five groups with eight replicates in each group, raised for 42 days. Broilers were respectively fed a basal diet with no CTC or RLS, 75 mg kg-1 CTC, and 250, 500, 1000 mg kg-1 RLS. RESULTS Dietary supplementation with RLS linearly increased the average daily gain, average daily feed intake, carcass yield, eviscerated yield, ether extract, enhanced total superoxide and glutathione peroxidase (GPx) activities, overexpressed the relative expressions of Nrf2, heme oxygenase 1, Copper/zinc superoxide dismutase, Manganese superoxide dismutase, GPx and catalase and decreased the lightness value at 24 h, drip loss and malondialdehyde contents of broilers (P < 0.05). Compared with the control group, broilers fed 1000 mg kg-1 RLS reduced the drip loss and broilers fed 500 mg kg-1 RLS increased muscle crude fat content (P < 0.05). Compared with the CTC group, dietary supplementation with 1000 mg kg-1 RLS increased eviscerated yield (P < 0.05). CONCLUSION RLS could improve growth performance, crude fat content, meat quality and antioxidant capacity and activate relative expression of genes in the Nrf2 signaling pathway in broilers. It could be used as an antibiotic substitute in diets and the recommended supplemental dose of RLS in feed of broilers is 1000 mg kg-1. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yonghao Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Qilu Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Chao Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinsong Liu
- Vegamax Green Animal Health Products Key agricultural Enterprise Research Institute, Zhejiang Vegamax Biotechnology Co. Ltd, Anji, China
| | - Caimei Yang
- Vegamax Green Animal Health Products Key agricultural Enterprise Research Institute, Zhejiang Vegamax Biotechnology Co. Ltd, Anji, China
| | - Ting Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
8
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
9
|
Kaur K, Narang RK, Singh S. Role of Nrf2 in Oxidative Stress, Neuroinflammation and Autophagy in Alzheimer's Disease: Regulation of Nrf2 by Different Signaling Pathways. Curr Mol Med 2025; 25:372-387. [PMID: 37493162 DOI: 10.2174/1566524023666230726145447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder and the leading cause of dementia. AD is characterized by the aggregation of amyloid-ß (Aß) peptide, increased levels of tau protein, and loss of redox homeostasis responsible for mitochondrial dysfunction, oxidative stress, and neuroinflammation. Excessive accumulation of toxic Aß plaques activates microglia, which initiates neuroinflammation and consequently accelerates synaptic damage and neuronal loss. Various proinflammatory cytokines release, microglia proliferation, reactive astrocyte, and oxidative (reactive oxygen species (ROS) production, level of antioxidant enzymes, redox homeostasis, and lipid peroxidation) stress play a major role in AD. Several studies revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) regulates redox homeostasis and works as an anti-inflammatory in various neurodegenerative disorders. D-Glutamate expression of transcription factor Nrf2 and its genes (glutamate-cysteine ligase catalytic subunit (GCLC), Heme oxygenase-1 (HO-1), and NADPH quinone oxidoreductase I (NQO1)) has been found in AD. Nrf2-HO-1 enhances the expression of antioxidant genes, inhibits microglia-mediated inflammation, and boosts mitochondrial function, suggesting that modulators of this protein may be useful to manage AD. This review focuses on the role of Nrf2 in AD, with a particular emphasis on the various pathways involved in the positive and negative modulation of Nrf2, namely Phosphoinositide 3-kinase (PI3K), Glycogen synthase kinase-3 (GSK-3), Nuclear factor kappa-B (NF-κB), and p38Mitogen-activated protein kinases (p38MAPK). Also, we have discussed the progress and challenges regarding the Nrf2 activators for AD treatment.
Collapse
Affiliation(s)
- Karamjeet Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India affiliated to IKG- Punjab Technical University, Jalandhar Punjab, 144603, India
| | - Raj Kumar Narang
- Nanomedicine Research Centre, Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
10
|
Alam MZ, Bagabir HA, Zaher MAF, Alqurashi TMA, Alghamdi BS, Kazi M, Ashraf GM, Alshahrany GA, Alzahrani NA, Bakhalgi RM, Juweiriya, Al-Thepyani M, AboTaleb HA, Aldhahri RS, El-Aziz GSA, Al-Abbasi FA, Eibani LK, Alzahrani FJ, Khan MSA. Black Seed Oil-Based Curcumin Nanoformulations Ameliorated Cuprizone-Induced Demyelination in the Mouse Hippocampus. Mol Neurobiol 2025; 62:604-625. [PMID: 38890237 DOI: 10.1007/s12035-024-04310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease characterized by the demyelination of nerves, axonal damage, and neuroinflammation. Cognition impairment, pain, and loss of mobility are some of the usual complications of MS. It has been postulated that the overproduction of proinflammatory cytokines and reactive oxygen species (ROS) are the main factors that contribute to MS pathology. Among various animal models, the cuprizone model is the most widely used model for investigating MS-related pathology. We assessed the effects of cuprizone along with the protective effects of some black seed oil-based nanoformulations of curcumin with and without piperine, in mice hippocampus in terms of the changes in antioxidant enzymes, transcription factors, and cytokines during demyelination and remyelination processes. The results of behavioral studies point toward impairment in working memory following the feeding of cuprizone for 5 weeks. However, in treatment groups, mice seemed to prevent the toxic effects of cuprizone. Nanoformulations used in this study were found to be highly effective in lowering the amount of ROS as indicated by the levels of antioxidant enzymes like catalase, superoxide dismutase, glutathione, and glutathione peroxidase. Moreover, nanoformulations CCF and CCPF were observed resisting the toxic effects of cuprizone. We observed greater expression of NFκB-p65 in the CPZ group than in the control group. CCF nanoformulation had a better inhibitory effect on NFκB-p65 than other formulations. Histological examination of the hippocampus was also conducted. Nanoformulations used here were found effective in reversing MS-related pathophysiology and hence have the potential to be applied as adjuvant therapy for MS treatment.
Collapse
Affiliation(s)
- Mohammad Zubair Alam
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh Campus, Jeddah, Saudi Arabia
| | | | - Thamer M A Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badrah S Alghamdi
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, 22252, Jeddah, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. BOX-2457, 11451, Riyadh, Saudi Arabia
| | - Ghulam Md Ashraf
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gadah Ali Alshahrany
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmed Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rafal Mohammed Bakhalgi
- Department of Microbiology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Juweiriya
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, India
| | - Mona Al-Thepyani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh Campus, Jeddah, Saudi Arabia
| | | | - Rahaf Saeed Aldhahri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Gamal Said Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Loay Khaled Eibani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Jaman Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
11
|
Choi JW, Choi SY, Yoo G, Park HY, Choi IW, Hur J. Melissa officinalis Regulates Lipopolysaccharide-Induced BV2 Microglial Activation via MAPK and Nrf2 Signaling. J Microbiol Biotechnol 2024; 34:2474-2483. [PMID: 39467696 PMCID: PMC11729339 DOI: 10.4014/jmb.2409.09020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Neuroinflammation and microglial activation play critical roles in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Modulating microglial activation may help prevent the progression of these disorders. This study aimed to investigate the effects and mechanisms of Melissa officinalis ethanol extract on lipopolysaccharide (LPS)-induced microglial activation in BV2 cells. Cell viability and nitric oxide (NO) production were assessed using MTT assay and Griess reagent, while inflammatory cytokine levels were measured by qPCR. Key inflammatory pathways, including MAPK, TLR4, and antioxidant biomarkers, were analyzed through western blot and immunofluorescence. Rosmarinic acid content in M. officinalis was determined using high-performance liquid chromatography (HPLC). The results demonstrated that M. officinalis ethanol extract significantly inhibited LPS-induced NO production and reduced inflammatory cytokine expression. Additionally, it downregulated inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TLR4, NF-κB, and MAPK signaling pathways (p38, JNK, ERK), while increasing the expression of antioxidant markers, including Nrf2, HO-1, catalase, and SOD2. In conclusion, M. officinalis ethanol extract exerts neuroprotective effects by modulating inflammation and enhancing antioxidant defenses, suggesting its potential in the prevention and treatment of inflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji-Won Choi
- Korea Food Research Institute, Wanju-Gun, Jeollabuk-do 55365, Republic of Korea
| | - Sang Yoon Choi
- Korea Food Research Institute, Wanju-Gun, Jeollabuk-do 55365, Republic of Korea
| | - Guijae Yoo
- Korea Food Research Institute, Wanju-Gun, Jeollabuk-do 55365, Republic of Korea
| | - Ho-Young Park
- Korea Food Research Institute, Wanju-Gun, Jeollabuk-do 55365, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - In-Wook Choi
- Korea Food Research Institute, Wanju-Gun, Jeollabuk-do 55365, Republic of Korea
| | - Jinyoung Hur
- Korea Food Research Institute, Wanju-Gun, Jeollabuk-do 55365, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
12
|
Shaikh II, Bhandari R, Singh S, Zhu X, Ali Shahzad K, Shao C, Cheng L, Xiao J. Therapeutic potential of EVs loaded with CB2 receptor agonist in spinal cord injury via the Nrf2/HO-1 pathway. Redox Rep 2024; 29:2420572. [PMID: 39466990 PMCID: PMC11520104 DOI: 10.1080/13510002.2024.2420572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) poses a challenge due to limited treatment options. Recently, the effect and mechanism of Exo-loaded cannabinoid receptor type 2 (CB2) agonist AM1241(Exo + AM1241) have been applied in other inflammatory diseases but not in SCI. METHODS The SCI model was set up using C57BL/6 mice, followed by the treatment of Exo, AM1241, and Exo + AM1241. We assessed the effects of the following treatments on motor function recovery using BMS, and evaluated histological changes, apoptosis activity, inflammation, and oxidative stress in the SCI mice model. Additionally, the effect of following treatments on spinal cord neural stem cells (NSCs) was evaluated under lipopolysaccharides (LPS) induced inflammatory and oxidative models and, glutamate (Gluts) induced cell apoptosis models. RESULT Our results demonstrated that Exo + AM1241 treatment significantly improved motor function recovery, after SCI by decreasing proinflammatory cytokines, and suppressing astrocyte/microglia (GFAP/Iba1) activation in the injury zone. Additionally, this treatment reduces pro-apoptotic proteins (Bax and caspase 3), increases the levels of the anti-apoptotic protein Bcl-2, enhances antioxidant defenses by boosting SOD and GSH, and lowers oxidative stress markers such as MDA. It also activates the Nuclear factor erythroid-2 (Nrf2) related factor 2 signaling pathway, thereby enhancing tissue protection against damage and cell death.
Collapse
Affiliation(s)
- Imran Ibrahim Shaikh
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, People’s Republic of China
- Ministry of Education, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Shanghai, People’s Republic of China
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Ramesh Bhandari
- Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Shekhar Singh
- Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xu Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Chuxiao Shao
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, People’s Republic of China
| | - Liming Cheng
- Ministry of Education, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Shanghai, People’s Republic of China
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jian Xiao
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
13
|
Sood R, Sanjay, Kang SU, Yoon NY, Lee HJ. Malvidin-3-O-Glucoside Mitigates α-Syn and MPTP Co-Induced Oxidative Stress and Apoptosis in Human Microglial HMC3 Cells. Int J Mol Sci 2024; 25:12733. [PMID: 39684444 DOI: 10.3390/ijms252312733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease (PD) is a widespread age-related neurodegenerative disorder characterized by the presence of an aggregated protein, α-synuclein (α-syn), which is encoded by the SNCA gene and localized to presynaptic terminals in a normal human brain. The α-syn aggregation is induced by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mitochondrial neurotoxin and is therefore used to mimic PD-like pathology in various in vitro and in vivo models. However, in vitro PD-like pathology using α-syn and MPTP in human microglial cells has not yet been reported. Malvidin-3-O-glucoside (M3G) is a major anthocyanin primarily responsible for pigmentation in various fruits and beverages and has been reported to possess various bioactivities. However, the neuroprotective effects of M3G in humanized in vitro PD-like pathologies have not been reported. Therefore, individual and co-treatments of α-syn and MPTP in a human microglial (HMC3) cell line were used to establish a humanized PD-like pathology model in vitro. The individual treatments were significantly less cytotoxic when compared to the α-syn and MPTP co-treatment. This study examined the neuroprotective effects of M3G by treating HMC3 cells with α-syn (8 μg/mL) and MPTP (2 mM) individually or in a co-treatment in the presence or absence of M3G (50 μM). M3G demonstrated anti-apoptotic, anti-inflammatory, and antioxidative properties against the α-syn- and MPTP-generated humanized in vitro PD-like pathology. This study determined that the cytoprotective effects of M3G are mediated by nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 signaling.
Collapse
Affiliation(s)
- Rachit Sood
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Republic of Korea
| | - Sanjay
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Republic of Korea
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Na Young Yoon
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
14
|
Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and heme oxygenase-1-expressing myeloid cells in pathophysiology. Front Immunol 2024; 15:1433113. [PMID: 39611159 PMCID: PMC11604077 DOI: 10.3389/fimmu.2024.1433113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024] Open
Abstract
Although the pathological significance of myeloid cell heterogeneity is still poorly understood, new evidence indicates that distinct macrophage subsets are characterized by specific metabolic programs that influence disease onset and progression. Within this scenario, distinct subsets of macrophages, endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), play critical roles in physiologic and pathological conditions. Of relevance, the substrates of HO-1 activity are the heme groups that derive from cellular catabolism and are converted into carbon monoxide (CO), biliverdin and Fe2+, which together elicit anti-apoptotic, anti-inflammatory activities and control oxidative damage. While high levels of expression of HO-1 enzyme by specialized macrophage populations (erythrophagocytes) guarantee the physiological disposal of senescent red blood cells (i.e. erythrocateresis), the action of HO-1 takes on pathological significance in various diseases, and abnormal CO metabolism has been observed in cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration. Modulation of heme catabolism and CO production is therefore a feasible therapeutic opportunity in various diseases. In this review we discuss the role of HO-1 in different pathological contexts (i.e. cancer, infections, cardiovascular, immune-mediated and neurodegenerative diseases) and highlight new therapeutic perspectives on the modulation of the enzymatic activity of HO-1.
Collapse
Affiliation(s)
- Francesca Maria Consonni
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Incerti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Milena Bertolotti
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Giulia Ballerini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
15
|
Kim Y, Kim J, Kim B, Kim R, Kim HJ, Lee EH, Kim J, Park J, Jeong Y, Park SI, Kim H, Kang M, Lee J, Bahn YS, Choi JW, Park JH, Park KD. Discovery and Optimization of a Series of Vinyl Sulfoximine-Based Analogues as Potent Nrf2 Activators for the Treatment of Multiple Sclerosis. J Med Chem 2024; 67:17866-17892. [PMID: 39323296 PMCID: PMC11472819 DOI: 10.1021/acs.jmedchem.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease of the central nervous system (CNS), which leads to demyelination, axonal loss, and neurodegeneration. Increased oxidative stress and neurodegeneration have been implicated in all stages of MS, making neuroprotective therapeutics a promising strategy for its treatment. We previously have reported vinyl sulfones with antioxidative and anti-inflammatory properties that activate nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that induces the expression of cytoprotective genes against oxidative stress. In this study, we synthesized vinyl sulfoximine derivatives by modifying the core structure and determined therapeutic potential as Nrf2 activators. Among them, 10v effectively activated Nrf2 (EC50 = 83.5 nM) and exhibited favorable drug-like properties. 10v successfully induced expression of Nrf2-dependent antioxidant enzymes and suppressed lipopolysaccharide (LPS)-induced inflammatory responses in BV-2 microglial cells. We also confirmed that 10v effectively reversed disease progression and attenuated demyelination in an experimental autoimmune encephalitis (EAE) mouse model of MS.
Collapse
Affiliation(s)
- Yoowon Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehwan Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Byungeun Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Rium Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Elijah Hwejin Lee
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jushin Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiwoo Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yeeun Jeong
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang In Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyemin Kim
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Minsik Kang
- Doping
Control Center, KIST, Seoul 02792, Republic of Korea
| | - Jaeick Lee
- Doping
Control Center, KIST, Seoul 02792, Republic of Korea
| | - Yong-Sun Bahn
- Department
of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Won Choi
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Cureverse
Co., Ltd., Seoul Biohub, Seoul 02455, Republic
of Korea
| | - Jong-Hyun Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Brain
Disorders Research Center, Brain Science Research Division, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
16
|
Hakimi Naeini S, Rajabi-Maham H, Azizi V, Hosseini A. Anticonvulsant effect of glycitin in pentylenetetrazol induced male Wistar rat model by targeting oxidative stress and Nrf2/HO-1 signaling. Front Pharmacol 2024; 15:1392325. [PMID: 39246658 PMCID: PMC11377222 DOI: 10.3389/fphar.2024.1392325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Epilepsy, characterized by recurrent seizures, poses a significant health challenge globally. Despite the availability of anti-seizure medications, their adverse effects and inadequate efficacy in controlling seizures propel the exploration of alternative therapeutic measures. In hypothesis, glycitin is a phytoestrogenic compound found in soybeans and due to its estrogenic properties may have anti-epileptic and neuroprotective effects. This study investigates the potential anti-epileptic properties of glycitin in the context of pentylenetetrazol (PTZ) induced seizures in male Wistar rats. The rats were pretreated with varying doses of glycitin (5, 10, and 20 mg/kg) before PTZ (35 mg/kg) administration, and assessments included behavioral observations and histological evaluation via hematoxylin and eosin (H&E) staining. Additionally, oxidative stress markers, such as malondialdehyde (MDA), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels, were quantified to examine glycitin's impact on oxidative stress. Molecular analysis was conducted to assess the activation of the Nuclear factor erythroid 2-related factor (Nrf2)/Heme oxygenase 1 (HO-1) signaling pathway. Results indicated that glycitin pretreatment effectively mitigated PTZ-induced convulsive behaviors, supported by histological findings from H&E staining. Furthermore, glycitin administration led to significant alterations in MDA, GPx, and SOD levels, suggestive of its ability to modulate oxidative stress. Notably, glycitin treatment induced activation of the Nrf2/HO-1 signaling pathway. These findings underscore the potential of glycitin as an anticonvulsant agent, elucidating its mechanism of action through histological protection, modulation of oxidative stress markers, and activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
17
|
Ashrafpour S, Nasr-Taherabadi MJ, Sabouri-Rad A, Hosseinzadeh S, Pourabdolhossein F. Arbutin intervention ameliorates memory impairment in a rat model of lysolecethin induced demyelination: Neuroprotective and anti-inflammatory effects. Behav Brain Res 2024; 469:115041. [PMID: 38723674 DOI: 10.1016/j.bbr.2024.115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Cognitive impairment (CI) and memory deficit are prevalent manifestations of multiple sclerosis (MS). This study explores the therapeutic potential of arbutin on memory deficits using a rat hippocampal demyelination model induced by lysophosphatidylcholine (LPC). Demyelination was induced by bilateral injection of 1% LPC into the CA1 area of the hippocampus, and the treated group received daily arbutin injections (50 mg/kg, i.p) for two weeks. Arbutin significantly improved memory impairment 14 days post-demyelination as assessed by Morris water maze test. Histological and immunohistochemical analyses demonstrated that arbutin reduced demyelination suppressed pro-inflammatory markers (IL-1β, TNF-α) and increased anti-inflammatory cytokine IL-10. Arbutin also diminished astrocyte activation, decreased iNOS, enhanced anti-oxidative factors (Nrf2, HO-1), and exhibited neuroprotective effects by elevating myelin markers (MBP) and brain derived neurotrophic factor (BDNF). These findings propose arbutin as a potential therapeutic candidate for multiple sclerosis-associated memory deficits, warranting further clinical exploration.
Collapse
Affiliation(s)
- Sahand Ashrafpour
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Alie Sabouri-Rad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Soheila Hosseinzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
18
|
Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol Immunotoxicol 2024; 46:355-377. [PMID: 38634438 DOI: 10.1080/08923973.2024.2330642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis. METHODS We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy. RESULTS Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression. CONCLUSION MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ayca Ceylan
- Medical Faculty, Department of Pediatrics, Division of Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Fariha Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
19
|
Khan Z, Mehan S, Gupta GD, Narula AS. Immune System Dysregulation in the Progression of Multiple Sclerosis: Molecular Insights and Therapeutic Implications. Neuroscience 2024; 548:9-26. [PMID: 38692349 DOI: 10.1016/j.neuroscience.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
Multiple sclerosis (MS), a prevalent neurological disorder, predominantly affects young adults and is characterized by chronic autoimmune activity. The study explores the immune system dysregulation in MS, highlighting the crucial roles of immune and non-neuronal cells in the disease's progression. This review examines the dual role of cytokines, with some like IL-6, TNF-α, and interferon-gamma (IFN-γ) promoting inflammation and CNS tissue injury, and others such as IL-4, IL-10, IL-37, and TGF-β fostering remyelination and protecting against MS. Elevated chemokine levels in the cerebrospinal fluid (CSF), including CCL2, CCL5, CXCL10, CXCL13, and fractalkine, are analyzed for their role in facilitating immune cell migration across the blood-brain barrier (BBB), worsening inflammation and neurodegeneration. The study also delves into the impact of auto-antibodies targeting myelin components like MOG and AQP4, which activate complement cascades leading to further myelin destruction. The article discusses how compromised BBB integrity allows immune cells and inflammatory mediators to infiltrate the CNS, intensifying MS symptoms. It also examines the involvement of astrocytes, microglia, and oligodendrocytes in the disease's progression. Additionally, the effectiveness of immunomodulatory drugs such as IFN-β and CD20-targeting monoclonal antibodies (e.g., rituximab) in modulating immune responses is reviewed, highlighting their potential to reduce relapse rates and delaying MS progression. These insights emphasize the importance of immune system dysfunction in MS development and progression, guiding the development of new therapeutic strategies. The study underscores recent advancements in understanding MS's molecular pathways, opening avenues for more targeted and effective treatments.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
20
|
Nema M, Dutta BJ, Singh S. Alpha-Lipoic acid alleviates imidacloprid-induced neuro-behavioral deficits in rats via Nrf2/HO-1 pathway. Toxicol Mech Methods 2024; 34:176-188. [PMID: 37904548 DOI: 10.1080/15376516.2023.2266027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023]
Abstract
Imidacloprid (IMI), a widely used pesticide in agriculture and a potential food contaminant, poses significant health concerns. This study sought to comprehensively evaluate its neurotoxic effects while investigating the potential protective role of alpha-lipoic acid (ALA), a naturally occurring dietary antioxidant renowned for its capacity to combat oxidative stress, support cardiovascular health, and maintain optimal nerve function. In this study, 28 rats were divided evenly into four groups and administered oral treatments of corn oil, IMI, IMI + ALA, and ALA, respectively. The results of the study indicated that rats exposed to IMI exhibited significant neurobehavioral impairments, decreased levels of antioxidant enzymes and acetylcholinesterase activity, reduced expression of HO-1 and Nrf2, and increased levels of pro-inflammatory cytokines like IL-6 and TNF-α in their hippocampal tissues. Furthermore, histopathological analysis of the brain tissues, specifically cortex and hippocampus, from the IMI-treated group revealed varying degrees of neuronal degeneration. In contrast, rats co-administered ALA alongside IMI showed noticeable improvements in all the assessed toxicological parameters. This study underscores the vital significance of ALA as a potential therapeutic adjunct in mitigating the adverse neurobehavioral consequences of insecticide exposure. By harnessing the Nrf2/HO-1 pathway, ALA demonstrates its ability to shield against IMI-induced neurotoxicity, offering a promising avenue for enhancing public health and safety. As a result, our findings advocate for the incorporation of ALA as a daily dietary supplement to fortify resilience against oxidative stress-related neurobehavioral deficits linked to pesticide exposure, thereby advancing our understanding of neuroprotection strategies in the face of environmental challenges.
Collapse
Affiliation(s)
- Mohit Nema
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
21
|
Hasaniani N, Ghasemi-Kasman M, Halaji M, Rostami-Mansoor S. Bifidobacterium breve Probiotic Compared to Lactobacillus casei Causes a Better Reduction in Demyelination and Oxidative Stress in Cuprizone-Induced Demyelination Model of Rat. Mol Neurobiol 2024; 61:498-509. [PMID: 37639065 DOI: 10.1007/s12035-023-03593-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Despite the anatomical separation, strong evidence suggested a bidirectional association between gut microbiota and central nervous system. Cross-talk between gut microbiota and brain has an important role in the pathophysiology of neurodegenerative disorders and regenerative processes. However, choosing the appropriate probiotics and combination therapy of probiotics to provide a synergistic effect is very crucial. In the present study, we investigated the effect of Lactobacillus casei (L. casei) and Bifidobacterium breve (B. breve) on alternation performance, oxidant/antioxidant biomarkers, the extent of demyelination, and the expression level of HO-1, Nrf-2, Olig2, MBP, PDGFRα, and BDNF in cuprizone (CPZ)-induced demyelination model of rat corpus callosum. In order to induce this model, rats received oral administration of CPZ 0.6% w/w in corn oil for 28 days. Then, L. casei, B. breve, or their combinations were orally administrated for 28 days. Y maze test was performed to investigate the alternation performance. Oxidant/antioxidant biomarkers were determined by colorimetric methods. Extent of demyelination was investigated using FluoroMyelin staining. The genes' expression levels of antioxidant and myelin lineage cells were assessed by quantitative real time PCR. The results showed the probiotics supplementation significantly improve the alternation performance and antioxidant capacity in demyelinated corpus callosum. Interestingly, B. breve supplementation alleviated demyelination and oxidative stress levels more than the administration of L. casei alone or the combination of two probiotics. These observations suggest that B. breve could provide a supplementary strategy for the treatment of multiple sclerosis by increasing antioxidant capacity and remyelination.
Collapse
Affiliation(s)
- Nima Hasaniani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
22
|
Beyaz S, Aslan A, Gok O, Ozercan IH, Agca CA. Fullerene C 60 protects against 7,12-dimethylbenz [a] anthracene (DMBA) induced-pancreatic damage via NF-κB and Nrf-2/HO-1 axis in rats. Toxicol Res (Camb) 2023; 12:954-963. [PMID: 37915491 PMCID: PMC10615826 DOI: 10.1093/toxres/tfad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
The objective of this investigation was to investigate the protective effects of fullerene C60 nanoparticle against pancreatic damage experimentally induced by 7,12-dimethylbenz [a] anthracene (DMBA) in female rats. Fullerene C60 nanoparticle was administered to rats 5 times a week by oral gavage (o.g) at 1.7 mg/kg bw 7 days after DMBA administration. 60 Wistar albino female rats divided to four groups; Groups: (1) Control group: Fed with standard diet; (2) Fullerene C60 group: Fullerene C60 (1.7 mg/kg bw); (3) DMBA group: DMBA (45 mg/kg bw); (4) Fullerene C60 + DMBA group: Fullerene C60 (1.7 mg/kg bw) and DMBA (45 mg/kg bw). Lipid peroxidation malondialdehyde (MDA), catalase activity (CAT) and glutathione (GSH) levels in pancreatic tissue were determined by spectrophotometer. Protein expression levels of p53, HO-1, p38-α (MAPK), Nrf-2, NF-κB and COX-2 in pancreatic tissue were determined by western blotting technique. In our findings, compared to the group given DMBA, MDA levels and p38-α, NF-κB and COX-2 levels decreased, CAT activity, GSH level, total protein density and p53, HO-1, Nrf-2 levels in the groups given fullerene C60 nanoparticle an increase in expression levels was observed. Our results showed that fullerene C60 nanoparticle may be more beneficial in preventing pancreatic damage.
Collapse
Affiliation(s)
- Seda Beyaz
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | - Abdullah Aslan
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Department of Biology-Molecular Biology and Genetics, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Can Ali Agca
- Department of Molecular Biology and Genetics Bingol, Faculty of Science, Bingol University, Bingol, Turkey
| |
Collapse
|
23
|
Sethi P, Mehan S, Khan Z, Chhabra S. Acetyl-11-keto-beta boswellic acid(AKBA) modulates CSTC-pathway by activating SIRT-1/Nrf2-HO-1 signalling in experimental rat model of obsessive-compulsive disorder: Evidenced by CSF, blood plasma and histopathological alterations. Neurotoxicology 2023; 98:61-85. [PMID: 37549874 DOI: 10.1016/j.neuro.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Obsessive-Compulsive disorder (OCD) is a long-term and persistent mental illness characterised by obsessive thoughts and compulsive behaviours. Numerous factors can contribute to the development or progression of OCD. These factors may result from the dysregulation of multiple intrinsic cellular pathways, including SIRT-1, Nrf2, and HO-1. Inhibitors of selective serotonin reuptake (SSRIs) are effective first-line treatments for OCD. In our ongoing research, we have investigated the role of SIRT-1, Nrf2, and HO-1, as well as the neuroprotective potential of Acetyl-11-keto-beta boswellic acid (AKBA) against behavioural and neurochemical changes in rodents treated with 8-OH-DPAT. In addition, the effects of AKBA were compared to those of fluvoxamine (FLX), a standard OCD medication. Injections of 8-OH-DPAT into the intra-dorso raphe nuclei (IDRN) of rats for seven days induced repetitive and compulsive behaviour accompanied by elevated oxidative stress, inflammatory processes, apoptosis, and neurotransmitter imbalances in CSF, blood plasma, and brain samples. Chronic administration of AKBA at 50 mg/kg and 100 mg/kg p.o. restored histopathological alterations in the cortico-striatal-thalamo-cortical (CSTC) pathway, including the cerebral cortex, striatum, and hippocampal regions. Our investigation revealed that when AKBA and fluvoxamine were administered together, the alterations were restored to a greater degree than when administered separately. These findings demonstrate that the neuroprotective effect of AKBA can serve as an effective basis for developing a novel OCD treatment.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Swesha Chhabra
- Division of Neuroscience, Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
24
|
Sherawat K, Mehan S. Tanshinone-IIA mediated neuroprotection by modulating neuronal pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1647-1667. [PMID: 37010572 DOI: 10.1007/s00210-023-02476-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
The progression of neurological diseases is mainly attributed to oxidative stress, apoptosis, inflammation, and trauma, making them a primary public concern. Since no drugs can stop these neurological disorders from happening, active phytochemical intervention has been suggested as a possible treatment. Among the several phytochemicals being studied for their potential health advantages, tanshinone-IIA (Tan-IIA ) stands out due to its wide range of therapeutic effects. Tan-IIA, derived from the Salvia miltiorrhiza plant, is a phenanthrenequinone. The pharmacological characteristics of Tan-IIAagainst various neurodegenerative and neuropsychiatric illnesses have led researchers to believe that the compound possesses neuroprotective potential. Tan-IIA has therapeutic potential in treating neurological diseases due to its capacity to cross the blood-brain barrier and its broad range of activities. In treating neurological disorders, Tan-IIA has been shown to have neuroprotective effects such as anti-apoptotic, anti-inflammatory, BBB protectant, and antioxidant properties. This article concisely summarises the latest scientific findings about the cellular and molecular aspects of Tan-IIA neuroprotection in relation to various neurological diseases. The results of preclinical studies on Tan-IIA provide insight into its potential application in future therapeutic development. This molecule rapidly establishes as a prominent bioactive compound for clinical research.
Collapse
Affiliation(s)
- Kajal Sherawat
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
25
|
Yu J, Zhou L, Song H, Huang Q, Yu J, Wang S, Zhang X, Li W, Niu X. (-)-Epicatechin gallate blocked cellular foam formation in atherosclerosis by modulating CD36 expression in vitro and in vivo. Food Funct 2023; 14:2444-2458. [PMID: 36786689 DOI: 10.1039/d2fo03218j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Green tea is popular worldwide, so its main active ingredients have attracted people's attention. (-)-Epicatechin gallate (ECG) is the main active component of green tea polyphenols, which has good antioxidant activity, but its cardiovascular intervention is unknown. This study established in vitro and in vivo models of ox-LDL-induced macrophages and HFD-induced ApoE-/- mice to study the effects of ECG on atherosclerotic lesions. Firstly, the study confirmed that ECG has a therapeutic effect in different stages of atherosclerotic plaques. Subsequently, the results showed that the ox-LDL-induced release of pro-inflammatory mediators and the expression of the related protein CD86 in macrophages were inhibited by ECG. ECG blocked the formation of cellular foam by downregulating the expression of CD36 and LOX-1 proteins, thereby increasing SOD activity and reducing MDA production in cells. ECG also prevented ox-LDL-induced apoptosis, promoted macrophage migration, and increased plaque stability. The results confirmed that ECG attenuated ox-LDL-induced green fluorescence of ROS in macrophages by inhibiting the expression of related proteins in the NF-κB signaling pathway and activating the HO-1/Nrf2 signaling pathway. These results indicated that ECG has anti-oxidative stress and anti-inflammatory potential, and its molecular mechanism may be related to the inhibition of intracellular NF-κB signaling pathway proteins and activation of the HO-1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Xinya Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.
| |
Collapse
|
26
|
Sharma A, Jaiswal V, Park M, Lee HJ. Biogenic silver NPs alleviate LPS-induced neuroinflammation in a human fetal brain-derived cell line: Molecular switch to the M2 phenotype, modulation of TLR4/MyD88 and Nrf2/HO-1 signaling pathways, and molecular docking analysis. BIOMATERIALS ADVANCES 2023; 148:213363. [PMID: 36881963 DOI: 10.1016/j.bioadv.2023.213363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Silver nanoparticles (AgNPs) have inconsistent findings against inflammation. Although a wealth of literature on the beneficial effects of green-synthesized AgNPs has been published, a detailed mechanistic study of green AgNPs on the protective effects against lipopolysaccharide (LPS)-induced neuroinflammation using human microglial cells (HMC3) has not yet been reported. For the first time, we studied the inhibitory effect of biogenic AgNPs on inflammation and oxidative stress induced by LPS in HMC3 cells. X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and transmission electron microscopy were used to characterize AgNPs produced from honeyberry. Co-treatment with AgNPs significantly reduced mRNA expressions of inflammatory molecules such as interleukin (IL)-6 and tumor necrosis factor-α, while increasing the expressions of anti-inflammatory markers such as IL-10 and transforming growth factor (TGF)-β. HMC3 cells were also switched from M1 to M2, as shown by lower expression of M1 markers such as cluster of differentiation (CD)80, CD86, and CD68 and higher expression of M2 markers such as CD206, CD163, and triggering receptors expressed on myeloid cells (TREM2). Furthermore, AgNPs inhibited LPS-induced toll-like receptor (TLR)4 signaling, as evidenced by decreased expression of myeloid differentiation factor 88 (MyD88) and TLR4. In addition, AgNPs reduced the production of reactive oxygen species (ROS) and enhanced the expression of nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), while decreasing the expression of inducible nitric oxide synthase. The docking score of the honeyberry phytoconstituents ranged from -14.93 to - 4.28 KJ/mol. In conclusion, biogenic AgNPs protect against neuroinflammation and oxidative stress by targeting TLR4/MyD88 and Nrf2/HO-1 signaling pathways in a LPS-induced in vitro model. Biogenic AgNPs could be utilized as potential nanomedicine against LPS-induced inflammatory disorders.
Collapse
Affiliation(s)
- Anshul Sharma
- College of BioNano Technology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Varun Jaiswal
- College of BioNano Technology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Miey Park
- College of BioNano Technology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Hae-Jeung Lee
- College of BioNano Technology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
27
|
Lim HJ, Prajapati R, Seong SH, Jung HA, Choi JS. Antioxidant and Antineuroinflammatory Mechanisms of Kaempferol-3- O-β-d-Glucuronate on Lipopolysaccharide-Stimulated BV2 Microglial Cells through the Nrf2/HO-1 Signaling Cascade and MAPK/NF-κB Pathway. ACS OMEGA 2023; 8:6538-6549. [PMID: 36844518 PMCID: PMC9948190 DOI: 10.1021/acsomega.2c06916] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Aglycone- and glycoside-derived forms of flavonoids exist broadly in plants and foods such as fruits, vegetables, and peanuts. However, most studies focus on the bioavailability of flavonoid aglycone rather than its glycosylated form. Kaempferol-3-O-β-d-glucuronate (K3G) is a natural flavonoid glycoside obtained from various plants that have several biological activities, including antioxidant and anti-inflammatory effects. However, the molecular mechanism related to the antioxidant and antineuroinflammatory activity of K3G has not yet been demonstrated. The present study was designed to demonstrate the antioxidant and antineuroinflammatory effect of K3G against lipopolysaccharide (LPS)-stimulated BV2 microglial cells and to evaluate the underlying mechanism. Cell viability was determined by MTT assay. The inhibition rate of reactive oxygen species (ROS) and the production of pro-inflammatory mediators and cytokines were measured by DCF-DA assay, Griess assay, enzyme-linked immunosorbent assay (ELISA), and western blotting. K3G inhibited the LPS-induced release of nitric oxide, interleukin (IL)-6, and tumor necrosis factor-α (TNF-α) as well as the expression of prostaglandin E synthase 2. Additionally, K3G reduced the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB) related proteins. Mechanistic studies found that K3G downregulated phosphorylated mitogen-activated protein kinases (MAPKs) and upregulated the Nrf2/HO-1 signaling cascade. In this study, we demonstrated the effects of K3G on antineuroinflammation by inactivating phosphorylation of MPAKs and on antioxidants by upregulating the Nrf2/HO-1 signaling pathway through decreasing ROS in LPS-stimulated BV2 cells.
Collapse
Affiliation(s)
- Hyun Jung Lim
- Institute
of Fisheries Sciences, Pukyong National
University, Busan 46041, Republic of Korea
| | - Ritu Prajapati
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Division
of Natural Products Research, Honam National
Institute of Biological Resource, Mokpo 58762, Republic
of Korea
| | - Hyun Ah Jung
- Department
of Food Science and Human Nutrition, Jeonbuk
National University, Jeonju 54896, Republic of Korea
| | - Jae Sue Choi
- Institute
of Fisheries Sciences, Pukyong National
University, Busan 46041, Republic of Korea
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| |
Collapse
|
28
|
Liu Y, Chang D, Liu T, Zhou X. Natural product-based bioactive agents in combination attenuate neuroinflammation in a tri-culture model. Front Pharmacol 2023; 14:1135934. [PMID: 36873986 PMCID: PMC9979791 DOI: 10.3389/fphar.2023.1135934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction: Neuroinflammation is an important pathological event contributing to the onset and progression of neurodegenerative diseases. The hyperactivation of microglia triggers the release of excessive proinflammatory mediators that lead to the leaky blood-brain barrier and impaired neuronal survival. Andrographolide (AN), baicalein (BA) and 6-shogaol (6-SG) possess anti-neuroinflammatory properties through diverse mechanisms of action. The present study aims to investigate the effects of the pair-combinations of these bioactive compounds in attenuating neuroinflammation. Methods: A tri-culture model with microglial N11 cells, microvascular endothelial MVEC(B3) cells, and neuroblastoma N2A cells was established in a transwell system. AN, BA and 6-SG used alone (25 µM) or in pair-wised combinations (12.5 + 12.5 µM) were subjected to the tri-culture system. Upon the stimulation of lipopolysaccharides (LPS) at 1 μg/mL, tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) levels were determined by ELISA assays. Immunofluorescence staining was applied to investigate the nuclear translocation of nuclear factor kappa B p65 (NF-κB p65) on N11 cells, expressions of protein zonula occludens-1 (ZO-1) on MVEC cells and phosphorylated tau (p-tau) on N2A cells, respectively. The endothelial barrier permeability of MVEC cells was assessed by the Evans blue dye, and the resistance from the endothelial barrier was measured by transepithelial/endothelial electrical resistance (TEER) value. Neuronal survival of N2A cells was determined by Alamar blue and MTT assays. Results: Combinations of AN-SG and BA-SG synergistically lowered the TNF and IL-6 levels in LPS-induced N11 cells. Remarkably, the combined anti-neuroinflammatory effects of AN-SG and BA-SG remained significantly greater compared to their individual components at the same concentration level. The molecular mechanism of the attenuated neuroinflammation was likely to be mediated by downregulation of NF-κB p65 translocation (p < 0.0001 vs. LPS stimulation) in N11 cells. In the MVEC cells, both AN-SG and BA-SG restored TEER values, ZO-1 expression and reduced permeability. Furthermore, AN-SG and BA-SG significantly improved neuronal survival and reduced expressions of p-tau on N2A cells. Discussion: The AN-SG and BA-SG combinations showed greater anti-neuroinflammatory potential than those used alone in mono- and tri-cultured N11 cells, thereby further protecting endothelial tight junction and neuronal survival. Taken together, AN-SG and BA-SG may provide improved anti-neuroinflammatory and neuroprotective activities.
Collapse
Affiliation(s)
- Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia.,School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| |
Collapse
|
29
|
Kapoor T, Mehan S, Suri M, Sharma N, Kumar N, Narula AS, Alshammari A, Alasmari AF, Alharbi M, Assiri MA, Kalfin R. Forskolin, an Adenylcyclase/cAMP/CREB Signaling Activator Restoring Myelin-Associated Oligodendrocyte Destruction in Experimental Ethidium Bromide Model of Multiple Sclerosis. Cells 2022; 11:cells11182771. [PMID: 36139346 PMCID: PMC9497421 DOI: 10.3390/cells11182771] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease marked by oligodendrocyte loss, which results in central neuronal demyelination. AC/cAMP/CREB signaling dysregulation is involved in the progression of MS, including mitochondrial dysfunctions, reduction in nerve growth factors, neuronal inflammation, apoptosis, and white matter degeneration. Our previous research has shown that Forskolin (FSK), a naturally occurring direct adenylyl cyclase (AC)/cAMP/CREB activator, has neuroprotective potential to alleviate pathogenic factors linked with numerous neurological abnormalities. The current study intends to explore the neuroprotective potential of FSK at doses of 40 mg/kg and 60 mg/kg alone, as well as in combination with conventional medicines, such as Fingolimod (FNG), Donepezil (DON), Memantine (MEM), and Simvastatin (SIM) in EB-induced demyelinated experimental MS rats. Adult Wistar rats were divided into nine groups, and EB was infused stereotaxically in the rat brain’s intracerebropeduncle (ICP) area. Chronic gliotoxin EB treatment results in demyelination as well as motor and cognitive dysfunctions. FSK, combined with standard medications, improves behavioral dysfunctions, such as neuromuscular and motor deficits and memory and cognitive abnormalities. Following pharmacological treatments improved remyelination by enhancing myelin basic protein and increasing AC, cAMP, and CREB levels in brain homogenates. Furthermore, FSK therapy restored brain mitochondrial-ETC complex enzymes and neurotransmitter levels while decreasing inflammatory cytokines and oxidative stress markers. The Luxol fast blue (LFB) stain results further indicate FSK’s neuroprotective potential in preventing oligodendrocyte death. Therefore, the results of these studies contribute to a better understanding of the possible role that natural phytochemicals FSK could have in preventing motor neuron diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Tarun Kapoor
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
- Correspondence: or ; Tel.: +1-91-8059889909
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Nidhi Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Nitish Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | | | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “NeofitRilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
30
|
Soni D, Kumar P. GSK-3β-mediated regulation of Nrf2/HO-1 signaling as a new therapeutic approach in the treatment of movement disorders. Pharmacol Rep 2022; 74:557-569. [PMID: 35882765 DOI: 10.1007/s43440-022-00390-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Movement disorders are neurological conditions characterized by involuntary motor movements, such as dystonia, ataxia, chorea myoclonus, tremors, Huntington's disease (HD), and Parkinson's disease (PD). It is classified into two categories: hypokinetic and hyperkinetic movements. Globally, movement disorders are a major cause of death. The pathophysiological process is initiated by excessive ROS generation, mitochondrial dysfunction, neuroinflammation, and neurotransmitters imbalance that lead to motor dysfunction in PD and HD patients. Several endogenous targets including Nrf2 maintain oxidative balance in the body. Activation of Nrf2 signaling is regulated by the enzyme glycogen synthase kinase (GSK-3β). In the cytoplasm, inhibition of GSK-3β regulates cellular proliferation, homeostasis, and apoptotic process by stimulating the nuclear factor erythroid 2 (Nrf2) pathway which is involved in the elevation of the cellular antioxidant enzymes which controls the ROS generation. The activation of Nrf2 increases the expression of antioxidant response elements (ARE), such as (Hemeoxygenase-1) HO-1, which decreases excessive cellular stress, mitochondrial dysfunction, apoptosis, and neuronal degeneration, which is the major cause of motor dysfunction. The present review explores the GSK-3β-mediated neuroprotection in various movement disorders through the Nrf2/HO-1 antioxidant pathway. This review provides a link between GSK-3β and the Nrf2/HO-1 signaling pathway in the treatment of PD and HD. In addition to that it highlights various GSK-3β inhibitors and the Nrf2/HO-1 activators, which exert robust neuroprotection against motor disorders. Therefore, the present review will help in the discovery of new therapy for PD and HD patients.
Collapse
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
31
|
Upadhayay S, Mehan S, Prajapati A, Sethi P, Suri M, Zawawi A, Almashjary MN, Tabrez S. Nrf2/HO-1 Signaling Stimulation through Acetyl-11-Keto-Beta-Boswellic Acid (AKBA) Provides Neuroprotection in Ethidium Bromide-Induced Experimental Model of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13081324. [PMID: 35893061 PMCID: PMC9331916 DOI: 10.3390/genes13081324] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a severe immune-mediated neurological disease characterized by neuroinflammation, demyelination, and axonal degeneration in the central nervous system (CNS). This is frequently linked to motor abnormalities and cognitive impairments. The pathophysiological hallmarks of MS include inflammatory demyelination, axonal injury, white matter degeneration, and the development of CNS lesions that result in severe neuronal degeneration. Several studies suggested downregulation of nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling is a causative factor for MS pathogenesis. Acetyl-11-keto-β-boswellic acid (AKBA) is an active pentacyclictriterpenoid obtained from Boswellia serrata, possessing antioxidant and anti-inflammatory properties. The present study explores the protective potential of AKBA on behavioral, molecular, neurochemical, and gross pathological abnormalitiesandhistopathological alterations by H&E and LFB staining techniques in an experimental model of multiple sclerosis, emphasizing the increase inNrf2/HO-1 levels in the brain. Moreover, we also examine the effect of AKBA on the intensity of myelin basic protein (MBP) in CSF and rat brain homogenate. Specific apoptotic markers (Bcl-2, Bax, andcaspase-3) were also estimated in rat brain homogenate. Neuro behavioralabnormalities in rats were examined using an actophotometer, rotarod test, beam crossing task (BCT),and Morris water maze (MWM). AKBA 50 mg/kg and 100 mg/kg were given orally from day 8 to 35 to alleviate MS symptoms in the EB-injected rats. Furthermore, cellular, molecular, neurotransmitter, neuroinflammatory cytokine, and oxidative stress markers in rat whole brain homogenate, blood plasma, and cerebral spinal fluid were investigated. This study shows that AKBA upregulates the level of antioxidant proteins such as Nrf2 and HO-1 in the rat brain. AKBA restores altered neurochemical levels, potentially preventing gross pathological abnormalities during MS progression.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
- Correspondence: (S.M.); (S.T.)
| | - Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.M.); (S.T.)
| |
Collapse
|
32
|
Ezzat MI, Issa MY, Sallam IE, Zaafar D, Khalil HMA, Mousa MR, Sabry D, Gawish AY, Elghandour AH, Mohsen E. Impact of different processing methods on the phenolics and neuroprotective activity of Fragaria ananassa Duch. extracts in a D-galactose and aluminum chloride-induced rat model of aging. Food Funct 2022; 13:7794-7812. [PMID: 35766389 DOI: 10.1039/d2fo00645f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Age-related diseases, including dementia, are a major health concern affecting daily human life. Strawberry (Fragaria ananassa Duch.) is the most eaten fruit worldwide due to its exceptional aroma and flavor. However, it's rapid softening and decay limit its shelf-life. Freezing and boiling represent the well-known conservation methods to extend its shelf-life. Therefore, we aimed to discover the phytochemical content differences of fresh and processed strawberries associated with investigating and comparing their neuroprotective effects in a rat model of aging. Female Wistar rats were orally pretreated with fresh, boiled, and frozen F. ananassa methanolic extracts (250 mg kg-1) for 2 weeks, and then these extracts were concomitantly exposed to D-galactose [65 mg kg-1, subcutaneously (S/C)] and AlCl3 (200 mg kg-1, orally) for 6 weeks to develop aging-like symptoms. The results of UPLC/ESI-MS phytochemical profiling revealed 36 secondary metabolites, including phenolics, flavonoids, and their glycoside derivatives. Compared with boiled and frozen extracts, the fresh extract ameliorated the behavioral deficits including anxiety and cognitive dysfunction, upregulated brain HO-1 and Nrf2 levels, and markedly reduced caspase-3 and PPAR-γ levels. Moreover, LDH and miRNA-9, 124 and 132 protein expressions were reduced. The histological architecture of the brain hippocampus was restored and glial fibrillary acidic protein (GFAP) immunoexpression was downregulated. In conclusion, the fresh extract has neuroprotective activity that could have a promising role in ameliorating age-related neurodegeneration.
Collapse
Affiliation(s)
- Marwa I Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt.
| | - Marwa Y Issa
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt.
| | - Ibrahim E Sallam
- Pharmacognosy Department, College of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, 12566, Egypt
| | - Dalia Zaafar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, el-Mokattam, Cairo, 11581, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed R Mousa
- Pathology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, 11562, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University, 11829, Egypt
| | - Aya Y Gawish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, el-Mokattam, Cairo, 11581, Egypt
| | - Ahmed H Elghandour
- Communication Department, Military Technical College, Cairo, 11766, Egypt
| | - Engy Mohsen
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt.
| |
Collapse
|
33
|
Acetyl-11-keto-β-boswellic acid improves clinical symptoms through modulation of Nrf2 and NF-κB pathways in SJL/J mouse model of experimental autoimmune encephalomyelitis. Int Immunopharmacol 2022; 107:108703. [DOI: 10.1016/j.intimp.2022.108703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/30/2022]
|
34
|
Liu X, Liu J, Liu C, Zhang X, Zhao Z, Xu J, Zhang X, Zhou K, Gao P, Li D. Selenium-containing polysaccharides isolated from Rosa laevigata Michx fruits exhibit excellent anti-oxidant and neuroprotective activity in vitro. Int J Biol Macromol 2022; 209:1222-1233. [PMID: 35472363 DOI: 10.1016/j.ijbiomac.2022.04.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/05/2022]
Abstract
Selenium-containing polysaccharides have potential as an organic selenium dietary supplement, owing to their low toxicity, few side effects, and easy absorption attributes. In this study, we isolated two novel homogeneous selenium-containing polysaccharides from Rosa laevigata Michx fruits (Se-RLFPs). Results from primary structural analysis revealed that Se-RLFPs were α - pyranose, and were both composed of rhamnose, xylose, glucose with an average molecular weight of 24 and 16 KDa, respectively. Selenium contents in Se-RLFP-I and Se-RLFP-II were 16.49 μg/g and 21.61 μg/g, respectively. Results from analysis of antioxidant and neuroprotective activity of the polysaccharides revealed that Se-RLFPs had a radical scavenging effect. Specifically, they effectively protected SH-SY5Y cells from H2O2-induced damage by enhancing antioxidant enzyme activities (SOD), total antioxidant capacity (T-AOC) and suppressing malondialdehyde (MDA) levels. Western blots showed that the underlying mechanisms of action may be related to the Nrf2/HO-1 signaling pathway. Taken together, these results suggested that Se-RLFPs have potential as a pharmaceutical agent for treatment of neurodegenerative diseases (NDDs) or as a selenium-complementary ingredient in functional foods.
Collapse
Affiliation(s)
- Xuegui Liu
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China; National-Local Joint Engineering Laboratory for Development of Boron and Magnesium Resources and Fine Chemical Technology, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Juan Liu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Changfeng Liu
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Xue Zhang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Ziwei Zhao
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Jianing Xu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Xingyue Zhang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Ke Zhou
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Pingyi Gao
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China; College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China.
| | - Danqi Li
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China; Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Shenyang University of Chemical Technology, Shenyang 110142, PR China.
| |
Collapse
|
35
|
Sabnis RW. Novel Cyclic Cyanoenone Derivatives as KEAP1Modulators for Treating Neurodegenerative Diseases. ACS Med Chem Lett 2022; 13:777-778. [PMID: 35586432 PMCID: PMC9109512 DOI: 10.1021/acsmedchemlett.2c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1105 West Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|
36
|
Kumar N, Singh A, Gulati HK, Bhagat K, Kaur K, Kaur J, Dudhal S, Duggal A, Gulati P, Singh H, Singh JV, Bedi PMS. Phytoconstituents from ten natural herbs as potent inhibitors of main protease enzyme of SARS-COV-2: In silico study. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021. [PMID: 35403086 DOI: 10.1016/j.phyplu.2021.100139] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lack of treatment of novel Coronavirus disease led to the search of specific antivirals that are capable to inhibit the replication of the virus. The plant kingdom has demonstrated to be an important source of new molecules with antiviral potential. PURPOSE The present study aims to utilize various computational tools to identify the most eligible drug candidate that have capabilities to halt the replication of SARS-COV-2 virus by inhibiting Main protease (Mpro) enzyme. METHODS We have selected plants whose extracts have inhibitory potential against previously discovered coronaviruses. Their phytoconstituents were surveyed and a library of 100 molecules was prepared. Then, computational tools such as molecular docking, ADMET and molecular dynamic simulations were utilized to screen the compounds and evaluate them against Mpro enzyme. RESULTS All the phytoconstituents showed good binding affinities towards Mpro enzyme. Among them laurolitsine possesses the highest binding affinity i.e. -294.1533 kcal/mol. On ADMET analysis of best three ligands were simulated for 1.2 ns, then the stable ligand among them was further simulated for 20 ns. Results revealed that no conformational changes were observed in the laurolitsine w.r.t. protein residues and low RMSD value suggested that the Laurolitsine-protein complex was stable for 20 ns. CONCLUSION Laurolitsine, an active constituent of roots of Lindera aggregata, was found to be having good ADMET profile and have capabilities to halt the activity of the enzyme. Therefore, this makes laurolitsine a good drug candidate for the treatment of COVID-19.
Collapse
Key Words
- ACE-2, Angiotensin converting enzyme- 2
- ADMET
- ADMET, absorption, Distribution, metabolism, excretion and toxicity
- Ala, Alanine
- Approx., approximately
- Arg, arginine
- Asn, Asparagine
- Asp, Aspartic acid
- CADD, Computer Aided Drug Design
- CHARMM, Chemistry at Harvard Macromolecular Mechanics
- COV, coronavirus
- COVID, Novel corona-virus disease
- Covid-19
- Cys, cysteine
- DSBDS, Dassault's Systems Biovia's Discovery studio
- Gln, Glutamine
- Glu, glutamate
- Gly, Glycine
- His, histidine
- Ile, isoleucine
- K, Kelvin
- Kcal/mol, kilo calories per mol
- Leu, Leucine
- Leu, leucine
- Lys, Lysine
- MD, Molecular Dynamics
- Met, Methionine
- MoISA, Molecular Surface Area
- Molecular dynamic simulations
- Mpro protein
- Mpro, Main protease enzyme
- N protein, nucleocapsid protein
- NI, N-(4-methylpyridin-3-yl) acetamide inhibitor
- NPT, amount of substance (N), pressure (P) and temperature (T)
- NVT, amount of substance (N), volume (V) and temperature (T)
- Natural Antiviral herbs
- PDB, protein data bank
- PPB, plasma protein binding
- PSA, Polar Surface Area
- Phi, Phenylalanine
- Pro, Proline
- RCSB, Research Collaboratory for Structural Bioinformatics
- RMS, Root Mean Square
- RMSD, Root Mean Square Deviation
- RMSF, root mean square fluctuations
- RNA, Ribonucleic acid
- SAR-COV-2, severe acute respiratory syndrome coronavirus 2
- SDF, structure data format
- Ser, serine
- T, Temperature
- Thr, Threonine
- Trp, Tryptophan
- Tyr, Tyrosine
- Val, Valine
- kDa, kilo Dalton
- nCOV-19, Novel Coronavirus 2019
- ns/nsec, nano seconds
- ps, pentoseconds
- rGyr, Radius of gyration
- w.r.t., with respect to
- Å, angstrom
- α, alpha
- β, beta
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
- Drug and Pollution testing Lab, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Komalpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Jaspreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Shilpa Dudhal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Amit Duggal
- Drugs Control Wing, Sector 16, Chandigarh, India, 160015
| | - Puja Gulati
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India, 147301
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India, 143005
| | | |
Collapse
|