1
|
Park MG, Lim J, Kim D, Lee WS, Yoon BE, Lee CJ. Suppressing astrocytic GABA transaminase enhances tonic inhibition and weakens hippocampal spatial memory. Exp Mol Med 2025; 57:379-389. [PMID: 39894826 PMCID: PMC11873293 DOI: 10.1038/s12276-025-01398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Pharmacological suppression of γ-aminobutyric acid (GABA) transaminase (GABA-T), the sole GABA-degrading enzyme and a potential therapeutic target for treating brain disorders such as epilepsy, increases not only phasic inhibition but also tonic inhibition. However, the specific cellular source, neuromodulatory effects and potential therapeutic benefits of this enhanced tonic inhibition remain unexplored due to the lack of cell-type-specific gene manipulation studies. Here we report that the increase in tonic GABA currents observed after GABA-T suppression is predominantly due to increased tonic GABA release from astrocytes rather than action-potential-dependent synaptic GABA spillover. General GABA-T knockdown (KD) by a short hairpin RNA considerably increased tonic GABA currents in dentate granule cells, thereby enhancing tonic inhibition. An astrocyte-specific rescue of GABA-T following general GABA-T KD normalized the elevated tonic GABA currents to near control levels. Tetrodotoxin-insensitive tonic GABA currents were significantly increased after general GABA-T KD, whereas tetrodotoxin-sensitive tonic GABA currents showed no significant increase, suggesting that this enhanced tonic inhibition is primarily action-potential independent. General GABA-T KD reduced the spike probability of granule cells and impaired dorsal hippocampus-dependent spatial memory, which were fully reversed by astrocyte-specific GABA-T rescue. These findings suggest that suppressing astrocytic GABA-T may be sufficient to influence the excitatory/inhibitory balance in the brain and associated behaviors. Our study implies that the therapeutic benefits of pharmacological GABA-T suppression may be largely attributed to the modulation of astrocytic GABA-T and its impact on tonic GABA release from astrocytes. Here, we report distinct effects of GABA-T suppression depending on cell type; suppressing GABA-T in astrocytes enhances tonic inhibition, while its suppression in GABAergic neurons augments phasic inhibition. Our findings demonstrate that targeted suppression of astrocytic GABA-T not only enhances tonic GABA release from astrocytes but also significantly influences the excitation/inhibition balance in the brain, with consequential effects on behavior. This suggests that astrocytic GABA-T modulation holds promising potential for developing novel therapeutic strategies aimed at treating cognitive and neurological disorders through the regulation of astrocytic GABA metabolism. GAD glutamate decarboxylase, MAO-B monoamine oxidase B, BEST1 bestrophin 1, GABA-T GABA transaminase, GAT GABA transporter, DG dentate gyrus, SSA succinic semialdehyde.
Collapse
Affiliation(s)
- Mingu Gordon Park
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
- IBS School, University of Science and Technology, Daejeon, South Korea
| | - Daeun Kim
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Won-Seok Lee
- Department of Molecular Biology, Dankook University, Cheonan, South Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea.
- IBS School, University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
2
|
Wirt JL, Assis Ferreira L, Jesus CHA, Woodward TJ, Oliva I, Xu Z, Crystal JD, Pepin RH, Silverman RB, Hohmann AG. Efficacy of GABA aminotransferase inactivator OV329 in models of neuropathic and inflammatory pain without tolerance or addiction. Proc Natl Acad Sci U S A 2025; 122:e2318833121. [PMID: 39793055 PMCID: PMC11725897 DOI: 10.1073/pnas.2318833121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects. We postulated that inhibition of GABA's degradation enzyme, GABA aminotransferase (GABA-AT), would increase endogenous GABA levels and produce analgesia. We evaluated antinociceptive efficacy of the potent GABA-AT inhibitor OV329 in rodent models of neuropathic and inflammatory pain and assessed possible side effects (i.e., reward and motor impairment). OV329 attenuated the development and maintenance of mechanical and cold hypersensitivities induced by the chemotherapeutic agent paclitaxel. Prophylactic OV329, administered systemically, normalized paclitaxel-induced increases in glutamate levels and suppressed neuropathic nociception. Intrathecal OV329 suppressed paclitaxel-induced mechanical hypersensitivity, elevating GABA, and reducing glutamate levels in the lumbar spinal cord, consistent with a spinal site of action. Furthermore, OV329 largely synergized with paclitaxel to enhance 4T1 tumor cell line cytotoxicity without altering viability of nontumor cells. OV329 also attenuated inflammation-induced mechanical hypersensitivity induced by intraplanar injection of complete Freund's adjuvant (CFA) with efficacy comparable to morphine. Unlike morphine, OV329 did not produce reward in a conditioned place preference assay in mice and was not self-administered intravenously by rats. Antinociceptive efficacy of OV329 was observed at doses that did not impair motor function or produce tolerance following chronic dosing. Thus, inhibition of GABA-AT with OV329 represents a unique therapeutic strategy to alleviate neuropathic and inflammatory pain with no apparent abuse liability, potentially producing a beneficial spectrum of pharmacological effects through enzymatic regulation.
Collapse
Affiliation(s)
- Jonah L. Wirt
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
| | - Luana Assis Ferreira
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
| | | | - Taylor J. Woodward
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
| | - Idaira Oliva
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
| | - Zhili Xu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
| | - Jonathon D. Crystal
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
| | - Robert H. Pepin
- Mass Spectrometry Facility, Department of Chemistry, Indiana University, Bloomington, IN
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL
- Department of Pharmacology, Northwestern University, Chicago, IL 60208
| | - Andrea G. Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Gill Institute for Neuroscience, Indiana University, Bloomington, IN47405
| |
Collapse
|
3
|
Lykins J, Moschitto MJ, Zhou Y, Filippova EV, Le HV, Tomita T, Fox BA, Bzik DJ, Su C, Rajagopala SV, Flores K, Spano F, Woods S, Roberts CW, Hua C, El Bissati K, Wheeler KM, Dovgin S, Muench SP, McPhillie M, Fishwick CW, Anderson WF, Lee PJ, Hickman M, Weiss LM, Dubey JP, Lorenzi HA, Silverman RB, McLeod RL. From TgO/GABA-AT, GABA, and T-263 Mutant to Conception of Toxoplasma. iScience 2024; 27:108477. [PMID: 38205261 PMCID: PMC10776954 DOI: 10.1016/j.isci.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024] Open
Abstract
Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.
Collapse
Affiliation(s)
- Joseph Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew J. Moschitto
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hoang V. Le
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Tadakimi Tomita
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Seesandra V. Rajagopala
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kristin Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Cong Hua
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kelsey M. Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen P. Muench
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, West York LS2 9JT, UK
| | - Martin McPhillie
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Colin W.G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Patricia J. Lee
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Mark Hickman
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Louis M. Weiss
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Rima L. McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
5
|
Feja M, Meller S, Deking LS, Kaczmarek E, During MJ, Silverman RB, Gernert M. OV329, a novel highly potent γ-aminobutyric acid aminotransferase inactivator, induces pronounced anticonvulsant effects in the pentylenetetrazole seizure threshold test and in amygdala-kindled rats. Epilepsia 2021; 62:3091-3104. [PMID: 34617595 DOI: 10.1111/epi.17090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE An attractive target to interfere with epileptic brain hyperexcitability is the enhancement of γ-aminobutyric acidergic (GABAergic) inhibition by inactivation of the GABA-metabolizing enzyme GABA aminotransferase (GABA-AT). GABA-AT inactivators were designed to control seizures by raising brain GABA levels. OV329, a novel drug candidate for the treatment of epilepsy and addiction, has been shown in vitro to be substantially more potent as a GABA-AT inactivator than vigabatrin, an antiseizure drug approved as an add-on therapy for adult patients with refractory complex partial seizures and monotherapy for pediatric patients with infantile spasms. Thus, we hypothesized that OV329 should produce pronounced anticonvulsant effects in two different rat seizure models. METHODS We therefore examined the effects of OV329 (5, 20, and 40 mg/kg ip) on the seizure threshold of female Wistar Unilever rats, using the timed intravenous pentylenetetrazole (ivPTZ) seizure threshold model as a seizure test particularly sensitive to GABA-potentiating manipulations, and amygdala-kindled rats as a model of difficult-to-treat temporal lobe epilepsy. RESULTS GABA-AT inactivation by OV329 clearly increased the threshold of both ivPTZ-induced and amygdala-kindled seizures. OV329 further showed a 30-fold greater anticonvulsant potency on ivPTZ-induced myoclonic jerks and clonic seizures compared to vigabatrin investigated previously. Notably, all rats were responsive to OV329 in both seizure models. SIGNIFICANCE These results reveal an anticonvulsant profile of OV329 that appears to be superior in both potency and efficacy to vigabatrin and highlight OV329 as a highly promising candidate for the treatment of seizures and pharmacoresistant epilepsies.
Collapse
Affiliation(s)
- Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Sebastian Meller
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lillian S Deking
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Edith Kaczmarek
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Department of Pharmacology, Chemistry of Life Processes Institute, Northwestern University, Chicago, Illinois, USA
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
6
|
Zhu W, Doubleday PF, Butrin A, Weerawarna PM, Melani R, Catlin DS, Dwight TA, Liu D, Kelleher NL, Silverman RB. Remarkable and Unexpected Mechanism for ( S)-3-Amino-4-(difluoromethylenyl)cyclohex-1-ene-1-carboxylic Acid as a Selective Inactivator of Human Ornithine Aminotransferase. J Am Chem Soc 2021; 143:8193-8207. [PMID: 34014654 PMCID: PMC8369387 DOI: 10.1021/jacs.1c03572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human ornithine aminotransferase (hOAT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that was recently found to play an important role in the metabolic reprogramming of hepatocellular carcinoma (HCC) via the proline and glutamine metabolic pathways. The selective inhibition of hOAT by compound 10 exhibited potent in vivo antitumor activity. Inspired by the discovery of the aminotransferase inactivator (1S,3S)-3-amino-4-(difluoromethylene)cyclopentane-1-carboxylic acid (5), we rationally designed, synthesized, and evaluated a series of six-membered-ring analogs. Among them, 14 was identified as a new selective hOAT inactivator, which demonstrated a potency 22× greater than that of 10. Three different types of protein mass spectrometry approaches and two crystallographic approaches were employed to identify the structure of hOAT-14 and the formation of a remarkable final adduct (32') in the active site. These spectral studies reveal an enzyme complex heretofore not observed in a PLP-dependent enzyme, which has covalent bonds to two nearby residues. Crystal soaking experiments and molecular dynamics simulations were carried out to identify the structure of the active-site intermediate 27' and elucidate the order of the two covalent bonds that formed, leading to 32'. The initial covalent reaction of the activated warhead occurs with *Thr322 from the second subunit, followed by a subsequent nucleophilic attack by the catalytic residue Lys292. The turnover mechanism of 14 by hOAT was supported by a mass spectrometric analysis of metabolites and fluoride ion release experiments. This novel mechanism for hOAT with 14 will contribute to the further rational design of selective inactivators and an understanding of potential inactivation mechanisms by aminotransferases.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Peter F. Doubleday
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Arseniy Butrin
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Pathum M. Weerawarna
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael Melani
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel S. Catlin
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Timothy A. Dwight
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States,Corresponding authors (R.B.S.) . Phone: +1-847-491-5653, (N.L.K.) . Phone: +1-847-467-4362. (D.L.) . Phone: +1-773-508-3093
| | - Neil L. Kelleher
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,Corresponding authors (R.B.S.) . Phone: +1-847-491-5653, (N.L.K.) . Phone: +1-847-467-4362. (D.L.) . Phone: +1-773-508-3093
| | - Richard B. Silverman
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States,Corresponding authors (R.B.S.) . Phone: +1-847-491-5653, (N.L.K.) . Phone: +1-847-467-4362. (D.L.) . Phone: +1-773-508-3093
| |
Collapse
|
7
|
Galanopoulou AS, Löscher W, Lubbers L, O’Brien TJ, Staley K, Vezzani A, D’Ambrosio R, White HS, Sontheimer H, Wolf JA, Twyman R, Whittemore V, Wilcox KS, Klein B. Antiepileptogenesis and disease modification: Progress, challenges, and the path forward-Report of the Preclinical Working Group of the 2018 NINDS-sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open 2021; 6:276-296. [PMID: 34033232 PMCID: PMC8166793 DOI: 10.1002/epi4.12490] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is one of the most common chronic brain diseases and is often associated with cognitive, behavioral, or other medical conditions. The need for therapies that would prevent, ameliorate, or cure epilepsy and the attendant comorbidities is a priority for both epilepsy research and public health. In 2018, the National Institute of Neurological Disease and Stroke (NINDS) convened a workshop titled "Accelerating the Development of Therapies for Antiepileptogenesis and Disease Modification" that brought together preclinical and clinical investigators and industry and regulatory bodies' representatives to discuss and propose a roadmap to accelerate the development of antiepileptogenic (AEG) and disease-modifying (DM) new therapies. This report provides a summary of the discussions and proposals of the Preclinical Science working group. Highlights of the progress of collaborative preclinical research projects on AEG/DM of ongoing research initiatives aiming to improve infrastructure and translation to clinical trials are presented. Opportunities and challenges of preclinical epilepsy research, vis-à-vis clinical research, were extensively discussed, as they pertain to modeling of specific epilepsy types across etiologies and ages, the utilization of preclinical models in AG/DM studies, and the strategies and study designs, as well as on matters pertaining to transparency, data sharing, and reporting research findings. A set of suggestions on research initiatives, infrastructure, workshops, advocacy, and opportunities for expanding the borders of epilepsy research were discussed and proposed as useful initiatives that could help create a roadmap to accelerate and optimize preclinical translational AEG/DM epilepsy research.
Collapse
Affiliation(s)
- Aristea S. Galanopoulou
- Saul R. Korey Department of NeurologyDominick P. Purpura Department of NeuroscienceIsabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNYUSA
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary Medicine HannoverHannoverGermany
| | | | - Terence J. O’Brien
- Department of NeuroscienceCentral Clinical SchoolAlfred HealthMonash UniversityMelbourneVic.Australia
| | - Kevin Staley
- Department of NeurologyMassachusetts General HospitalBostonMAUSA
| | - Annamaria Vezzani
- Department of NeuroscienceIRCCS‐Mario Negri Institute for Pharmacological ResearchMilanoItaly
| | | | - H. Steve White
- Department of PharmacySchool of PharmacyUniversity of WashingtonSeattleWAUSA
| | | | - John A. Wolf
- Center for Brain Injury and RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
- Corporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPAUSA
| | | | - Vicky Whittemore
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Karen S. Wilcox
- Department of Pharmacology & ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Brian Klein
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
8
|
Pavone P, Polizzi A, Marino SD, Corsello G, Falsaperla R, Marino S, Ruggieri M. West syndrome: a comprehensive review. Neurol Sci 2020; 41:3547-3562. [PMID: 32827285 PMCID: PMC7655587 DOI: 10.1007/s10072-020-04600-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
Since its first clinical description (on his son) by William James West (1793-1848) in 1841, and the definition of the classical triad of (1) infantile spasms; (2) hypsarrhythmia, and (3) developmental arrest or regression as "West syndrome", new and relevant advances have been recorded in this uncommon disorder. New approaches include terminology of clinical spasms (e.g., infantile (IS) vs. epileptic spasms (ES)), variety of clinical and electroencephalographic (EEG) features (e.g., typical ictal phenomena without EEG abnormalities), burden of developmental delay, spectrum of associated genetic abnormalities, pathogenesis, treatment options, and related outcome and prognosis. Aside the classical manifestations, IS or ES may present with atypical electroclinical phenotypes (e.g., subtle spasms; modified hypsarrhythmia) and may have their onset outside infancy. An increasing number of genes, proteins, and signaling pathways play crucial roles in the pathogenesis. This condition is currently regarded as a spectrum of disorders: the so-called infantile spasm syndrome (ISs), in association with other causal factors, including structural, infectious, metabolic, syndromic, and immunologic events, all acting on a genetic predisposing background. Hormonal therapy and ketogenic diet are widely used also in combination with (classical and recent) pharmacological drugs. Biologically targeted and gene therapies are increasingly studied. The present narrative review searched in seven electronic databases (primary MeSH terms/keywords included West syndrome, infantile spasms and infantile spasms syndrome and were coupled to 25 secondary clinical, EEG, therapeutic, outcomes, and associated conditions terms) including MEDLINE, Embase, Cochrane Central, Web of Sciences, Pubmed, Scopus, and OMIM to highlight the past knowledge and more recent advances.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Clinical Pediatrics, AOU "Policlinico", PO "G. Rodolico", University of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Simona Domenica Marino
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU "Policlinico", PO "San Marco", University of Catania, Catania, Italy
| | - Giovanni Corsello
- Unit of Pediatrics and Neonatal Intensive Therapy, Department of Promotion of Maternal and Infantile and Internal Medicine Health, and Specialist Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Neonatal Intensive Therapy, Department of Promotion of Maternal and Infantile and Internal Medicine Health, and Specialist Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Silvia Marino
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU "Policlinico", PO "San Marco", University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, AOU "Policlinico", PO "G. Rodolico", Via S. Sofia, 87, 95128, Catania, Italy.
| |
Collapse
|
9
|
Shen S, Doubleday PF, Weerawarna PM, Zhu W, Kelleher NL, Silverman RB. Mechanism-Based Design of 3-Amino-4-Halocyclopentenecarboxylic Acids as Inactivators of GABA Aminotransferase. ACS Med Chem Lett 2020; 11:1949-1955. [PMID: 33062178 DOI: 10.1021/acsmedchemlett.9b00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/13/2020] [Indexed: 01/09/2023] Open
Abstract
Aminotransferases are pyridoxal 5'-phosphate-dependent enzymes that catalyze reversible transamination reactions between an amino acid and an α-keto acid, playing a critical role in cellular nitrogen metabolism. It is evident that γ-aminobutyric acid aminotransferase (GABA-AT), which balances the levels of inhibitory and excitatory neurotransmitters, has emerged as a promising therapeutic target for epilepsy and cocaine addiction based on mechanism-based inactivators (MBIs). In this work, we established an integrated approach using computational simulation, organic synthesis, biochemical evaluation, and mass spectrometry to facilitate our design and mechanistic studies of MBIs, which led to the identification of a new cyclopentene-based analogue (6a), 25-times more efficient as an inactivator of GABA-AT compared to the parent compound (1R,3S,4S)-3-amino-4-fluorocyclopentane carboxylic acid (FCP, 4).
Collapse
Affiliation(s)
| | | | | | | | | | - Richard B. Silverman
- Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
10
|
Mei H, Han J, Klika KD, Izawa K, Sato T, Meanwell NA, Soloshonok VA. Applications of fluorine-containing amino acids for drug design. Eur J Med Chem 2019; 186:111826. [PMID: 31740056 DOI: 10.1016/j.ejmech.2019.111826] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 01/26/2023]
Abstract
Fluorine-containing amino acids are becoming increasingly prominent in new drugs due to two general trends in the modern pharmaceutical industry. Firstly, the growing acceptance of peptides and modified peptides as drugs; and secondly, fluorine editing has become a prevalent protocol in drug-candidate optimization. Accordingly, fluorine-containing amino acids represent one of the more promising and rapidly developing areas of research in organic, bio-organic and medicinal chemistry. The goal of this Review article is to highlight the current state-of-the-art in this area by profiling 42 selected compounds that combine fluorine and amino acid structural elements. The compounds under discussion represent pharmaceutical drugs currently on the market, or in clinical trials as well as examples of drug-candidates that although withdrawn from development had a significant impact on the progress of medicinal chemistry and/or provided a deeper understanding of the nature and mechanism of biological action. For each compound, we present features of biological activity, a brief history of the design principles and the development of the synthetic approach, focusing on the source of tailor-made amino acid structures and fluorination methods. General aspects of the medicinal chemistry of fluorine-containing amino acids and synthetic methodology are briefly discussed.
Collapse
Affiliation(s)
- Haibo Mei
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan.
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ, 08543-4000, United States.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| |
Collapse
|
11
|
Abstract
The treatment of infantile spasms is challenging, especially in the context of the following: (1) a severe phenotype with high morbidity and mortality; (2) the urgency of diagnosis and successful early response to therapy; and (3) the paucity of effective, safe, and well-tolerated therapies. Even after initially successful treatment, relapse risk is substantial and the most effective therapies pose considerable risk with long-term administration. In evaluating any treatment for infantile spasms, the key short-term outcome measure is freedom from both epileptic spasms and hypsarrhythmia. In contrast, the most important long-term outcomes are enduring seizure-freedom and measures of intellectual performance in later childhood and adulthood. First-line treatment options-namely hormonal therapy and vigabatrin-display moderate to high efficacy but also exhibit substantial side-effect burdens. Data on efficacy and safety of each class of therapy, as well as the combination of these therapies, are reviewed in detail. Specific hormonal therapies (adrenocorticotropic hormone and various corticosteroids) are contrasted. Those etiologies that prompt specific therapies are reviewed briefly, as are an array of second-line therapies supported by less-compelling data. The ketogenic diet is discussed in greater detail, with a focus on the limitations of numerous available studies that generally suggest that it is efficacious. Special discussion is allocated to cannabidiol-the investigational therapy that has received the most attention, and which is already in use in the form of various artisanal cannabis extracts. Finally, a treatment algorithm reflecting the concepts and controversies discussed in this review is presented.
Collapse
Affiliation(s)
- Shaun A. Hussain
- Division of Pediatric NeurologyDavid Geffen School of MedicineUCLA Mattel Children's HospitalLos AngelesCaliforniaU.S.A.
| |
Collapse
|
12
|
Moschitto MJ, Silverman RB. Synthesis of ( S)-3-Amino-4-(difluoromethylenyl)-cyclopent-1-ene-1-carboxylic Acid (OV329), a Potent Inactivator of γ-Aminobutyric Acid Aminotransferase. Org Lett 2018; 20:4589-4592. [PMID: 30009604 DOI: 10.1021/acs.orglett.8b01872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
( S)-3-Amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic acid (OV329, 1) is being developed for the treatment of epilepsy and addiction. The previous 14-step synthesis of OV329 was low yielding, involved an unselective α-elimination to form the cyclopentene, required the use of tert-butyllithium, and produced toxic selenium byproducts in the penultimate step. A new synthesis, which avoids the aforementioned issues, was carried out on large scale, reducing the step count from 14 to 9 steps and increasing the overall yield from 3.7% to 8.1%.
Collapse
Affiliation(s)
- Matthew J Moschitto
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics , Northwestern University , Evanston , Illinois 60208 , United States
| | - Richard B Silverman
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
13
|
Silverman RB. Design and Mechanism of GABA Aminotransferase Inactivators. Treatments for Epilepsies and Addictions. Chem Rev 2018; 118:4037-4070. [PMID: 29569907 PMCID: PMC8459698 DOI: 10.1021/acs.chemrev.8b00009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
When the brain concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) diminishes below a threshold level, the excess neuronal excitation can lead to convulsions. This imbalance in neurotransmission can be corrected by inhibition of the enzyme γ-aminobutyric acid aminotransferase (GABA-AT), which catalyzes the conversion of GABA to the excitatory neurotransmitter l-glutamic acid. It also has been found that raising GABA levels can antagonize the rapid elevation and release of dopamine in the nucleus accumbens, which is responsible for the reward response in addiction. Therefore, the design of new inhibitors of GABA-AT, which increases brain GABA levels, is an important approach to new treatments for epilepsy and addiction. This review summarizes findings over the last 40 or so years of mechanism-based inactivators (unreactive compounds that require the target enzyme to catalyze their conversion to the inactivating species, which inactivate the enzyme prior to their release) of GABA-AT with emphasis on their catalytic mechanisms of inactivation, presented according to organic chemical mechanism, with minimal pharmacology, except where important for activity in epilepsy and addiction. Patents, abstracts, and conference proceedings are not covered in this review. The inactivation mechanisms described here can be applied to the inactivations of a wide variety of unrelated enzymes.
Collapse
Affiliation(s)
- Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, 60208-3113, United States
| |
Collapse
|
14
|
Juncosa JI, Takaya K, Le HV, Moschitto MJ, Weerawarna PM, Mascarenhas R, Liu D, Dewey SL, Silverman RB. Design and Mechanism of (S)-3-Amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic Acid, a Highly Potent γ-Aminobutyric Acid Aminotransferase Inactivator for the Treatment of Addiction. J Am Chem Soc 2018; 140:2151-2164. [PMID: 29381352 PMCID: PMC5812813 DOI: 10.1021/jacs.7b10965] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. Inhibition of GABA aminotransferase (GABA-AT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, has been established as a possible strategy for the treatment of substance abuse. The raised GABA levels that occur as a consequence of this inhibition have been found to antagonize the rapid release of dopamine in the ventral striatum (nucleus accumbens) that follows an acute challenge by an addictive substance. In addition, increased GABA levels are also known to elicit an anticonvulsant effect in patients with epilepsy. We previously designed the mechanism-based inactivator (1S,3S)-3-amino-4-difluoromethylenyl-1-cyclopentanoic acid (2), now called CPP-115, that is 186 times more efficient in inactivating GABA-AT than vigabatrin, the only FDA-approved drug that is an inactivator of GABA-AT. CPP-115 was found to have high therapeutic potential for the treatment of cocaine addiction and for a variety of epilepsies, has successfully completed a Phase I safety clinical trial, and was found to be effective in the treatment of infantile spasms (West syndrome). Herein we report the design, using molecular dynamics simulations, synthesis, and biological evaluation of a new mechanism-based inactivator, (S)-3-amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic acid (5), which was found to be almost 10 times more efficient as an inactivator of GABA-AT than CPP-115. We also present the unexpected crystal structure of 5 bound to GABA-AT, as well as computational analyses used to assist the structure elucidation process. Furthermore, 5 was found to have favorable pharmacokinetic properties and low off-target activities. In vivo studies in freely moving rats showed that 5 was dramatically superior to CPP-115 in suppressing the release of dopamine in the corpus striatum, which occurs subsequent to either an acute cocaine or nicotine challenge. Compound 5 also attenuated increased metabolic demands (neuronal glucose metabolism) in the hippocampus, a brain region that encodes spatial information concerning the environment in which an animal receives a reinforcing or aversive drug. This multidisciplinary computational design to preclinical efficacy approach should be applicable to the design and improvement of mechanism-based inhibitors of other enzymes whose crystal structures and inactivation mechanisms are known.
Collapse
Affiliation(s)
- Jose I. Juncosa
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kenji Takaya
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Hoang V. Le
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew J. Moschitto
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Pathum M. Weerawarna
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Romila Mascarenhas
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Stephen L. Dewey
- Center for Neurosciences, Laboratory for Behavioral and Molecular Neuroimaging, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York 11030, United States
| | - Richard B. Silverman
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Prescot AP, Miller SR, Ingenito G, Huber RS, Kondo DG, Renshaw PF. In Vivo Detection of CPP-115 Target Engagement in Human Brain. Neuropsychopharmacology 2018; 43:646-654. [PMID: 28741622 PMCID: PMC5770752 DOI: 10.1038/npp.2017.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 11/09/2022]
Abstract
CPP-115, a next-generation γ-amino butyric acid (GABA)-aminotransferase (AT) inhibitor, shows comparable pharmacokinetics, improved safety and tolerability, and a more favorable toxicity profile when compared with vigabatrin. The pharmacodynamic characteristics of CPP-115 remain to be evaluated. The present study employed state-of-the-art proton magnetic resonance spectroscopy techniques to measure changes in brain GABA+ (the composite resonance of GABA, homocarnosine, and macromolecules) concentrations in healthy subjects receiving oral daily doses of CPP-115 or placebo. Six healthy adult males were randomized to receive either single daily 80 mg doses of CPP-115 (n=4) or placebo (n=2) for 6, 10, or 14 days. Metabolite-edited spectra and two-dimensional J-resolved spectroscopy data were acquired from the parietal-occipital cortex and supplementary motor area in all subjects. Four scans were performed in each subject that included a predrug baseline measure, two scans during the dosing timeframe, and a final scan that occurred 1 week after drug cessation. CPP-115 induced robust and significant increases in brain GABA+ concentrations that ranged between 52 and 141% higher than baseline values. Elevated GABA+ concentrations returned to baseline values following drug clearance. Subjects receiving placebo showed no significant changes in GABA+ concentration. CPP-115-induced changes were exclusive to GABA and homocarnosine, and CPP-115 afforded brain GABA+ concentration changes comparable to or greater than previous vigabatrin spectroscopy studies in healthy epilepsy-naive subjects. The return to baseline GABA+ concentration indicates the reversible GABA-AT resynthesis following drug washout. These preliminary data warrant further spectroscopy studies that characterize the acute pharmacodynamic effects of CPP-115 with additional dose-descending measures.
Collapse
Affiliation(s)
- Andrew P Prescot
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA,Department of Radiology and Imaging Sciences, University of Utah School of Medicine, 383 Colorow Drive, Salt Lake City, UT 84108, USA, Tel: +1 801 587 1441, Fax: +1 801 585 5375, E-mail:
| | | | | | - Rebekah S Huber
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Douglas G Kondo
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA,Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA,Rocky Mountain Mental Illness Research, Education, and Clinical Center (MIRECC), Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Abstract
INTRODUCTION Epilepsy is one of the most common neurological diseases affecting approximately 50 million people worldwide. Despite many advances in epilepsy research, nearly a third of patients with epilepsy have refractory or pharmacoresistant epilepsy. Despite the approval of a dozen antiepileptic drugs (AEDs) over the past decade, there are no agents that halt the development of epilepsy. Thus, newer and better AEDs that can prevent refractory seizures and modify the disease are needed for curing epilepsy. Areas covered: In this article, we highlight the recent advances and emerging trends in new and innovative drugs for epilepsy and seizure disorders. We review in detail top new drugs that are currently in clinical trials or agents that are under development and have novel mechanisms of action. Expert commentary: Among the new agents under clinical investigation, the majority were originally developed for treating other neurological diseases (everolimus, fenfluramine, nalutozan, bumetanide, and valnoctamide); several have mechanisms of action similar to those of conventional AEDs (AP, ganaxolone, and YKP3089); and some new agents represent novel mechanisms of actions (huperzine-A, cannabidiol, tonabersat, and VX-765).
Collapse
Affiliation(s)
- Iyan Younus
- a Department of Neuroscience and Experimental Therapeutics, College of Medicine , Texas A&M Health Science Center , Bryan , TX , USA
| | - Doodipala Samba Reddy
- a Department of Neuroscience and Experimental Therapeutics, College of Medicine , Texas A&M Health Science Center , Bryan , TX , USA
| |
Collapse
|
17
|
Barker-Haliski ML, Löscher W, White HS, Galanopoulou AS. Neuroinflammation in epileptogenesis: Insights and translational perspectives from new models of epilepsy. Epilepsia 2017; 58 Suppl 3:39-47. [PMID: 28675559 PMCID: PMC5604891 DOI: 10.1111/epi.13785] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/25/2022]
Abstract
Animal models have provided a wealth of information on mechanisms of epileptogenesis and comorbidogenesis, and have significantly advanced our ability to investigate the potential of new therapies. Processes implicating brain inflammation have been increasingly observed in epilepsy research. Herein we discuss the progress on animal models of epilepsy and comorbidities that inform us on the potential role of inflammation in epileptogenesis and comorbidity pathogenesis in rodent models of West syndrome and the Theiler's murine encephalomyelitis virus (TMEV) mouse model of viral encephalitis-induced epilepsy. Rat models of infantile spasms were generated in rat pups after right intracerebral injections of proinflammatory compounds (lipopolysaccharides with or without doxorubicin, or cytokines) and were longitudinally monitored for epileptic spasms and neurodevelopmental and cognitive deficits. Anti-inflammatory treatments were tested after the onset of spasms. The TMEV mouse model was induced with intracerebral administration of TMEV and prospective monitoring for handling-induced seizures or seizure susceptibility, as well as long-term evaluations of behavioral comorbidities of epilepsy. Inflammatory processes are evident in both models and are implicated in the pathogenesis of the observed seizures and comorbidities. A common feature of these models, based on the data so far available, is their pharmacoresistant profile. The presented data support the role of inflammatory pathways in epileptogenesis and comorbidities in two distinct epilepsy models. Pharmacoresistance is a common feature of both inflammation-based models. Utilization of these models may facilitate the identification of age-specific, syndrome- or etiology-specific therapies for the epilepsies and attendant comorbidities, including the drug-resistant forms.
Collapse
Affiliation(s)
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - H. Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Bronx NY USA
| |
Collapse
|
18
|
Galanopoulou AS, Mowrey WB, Liu W, Li Q, Shandra O, Moshé SL. Preclinical Screening for Treatments for Infantile Spasms in the Multiple Hit Rat Model of Infantile Spasms: An Update. Neurochem Res 2017; 42:1949-1961. [PMID: 28462453 DOI: 10.1007/s11064-017-2282-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 12/16/2022]
Abstract
Infantile spasms are the typical seizures of West syndrome, an infantile epileptic encephalopathy with poor outcomes. There is an increasing need to identify more effective and better tolerated treatments for infantile spasms. We have optimized the rat model of infantile spasms due to structural etiology, the multiple-hit rat model, for therapy discovery. Here, we test three compounds administered after spasms induction in the multiple hit model for efficacy and tolerability. Specifically, postnatal day 3 (PN3) male Sprague-Dawley rats were induced by right intracerebral injections of doxorubicin and lipopolysaccharide. On PN5 p-chlorophenylalanine was given intraperitoneally (i.p.). Daily monitoring of weights and developmental milestones was done and rats were intermittently video monitored. A blinded, randomized, vehicle-controlled study design was followed. The caspase 1 inhibitor VX-765 (50-200 mg/kg i.p.) and the GABAB receptor inhibitor CGP35348 (12.5-100 mg/kg i.p.) each was administered in different cohorts as single intraperitoneal injections on PN4, using a dose- and time-response design with intermittent monitoring till PN5. 17β-estradiol (40 ng/g/day subcutaneously) was given daily between PN3-10 and intermittent monitoring was done till PN12. None of the treatments demonstrated acute or delayed effects on spasms, yet all were well tolerated. We discuss the implications for therapy discovery and challenges of replication trials.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Rm 306, Bronx, NY, 10461, USA.
| | - Wenzhu B Mowrey
- Division of Biostatistics, Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Liu
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qianyun Li
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Oleksii Shandra
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Rm 306, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
19
|
Shandra O, Moshé SL, Galanopoulou AS. Inflammation in Epileptic Encephalopathies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:59-84. [PMID: 28427564 PMCID: PMC5753773 DOI: 10.1016/bs.apcsb.2017.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
West syndrome (WS) is an infantile epileptic encephalopathy that manifests with infantile spasms (IS), hypsarrhythmia (in ~60% of infants), and poor neurodevelopmental outcomes. The etiologies of WS can be structural-metabolic pathologies (~60%), genetic (12%-15%), or of unknown origin. The current treatment options include hormonal treatment (adrenocorticotropic hormone and high-dose steroids) and the GABA aminotransferase inhibitor vigabatrin, while ketogenic diet can be given as add-on treatment in refractory IS. There is a need to identify new therapeutic targets and more effective treatments for WS. Theories about the role of inflammatory pathways in the pathogenesis and treatment of WS have emerged, being supported by both clinical and preclinical data from animal models of WS. Ongoing advances in genetics have revealed numerous genes involved in the pathogenesis of WS, including genes directly or indirectly involved in inflammation. Inflammatory pathways also interact with other signaling pathways implicated in WS, such as the neuroendocrine pathway. Furthermore, seizures may also activate proinflammatory pathways raising the possibility that inflammation can be a consequence of seizures and epileptogenic processes. With this targeted review, we plan to discuss the evidence pro and against the following key questions. Does activation of inflammatory pathways in the brain cause epilepsy in WS and does it contribute to the associated comorbidities and progression? Can activation of certain inflammatory pathways be a compensatory or protective event? Are there interactions between inflammation and the neuroendocrine system that contribute to the pathogenesis of WS? Does activation of brain inflammatory signaling pathways contribute to the transition of WS to Lennox-Gastaut syndrome? Are there any lead candidates or unexplored targets for future therapy development for WS targeting inflammation?
Collapse
Affiliation(s)
- Oleksii Shandra
- Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Solomon L Moshé
- Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, United States; Montefiore/Einstein Epilepsy Center, Montefiore Medical Center, Bronx, NY, United States
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, United States; Montefiore/Einstein Epilepsy Center, Montefiore Medical Center, Bronx, NY, United States.
| |
Collapse
|