1
|
Deng F, Li X, Tang C, Chen J, Fan B, Liang J, Zhen X, Tao R, Zhang S, Cong Z, Du W, Zhao H, Xu L. Mechanisms of Xiong-Pi-Fang in treating coronary heart disease associated with depression: A systematic pharmacology strategy and in vivo pharmacological validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115631. [PMID: 35987411 DOI: 10.1016/j.jep.2022.115631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Coronary heart disease (CHD) and depression are very common and often co-existing disorders. Xiong-Pi-Fang (XPF), a therapeutic classical traditional Chinese medicine (TCM) formula, has shown satisfactory efficacy in treating CHD associated with depression. However, its mechanism of action is still unknown. PURPOSE To employ a systematic pharmacology approach for identifying the action mechanisms of XPF in treating CHD associated with depression. METHODS We used a systematic pharmacology approach to identify the potential active mechanisms of XPF in treating CHD with depression. Potential active compounds in XPF and the diseases targets were screened using relevant databases to build corresponding pathways, following the experiments that were conducted to confirm whether the presumptive results of systemic pharmacology were correct. RESULTS Network pharmacology predicted 42 key targets and 20 signaling pathways involved in XPF-mediated treatment, with IL-6/JAK2/STAT3/HIF-1α/VEGF-A pathway significantly affected. The common influences were hypothalamic-pituitary-adrenal axis (HPA axis) and glucocorticoid signaling, validated through chronic unexpected mild stress (CUMS) with isoprenaline (ISO) for inducing CHD within the depression model in rats. In addition, XPF intake reduced depressive-like behaviors and improved ECG ischemic changes. Furthermore, XPF exerted some anti-inflammatory effects by inhibiting the interleukin-6 (IL-6) induced phosphorylation of janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), ultimately downregulating hypoxia-inducible factor 1-α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A) activation. The dysfunctional HPA axis feedback loop was also regulated, which enhanced the glucocorticoid receptor (GR) expression. In contrast, it improved glucocorticoid resistance by reducing the mineralocorticoid receptor expression. CONCLUSIONS Suppressing IL-6 release and maintaining the HPA feedback loop balance could be the primary mechanism of XPF against CHD with depression. The significance of the IL-6 and HPA axis identified indicates their potential as essential targets for CHD therapy with depression.
Collapse
Affiliation(s)
- Fangjuan Deng
- Graduate School, Tianjin University of TCM, Tianjin, 301617, China
| | - Xiaofeng Li
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, 300150, China
| | - Cheng Tang
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jinhong Chen
- Graduate School, Tianjin University of TCM, Tianjin, 301617, China
| | - Boya Fan
- Graduate School, Tianjin University of TCM, Tianjin, 301617, China
| | - Jiayu Liang
- Graduate School, Tianjin University of TCM, Tianjin, 301617, China
| | - Xin Zhen
- Graduate School, Tianjin University of TCM, Tianjin, 301617, China
| | - Rui Tao
- Department of TCM, Tianjin University of TCM, Tianjin, 301617, China
| | - Shaoqiang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, 300150, China
| | - Zidong Cong
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, 300150, China
| | - Wuxun Du
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, 300150, China.
| | - Hucheng Zhao
- Department of Aeronautics and Astronautics, Tsinghua University, Beijing, 100084, China.
| | - Liang Xu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; Tianjin Medical College, Tianjin, 300222, China.
| |
Collapse
|
2
|
Analysis of Genetic Variants in the Glucocorticoid Receptor Gene NR3C1 and Stenosis of the Carotid Artery in a Polish Population with Coronary Artery Disease. Biomedicines 2022; 10:biomedicines10081912. [PMID: 36009459 PMCID: PMC9405671 DOI: 10.3390/biomedicines10081912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Early diagnosis and elimination of risk factors are crucial for better managing CVDs. Atherosclerosis, whose development might be associated with glucocorticoids (GCs), is a critical factor in the development of carotid artery (CA) stenosis and most other CVDs. Aim: To investigate the association of Tth111I, N363S, and ER22/23EK-NR3C1 polymorphisms and the incidence of CA stenosis. Methods: The study group consisted of 117 patients diagnosed with coronary artery disease (CAD) and CA stenosis and 88 patients with CAD and ruled out CA stenosis. Genomic DNA was extracted from blood, and genotyping was carried out using Tth111I, N363S, and ER22/23EK-NR3C1 polymorphism sequencing. Results: No significant association between studied polymorphisms and the incidence or the severity of CA stenosis in the Polish population with CAD was found. Conclusion: This is the first study that proves that common NR3C1 gene variants do not influence CA stenosis and probably are not associated with atherosclerosis. The search for genes that can act as prognostic markers in predicting CA stenosis is still ongoing.
Collapse
|
3
|
Motavalli R, Majidi T, Pourlak T, Abediazar S, Shoja MM, Zununi Vahed S, Etemadi J. The clinical significance of the glucocorticoid receptors: Genetics and epigenetics. J Steroid Biochem Mol Biol 2021; 213:105952. [PMID: 34274458 DOI: 10.1016/j.jsbmb.2021.105952] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
The impacts of glucocorticoids (GCs) are mainly mediated by a nuclear receptor (GR) existing in almost every tissue. The GR regulates a wide range of physiological functions, including inflammation, cell metabolism, and differentiation playing a major role in cellular responses to GCs and stress. Therefore, the dysregulation or disruption of GR can cause deficiencies in the adaptation to stress and the preservation of homeostasis. The number of GR polymorphisms associated with different diseases has been mounting per year. Tackling these clinical complications obliges a comprehensive understanding of the molecular network action of GCs at the level of the GR structure and its signaling pathways. Beyond genetic variation in the GR gene, epigenetic changes can enhance our understanding of causal factors involved in the development of diseases and identifying biomarkers. In this review, we highlight the relationships of GC receptor gene polymorphisms and epigenetics with different diseases.
Collapse
Affiliation(s)
- Roza Motavalli
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taraneh Majidi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tala Pourlak
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- Clinical Academy of Teaching and Learning, Ross University School of Medicine, Miramar, FL, USA
| | | | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530:111277. [PMID: 33864884 DOI: 10.1016/j.mce.2021.111277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that influence several physiologic functions and are among the most frequently prescribed drugs worldwide. Resistance to GCs has been observed in the context of the familial generalized GC resistance (Chrousos' syndrome) or tissue specific GC resistance in chronic inflammatory states. In this review, we have summarized the major factors that influence individual glucocorticoid sensitivity/resistance. The fine-tuning of GC action is determined in a tissue-specific fashion that includes the combination of different GC receptor promoters, translation initiation sites, splice isoforms, interacting proteins, post-translational modifications, and alternative mechanisms of signal transduction.
Collapse
Affiliation(s)
- Clarissa Silva Martins
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margaret de Castro
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
5
|
Impact of Endocrine Disorders on the Heart. Endocrinology 2021. [DOI: 10.1007/978-3-319-68729-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Flores S, Iliopoulos I, Loomba RS, Opoka AM, Sahay RD, Fei L, Cooper DS. Glucocorticoid Receptor Polymorphisms in Children Undergoing Congenital Heart Surgery with Cardiopulmonary Bypass. J Pediatr Intensive Care 2020; 9:241-247. [PMID: 33133738 DOI: 10.1055/s-0040-1709658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022] Open
Abstract
We conducted a candidate gene association study to test the hypothesis that different gene polymorphisms will be associated with corticosteroid responsiveness and study outcomes among children undergoing congenital heart surgery. This is a prospective observational cohort study at a large, tertiary pediatric cardiac center on children undergoing corrective or palliative congenital heart surgery. A total of 83 children were enrolled. DNA was isolated for three polymorphisms of interest namely N363 (rs56149945) and 9β (rs6198) associated with increased sensitivity to corticosteroids and Bcl I (rs41423247) associated with decreased sensitivity to corticosteroids. Duration of inotropic use, low cardiac output scores (LCOS), and vasoactive inotrope scores were examined in relation to these three polymorphisms. Using Kaplan-Meier analysis, heterozygous individuals showed longer transcriptional intermediary factor (TIF) compared with wild type for N363 polymorphism ( p = 0.05). In multivariable Cox regression, heterozygous alleles for 9β polymorphism showed significantly shorter TIF compared with wild type (hazard ratio = 2.04 [1.08-3.87], p = 0.03). The relationship between lower LCOS scores and alleles groups was significant for 9β heterozygous polymorphism only (1.5 [1-2.2], p = 0.01) in comparison to wild type and homozygous. The presence of heterozygote alleles for the increased corticosteroid sensitivity is associated with longer TIF compared with wild type. Conversely, the presence of heterozygous alleles for the decreased sensitivity to corticosteroids is associated with shorter TIF compared with wild type.
Collapse
Affiliation(s)
- Saul Flores
- Section of Critical Care Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States.,Division of Critical Care, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Ilias Iliopoulos
- Department of Pediatrics, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Rohit S Loomba
- Division of Cardiology, Department of Pediatrics, Advocate Children's Hospital, Chicago, Illinois, United States
| | - Amy M Opoka
- Division of Critical Care, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Rashmi D Sahay
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Lin Fei
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - David S Cooper
- Department of Pediatrics, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| |
Collapse
|
7
|
Cruz-Topete D, Oakley RH, Cidlowski JA. Glucocorticoid Signaling and the Aging Heart. Front Endocrinol (Lausanne) 2020; 11:347. [PMID: 32528419 PMCID: PMC7266971 DOI: 10.3389/fendo.2020.00347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 01/12/2023] Open
Abstract
A decline in normal physiological functions characterizes the aging process. While some of these changes are benign, the decrease in the function of the cardiovascular system that occurs during aging leads to the activation of pathological processes associated with an increased risk for heart disease and its complications. Imbalances in endocrine function are also common occurrences during the aging process. Glucocorticoids are primary stress hormones and are critical regulators of energy metabolism, inflammation, and cardiac function. Glucocorticoids exert their actions by binding the glucocorticoid receptor (GR) and, in some instances, to the mineralocorticoid receptor (MR). GR and MR are members of the nuclear receptor family of ligand-activated transcription factors. There is strong evidence that imbalances in GR and MR signaling in the heart have a causal role in cardiac disease. The extent to which glucocorticoids play a role in the aging heart, however, remains unclear. This review will summarize the positive and negative direct and indirect effects of glucocorticoids on the heart and the latest molecular and physiological evidence on how alterations in glucocorticoid signaling lead to changes in cardiac structure and function. We also briefly discuss the effects of other hormones systems such as estrogens and GH/IGF-1 on different cardiovascular cells during aging. We will also review the link between imbalances in glucocorticoid levels and the molecular processes responsible for promoting cardiomyocyte dysfunction in aging. Finally, we will discuss the potential for selectively manipulating glucocorticoid signaling in cardiomyocytes, which may represent an improved therapeutic approach for preventing and treating age-related heart disease.
Collapse
Affiliation(s)
- Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, Shreveport, LA, United States
- *Correspondence: Diana Cruz-Topete
| | - Robert H. Oakley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - John A. Cidlowski
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
- John A. Cidlowski
| |
Collapse
|
8
|
Liu B, Zhang TN, Knight JK, Goodwin JE. The Glucocorticoid Receptor in Cardiovascular Health and Disease. Cells 2019; 8:cells8101227. [PMID: 31601045 PMCID: PMC6829609 DOI: 10.3390/cells8101227] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
The glucocorticoid receptor is a member of the nuclear receptor family that controls many distinct gene networks, governing various aspects of development, metabolism, inflammation, and the stress response, as well as other key biological processes in the cardiovascular system. Recently, research in both animal models and humans has begun to unravel the profound complexity of glucocorticoid signaling and convincingly demonstrates that the glucocorticoid receptor has direct effects on the heart and vessels in vivo and in vitro. This research has contributed directly to improving therapeutic strategies in human disease. The glucocorticoid receptor is activated either by the endogenous steroid hormone cortisol or by exogenous glucocorticoids and acts within the cardiovascular system via both genomic and non-genomic pathways. Polymorphisms of the glucocorticoid receptor are also reported to influence the progress and prognosis of cardiovascular disease. In this review, we provide an update on glucocorticoid signaling and highlight the critical role of this signaling in both physiological and pathological conditions of the cardiovascular system. With increasing in-depth understanding of glucocorticoid signaling, the future is promising for the development of targeted glucocorticoid treatments and improved clinical outcomes.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tie-Ning Zhang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jessica K Knight
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Oakley RH, Cruz-Topete D, He B, Foley JF, Myers PH, Xu X, Gomez-Sanchez CE, Chambon P, Willis MS, Cidlowski JA. Cardiomyocyte glucocorticoid and mineralocorticoid receptors directly and antagonistically regulate heart disease in mice. Sci Signal 2019; 12:12/577/eaau9685. [PMID: 30992401 DOI: 10.1126/scisignal.aau9685] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stress is increasingly associated with heart dysfunction and is linked to higher mortality rates in patients with cardiometabolic disease. Glucocorticoids are primary stress hormones that regulate homeostasis through two nuclear receptors, the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), both of which are present in cardiomyocytes. To examine the specific and coordinated roles that these receptors play in mediating the direct effects of stress on the heart, we generated mice with cardiomyocyte-specific deletion of GR (cardioGRKO), MR (cardioMRKO), or both GR and MR (cardioGRMRdKO). The cardioGRKO mice spontaneously developed cardiac hypertrophy and left ventricular systolic dysfunction and died prematurely from heart failure. In contrast, the cardioMRKO mice exhibited normal heart morphology and function. Despite the presence of myocardial stress, the cardioGRMRdKO mice were resistant to the cardiac remodeling, left ventricular dysfunction, and early death observed in the cardioGRKO mice. Gene expression analysis revealed the loss of gene changes associated with impaired Ca2+ handling, increased oxidative stress, and enhanced cell death and the presence of gene changes that limited the hypertrophic response and promoted cardiomyocyte survival in the double knockout hearts. Reexpression of MR in cardioGRMRdKO hearts reversed many of the cardioprotective gene changes and resulted in cardiac failure. These findings reveal a critical role for balanced cardiomyocyte GR and MR stress signaling in cardiovascular health. Therapies that shift stress signaling in the heart to favor more GR and less MR activity may provide an improved approach for treating heart disease.
Collapse
Affiliation(s)
- Robert H Oakley
- Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Diana Cruz-Topete
- Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Bo He
- Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Julie F Foley
- Cellular and Molecular Pathology Branch, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Page H Myers
- Comparative Medicine Branch, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Xiaojiang Xu
- Laboratory of Integrative Bioinformatics, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Celso E Gomez-Sanchez
- Endocrinology Division, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA.,Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U964, Université de Strasbourg, Collège de France, Illkirch 67404, France
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, UNC, Chapel Hill, NC 27599, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
|
11
|
Richardson RV, Batchen EJ, Thomson AJW, Darroch R, Pan X, Rog-Zielinska EA, Wyrzykowska W, Scullion K, Al-Dujaili EAS, Diaz ME, Moran CM, Kenyon CJ, Gray GA, Chapman KE. Glucocorticoid receptor alters isovolumetric contraction and restrains cardiac fibrosis. J Endocrinol 2017; 232:437-450. [PMID: 28057868 PMCID: PMC5292999 DOI: 10.1530/joe-16-0458] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023]
Abstract
Corticosteroids directly affect the heart and vasculature and are implicated in the pathogenesis of heart failure. Attention is focussed upon the role of the mineralocorticoid receptor (MR) in mediating pro-fibrotic and other adverse effects of corticosteroids upon the heart. In contrast, the role of the glucocorticoid receptor (GR) in the heart and vasculature is less well understood. We addressed this in mice with cardiomyocyte and vascular smooth muscle deletion of GR (SMGRKO mice). Survival of SMGRKO mice to weaning was reduced compared with that of littermate controls. Doppler measurements of blood flow across the mitral valve showed an elongated isovolumetric contraction time in surviving adult SMGRKO mice, indicating impairment of the initial left ventricular contractile phase. Although heart weight was elevated in both genders, only male SMGRKO mice showed evidence of pathological cardiomyocyte hypertrophy, associated with increased myosin heavy chain-β expression. Left ventricular fibrosis, evident in both genders, was associated with elevated levels of mRNA encoding MR as well as proteins involved in cardiac remodelling and fibrosis. However, MR antagonism with spironolactone from birth only modestly attenuated the increase in pro-fibrotic gene expression in SMGRKO mice, suggesting that elevated MR signalling is not the primary driver of cardiac fibrosis in SMGRKO mice, and cardiac fibrosis can be dissociated from MR activation. Thus, GR contributes to systolic function and restrains normal cardiac growth, the latter through gender-specific mechanisms. Our findings suggest the GR:MR balance is critical in corticosteroid signalling in specific cardiac cell types.
Collapse
MESH Headings
- Animals
- Corticosterone/blood
- Female
- Fibrosis/metabolism
- Fibrosis/pathology
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocardial Contraction/genetics
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Nonmuscle Myosin Type IIB/genetics
- Nonmuscle Myosin Type IIB/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Sex Factors
- Spironolactone/pharmacology
- Ventricular Function, Left/genetics
Collapse
Affiliation(s)
- Rachel V Richardson
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Emma J Batchen
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | | | - Rowan Darroch
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Xinlu Pan
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Eva A Rog-Zielinska
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Wiktoria Wyrzykowska
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Kathleen Scullion
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Emad A S Al-Dujaili
- DieteticsNutrition, and Biological Sciences Department, Queen Margaret University, Musselburgh, UK
| | - Mary E Diaz
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Carmel M Moran
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
- Edinburgh Preclinical ImagingUniversity of Edinburgh, Edinburgh, UK
| | - Christopher J Kenyon
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Gillian A Gray
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Karen E Chapman
- University/BHF Centre for Cardiovascular ScienceUniversity of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
12
|
The Association of Neighborhood Gene-Environment Susceptibility with Cortisol and Blood Pressure in African-American Adults. Ann Behav Med 2016; 50:98-107. [PMID: 26685668 DOI: 10.1007/s12160-015-9737-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND African-American adults are disproportionately affected by stress-related chronic conditions like high blood pressure (BP), and both environmental stress and genetic risk may play a role in its development. PURPOSE This study tested whether the dual risk of low neighborhood socioeconomic status (SES) and glucocorticoid genetic sensitivity interacted to predict waking cortisol and BP. METHODS Cross-sectional waking cortisol and BP were collected from 208 African-American adults who were participating in a follow-up visit as part of the Positive Action for Today's Health trial. Three single-nucleotide polymorphisms were genotyped, salivary cortisol samples were collected, and neighborhood SES was calculated using 2010 Census data. RESULTS The sample was mostly female (65 %), with weight classified as overweight or obese (M BMI = 32.74, SD = 8.88) and a mean age of 55.64 (SD = 15.21). The gene-by-neighborhood SES interaction predicted cortisol (B = 0.235, p = .001, r (2) = .036), but not BP. For adults with high genetic sensitivity, waking cortisol was lower with lower SES but higher with higher SES (B = 0.87). Lower neighborhood SES was also related to higher systolic BP (B = -0.794, p = .028). CONCLUSIONS Findings demonstrated an interaction whereby African-American adults with high genetic sensitivity had high levels of waking cortisol with higher neighborhood SES, and low levels with lower neighborhood SES. This moderation effect is consistent with a differential susceptibility gene-environment pattern, rather than a dual-risk pattern. These findings contribute to a growing body of evidence that demonstrates the importance of investigating complex gene-environment relations in order to better understand stress-related health disparities.
Collapse
|
13
|
Richardson RV, Batchen EJ, Denvir MA, Gray GA, Chapman KE. Cardiac GR and MR: From Development to Pathology. Trends Endocrinol Metab 2016; 27:35-43. [PMID: 26586027 DOI: 10.1016/j.tem.2015.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022]
Abstract
The efficacy of mineralocorticoid receptor (MR) antagonism in the treatment of certain patients with heart failure has highlighted the pivotal role of aldosterone and MR in heart disease. The glucocorticoid (GC) receptor (GR) is also expressed in heart, but the role of cardiac GR had received much less attention until recently. GR and MR are highly homologous in both structure and function, although not in cellular readout. Recent evidence in animal models has uncovered a tonic role for GC action via GR in cardiomyocytes in prevention of heart disease. Here, we review this evidence and the implications for a balance between GR and MR activation in the early life maturation of the heart and its subsequent health and disease.
Collapse
Affiliation(s)
- Rachel V Richardson
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK; Current address: Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Emma J Batchen
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Martin A Denvir
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Gillian A Gray
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Karen E Chapman
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
14
|
Oakley RH, Cidlowski JA. Glucocorticoid signaling in the heart: A cardiomyocyte perspective. J Steroid Biochem Mol Biol 2015; 153:27-34. [PMID: 25804222 PMCID: PMC4568128 DOI: 10.1016/j.jsbmb.2015.03.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023]
Abstract
Heart failure is one of the leading causes of death in the Western world. Glucocorticoids are primary stress hormones that regulate a vast array of biological processes, and synthetic derivatives of these steroids have been mainstays in the clinic for the last half century. Abnormal levels of glucocorticoids are known to negatively impact the cardiovascular system; however, surprisingly little is known about the direct role of glucocorticoid signaling in the heart. The actions of glucocorticoids are mediated classically by the glucocorticoid receptor (GR). In certain cells, such as cardiomyocytes, glucocorticoid occupancy and activation of the mineralocorticoid receptor (MR) may also contribute to the observed response. Recently, there has been a surge of reports investigating the in vivo function of glucocorticoid signaling in the heart using transgenic mice that specifically target GR or MR in cardiomyocytes. Results from these studies suggest that GR signaling in cardiomyocytes is critical for the normal development and function of the heart. In contrast, MR signaling in cardiomyocytes participates in the development and progression of cardiac disease. In the following review, we discuss these genetic mouse models and the new insights they are providing into the direct role cardiomyocyte glucocorticoid signaling plays in heart physiology and pathophysiology. This article is part of a Special Issue entitled 'Steroid Perspectives'.
Collapse
Affiliation(s)
- Robert H Oakley
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, P.O. Box 12233, MD F3-07, Research Triangle Park, North Carolina 27709, USA.
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, P.O. Box 12233, MD F3-07, Research Triangle Park, North Carolina 27709, USA.
| |
Collapse
|
15
|
The Generation R Study: Biobank update 2015. Eur J Epidemiol 2014; 29:911-27. [PMID: 25527369 DOI: 10.1007/s10654-014-9980-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/06/2014] [Indexed: 12/14/2022]
Abstract
The Generation R Study is a population-based prospective cohort study from fetal life until adulthood. The study is designed to identify early environmental and genetic causes and causal pathways leading to normal and abnormal growth, development and health from fetal life, childhood and young adulthood. In total, 9,778 mothers were enrolled in the study. Data collection in children and their parents include questionnaires, interviews, detailed physical and ultrasound examinations, behavioural observations, Magnetic Resonance Imaging and biological samples. Efforts have been conducted for collecting biological samples including blood, hair, faeces, nasal swabs, saliva and urine samples and generating genomics data on DNA, RNA and microbiome. In this paper, we give an update of the collection, processing and storage of these biological samples and available measures. Together with detailed phenotype measurements, these biological samples provide a unique resource for epidemiological studies focused on environmental exposures, genetic and genomic determinants and their interactions in relation to growth, health and development from fetal life onwards.
Collapse
|
16
|
Koper JW, van Rossum EFC, van den Akker ELT. Glucocorticoid receptor polymorphisms and haplotypes and their expression in health and disease. Steroids 2014; 92:62-73. [PMID: 25150015 DOI: 10.1016/j.steroids.2014.07.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 02/02/2023]
Abstract
Cortisol is involved in many physiological processes, including immunosuppressive and anti-inflammatory actions, and therefore cortisol and its synthetic analogs are widely used to treat a large number of diseases. In glucocorticoid treatment, a large variability of clinical responses is observed. This variability may, in part, be ascribed to genetic variation in the glucocorticoid receptor (GR) gene. In this review we present a catalogue of the various single nucleotide polymorphisms (SNPs) in the glucocorticoid receptor gene and their consequences for human health and disease. Many different GR SNP association studies have been described. However, most studies come down to only a few SNPs reported with different annotations. In this review we clarified these different annotations to uniform names. Most associations between GR SNPs and phenotype have been found in body composition, metabolism, the cardiovascular system, the immune system and psychiatric illnesses. However, many associations have not been replicated (yet), and future replication studies and meta-analyses are needed. There is a substantial body of evidence for GR SNPs to have effects on clinical phenotype. However, as most SNP frequencies are low and their variation is within the range of the general population, the impact of a single SNP for health and disease in the general population is probably modest. However, in-depth studying of the molecular mechanisms of repeatedly observed clinical associations could lead to new possibilities for drug development. In particular the development of selective glucocorticoid receptor modulators holds promise.
Collapse
Affiliation(s)
- Jan W Koper
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC, The Netherlands
| | | | - Erica L T van den Akker
- Department of Pediatrics, Section Endocrinology, Erasmus MC-Sophia, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Rog-Zielinska EA, Richardson RV, Denvir MA, Chapman KE. Glucocorticoids and foetal heart maturation; implications for prematurity and foetal programming. J Mol Endocrinol 2014; 52:R125-35. [PMID: 24299741 DOI: 10.1530/jme-13-0204] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucocorticoids are steroid hormones, essential in mammals to prepare for life after birth. Blood levels of glucocorticoids (cortisol in most mammals including humans; corticosterone in rats and mice) rise dramatically shortly before birth. This is mimicked clinically in the routine administration of synthetic glucocorticoids to pregnant women threatened by a preterm birth or to preterm infants to improve neonatal survival. Whilst effects on lung are well documented and essential for postnatal survival, those on heart are less well known. In this study, we review recent evidence for a crucial role of glucocorticoids in late gestational heart maturation. Either insufficient or excessive glucocorticoid exposure before birth may alter the normal glucocorticoid-regulated trajectory of heart maturation with potential life-long consequences.
Collapse
Affiliation(s)
- Eva A Rog-Zielinska
- Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | | |
Collapse
|
18
|
Essential role of stress hormone signaling in cardiomyocytes for the prevention of heart disease. Proc Natl Acad Sci U S A 2013; 110:17035-40. [PMID: 24082121 DOI: 10.1073/pnas.1302546110] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heart failure is a leading cause of death in humans, and stress is increasingly associated with adverse cardiac outcomes. Glucocorticoids are primary stress hormones, but their direct role in cardiovascular health and disease is poorly understood. To determine the in vivo function of glucocorticoid signaling in the heart, we generated mice with cardiomyocyte-specific deletion of the glucocorticoid receptor (GR). These mice are born at the expected Mendelian ratio, but die prematurely from spontaneous cardiovascular disease. By 3 mo of age, mice deficient in cardiomyocyte GR display a marked reduction in left ventricular systolic function, as evidenced by decreases in ejection fraction and fractional shortening. Heart weight and left ventricular mass are elevated, and histology revealed cardiac hypertrophy without fibrosis. Removal of endogenous glucocorticoids and mineralocorticoids neither augmented nor lessened the hypertrophic response. Global gene expression analysis of knockout hearts before pathology onset revealed aberrant regulation of a large cohort of genes associated with cardiovascular disease as well as unique disease genes associated with inflammatory processes. Genes important for maintaining cardiac contractility, repressing cardiac hypertrophy, promoting cardiomyocyte survival, and inhibiting inflammation had decreased expression in the GR-deficient hearts. These findings demonstrate that a deficiency in cardiomyocyte glucocorticoid signaling leads to spontaneous cardiac hypertrophy, heart failure, and death, revealing an obligate role for GR in maintaining normal cardiovascular function. Moreover, our findings suggest that selective activation of cardiomyocyte GR may represent an approach for the prevention of heart disease.
Collapse
|
19
|
The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 2013; 132:1033-44. [PMID: 24084075 DOI: 10.1016/j.jaci.2013.09.007] [Citation(s) in RCA: 697] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are primary stress hormones necessary for life that regulate numerous physiologic processes in an effort to maintain homeostasis. Synthetic derivatives of these hormones have been mainstays in the clinic for treating inflammatory diseases, autoimmune disorders, and hematologic cancers. The physiologic and pharmacologic actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily of ligand-dependent transcription factors. Ligand-occupied GR induces or represses the transcription of thousands of genes through direct binding to DNA response elements, physically associating with other transcription factors, or both. The traditional view that glucocorticoids act through a single GR protein has changed dramatically with the discovery of a large cohort of receptor isoforms with unique expression, gene-regulatory, and functional profiles. These GR subtypes are derived from a single gene by means of alternative splicing and alternative translation initiation mechanisms. Posttranslational modification of these GR isoforms further expands the diversity of glucocorticoid responses. Here we discuss the origin and molecular properties of the GR isoforms and their contribution to the specificity and sensitivity of glucocorticoid signaling in healthy and diseased tissues.
Collapse
|
20
|
Rog-Zielinska EA, Thomson A, Kenyon CJ, Brownstein DG, Moran CM, Szumska D, Michailidou Z, Richardson J, Owen E, Watt A, Morrison H, Forrester LM, Bhattacharya S, Holmes MC, Chapman KE. Glucocorticoid receptor is required for foetal heart maturation. Hum Mol Genet 2013; 22:3269-82. [PMID: 23595884 DOI: 10.1093/hmg/ddt182] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoids are vital for the structural and functional maturation of foetal organs, yet excessive foetal exposure is detrimental to adult cardiovascular health. To elucidate the role of glucocorticoid signalling in late-gestation cardiovascular maturation, we have generated mice with conditional disruption of glucocorticoid receptor (GR) in cardiomyocytes and vascular smooth muscle cells using smooth muscle protein 22-driven Cre recombinase (SMGRKO mice) and compared them with mice with global deficiency in GR (GR(-/-)). Echocardiography shows impaired heart function in both SMGRKO and GR(-/-) mice at embryonic day (E)17.5, associated with generalized oedema. Cardiac ultrastructure is markedly disrupted in both SMGRKO and GR(-/-) mice at E17.5, with short, disorganized myofibrils and cardiomyocytes that fail to align in the compact myocardium. Failure to induce critical genes involved in contractile function, calcium handling and energy metabolism underpins this common phenotype. However, although hearts of GR(-/-) mice are smaller, with 22% reduced ventricular volume at E17.5, SMGRKO hearts are normally sized. Moreover, while levels of mRNA encoding atrial natriuretic peptide are reduced in E17.5 GR(-/-) hearts, they are normal in foetal SMGRKO hearts. These data demonstrate that structural, functional and biochemical maturation of the foetal heart is dependent on glucocorticoid signalling within cardiomyocytes and vascular smooth muscle, though some aspects of heart maturation (size, ANP expression) are independent of GR at these key sites.
Collapse
Affiliation(s)
- Eva A Rog-Zielinska
- Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Charmandari E, Kino T, Chrousos GP. Primary generalized familial and sporadic glucocorticoid resistance (Chrousos syndrome) and hypersensitivity. ENDOCRINE DEVELOPMENT 2013; 24:67-85. [PMID: 23392096 PMCID: PMC4133123 DOI: 10.1159/000342505] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Familial or sporadic primary generalized glucocorticoid resistance or Chrousos syndrome is a rare genetic condition characterized by generalized, partial, target-tissue insensitivity to glucocorticoids and a consequent hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis. Primary generalized glucocorticoid hypersensitivity (PGGH) represents the mirror image of the former, and is characterized by generalized, partial, target-tissue hypersensitivity to glucocorticoids, and compensatory hypoactivation of the HPA axis. The molecular basis of both conditions has been ascribed to mutations in the human glucocorticoid receptor (hGR) gene, which impair the molecular mechanisms of hGR action and alter tissue sensitivity to glucocorticoids. This review summarizes the pathophysiology, molecular mechanisms and clinical aspects of Chrousos syndrome and PGGH.
Collapse
Affiliation(s)
- Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece.
| | | | | |
Collapse
|
22
|
Łoniewska B, Kaczmarczyk M, Clark JS, Bińczak-Kuleta A, Adler G, Kordek A, Horodnicka-Józwa A, Dawid G, Rudnicki J, Ciechanowicz A. Association of 1936A > G inAKAP10(A-kinase anchoring protein 10) and blood pressure in Polish full-term newborns. Blood Press 2012; 22:51-6. [DOI: 10.3109/08037051.2012.701792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|