1
|
Zeng J, Indajang J, Pitt D, Lo CH. Lysosomal acidification impairment in astrocyte-mediated neuroinflammation. J Neuroinflammation 2025; 22:72. [PMID: 40065324 PMCID: PMC11892208 DOI: 10.1186/s12974-025-03410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Astrocytes are a major cell type in the central nervous system (CNS) that play a key role in regulating homeostatic functions, responding to injuries, and maintaining the blood-brain barrier. Astrocytes also regulate neuronal functions and survival by modulating myelination and degradation of pathological toxic protein aggregates. Astrocytes have recently been proposed to possess both autophagic activity and active phagocytic capability which largely depend on sufficiently acidified lysosomes for complete degradation of cellular cargos. Defective lysosomal acidification in astrocytes impairs their autophagic and phagocytic functions, resulting in the accumulation of cellular debris, excessive myelin and lipids, and toxic protein aggregates, which ultimately contributes to the propagation of neuroinflammation and neurodegenerative pathology. Restoration of lysosomal acidification in impaired astrocytes represent new neuroprotective strategy and therapeutic direction. In this review, we summarize pathogenic factors, including neuroinflammatory signaling, metabolic stressors, myelin and lipid mediated toxicity, and toxic protein aggregates, that contribute to lysosomal acidification impairment and associated autophagic and phagocytic dysfunction in astrocytes. We discuss the role of lysosomal acidification dysfunction in astrocyte-mediated neuroinflammation primarily in the context of neurodegenerative diseases along with other brain injuries. We then highlight re-acidification of impaired lysosomes as a therapeutic strategy to restore autophagic and phagocytic functions as well as lysosomal degradative capacity in astrocytes. We conclude by providing future perspectives on the role of astrocytes as phagocytes and their crosstalk with other CNS cells to impart neurodegenerative or neuroprotective effects.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA.
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
| | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
2
|
Sergio S, Spedicato B, Corallo G, Inguscio A, Greco M, Musarò D, Vergara D, Muro AF, De Sabbata G, Soria LR, Pierri NB, Maffia M. β-Catenin/c-Myc Axis Modulates Autophagy Response to Different Ammonia Concentrations. Adv Biol (Weinh) 2025; 9:e2400408. [PMID: 39798123 PMCID: PMC11911958 DOI: 10.1002/adbi.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/13/2024] [Indexed: 01/15/2025]
Abstract
Ammonia a by-product of nitrogen containing molecules is detoxified by liver into non-toxic urea and glutamine. Impaired ammonia detoxification leads to hyperammonemia. Ammonia has a dual role on autophagy, it acts as inducer at low concentrations and as inhibitor at high concentrations. However, little is known about the mechanisms responsible for this switch. Wnt/β-catenin signalling is emerging for its role in the regulation of ammonia metabolizing enzymes and autophagosome synthesis through c-Myc. Here, using Huh7 cell line, we show a modulation in c-Myc expression under different ammonia concentrations. An increase in c-Myc expression and in its transcriptional regulator β-catenin was detected at low concentrations of ammonia, when autophagy is active, whereas these modifications were lost under high ammonia concentrations. These observations were also recapitulated in the livers of spf-ash mice, a model of constitutive hyperammonaemia due to deficiency in ornithine transcarbamylase enzyme. Moreover, c-Myc-mediated activation of autophagy plays a cytoprotective role in cells under ammonia stress conditions as confirmed through the pharmacological inhibition of c-Myc in Huh7 cells treated with low ammonia concentrations. In conclusion, the unravelled role of c-Myc in modulating ammonia induced autophagy opens new landscapes for the development of novel strategies for the treatment of hyperammonemia.
Collapse
Affiliation(s)
- S. Sergio
- Laboratory of Clinical Proteomic“V Fazzi” HospitalLecce73100Italy
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| | - B. Spedicato
- Laboratory of Clinical Proteomic“V Fazzi” HospitalLecce73100Italy
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| | - G. Corallo
- Laboratory of Clinical Proteomic“V Fazzi” HospitalLecce73100Italy
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| | - A. Inguscio
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| | - M. Greco
- Laboratory of Clinical Proteomic“V Fazzi” HospitalLecce73100Italy
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| | - D. Musarò
- Laboratory of Clinical Proteomic“V Fazzi” HospitalLecce73100Italy
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| | - D. Vergara
- Laboratory of General and Human PhysiologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecce73100Italy
| | - A. F. Muro
- International Centre for Genetic Engineering and BiotechnologyTrieste34149Italy
| | - G. De Sabbata
- International Centre for Genetic Engineering and BiotechnologyTrieste34149Italy
| | - L. R. Soria
- Telethon Institute of Genetics and MedicinePozzuoli80078Italy
| | - N. Brunetti Pierri
- Telethon Institute of Genetics and MedicinePozzuoli80078Italy
- Department of Translational MedicineFederico II UniversityNaples80138Italy
| | - M. Maffia
- Laboratory of Clinical Proteomic“V Fazzi” HospitalLecce73100Italy
- Laboratory of General and Human PhysiologyDepartment of Experimental MedicineUniversity of SalentoLecce73100Italy
| |
Collapse
|
3
|
Choi K, Cho Y, Chae Y, Cheon SY. Cell-cell communications in the brain of hepatic encephalopathy: The neurovascular unit. Life Sci 2025; 363:123413. [PMID: 39863020 DOI: 10.1016/j.lfs.2025.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Many patients with liver diseases are exposed to the risk of hepatic encephalopathy (HE). The incidence of HE in liver patients is high, showing various symptoms ranging from mild symptoms to coma. Liver transplantation is one of the ways to overcome HE. However, not all patients can receive liver transplantation. Moreover, patients who have received liver transplantation have limitations in that they are vulnerable to hepatocellular carcinoma, allograft rejection, and infection. To find other therapeutic strategies, it is important to understand pathological factors and mechanisms that lead to HE after liver disease. Oxidative stress, inflammatory response, hyperammonaemia and metabolic disorders seen after liver diseases have been reported as risk factors of HE. These are known to affect the brain and cause HE. These peripheral pathological factors can impair the blood-brain barrier, cause it to collapse and damage the neurovascular unit component of multiple cells, including vascular endothelial cells, astrocytes, microglia, and neurons, leading to HE. Many previous studies on HE have suggested the impairment of neurovascular unit and cell-cell communication in the pathogenesis of HE. This review focuses on pathological factors that appear in HE, cell type-specific pathological mechanisms, miscommunication/incorrect relationships, and therapeutic candidates between brain cells in HE. This review suggests that regulating communications and interactions between cells may be important in overcoming HE.
Collapse
Affiliation(s)
- Kyuwan Choi
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Yena Cho
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Yerin Chae
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea; Research Institute for Biomedical & Health Science (RIBHS), Konkuk University, Chungju, Republic of Korea.
| |
Collapse
|
4
|
Zhang P, Zhou Z, Yao J, Jiang Y, Lei H, Xie Z, Li J, Zhao X, Zhu L, Wan M, Liu L, Tang W. Effects of pesticide dichlorvos on liver injury in rats and related toxicity mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117747. [PMID: 39823667 DOI: 10.1016/j.ecoenv.2025.117747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
Dichlorvos (DDVP) is an organophosphorus pesticide commonly utilized in agricultural production. Recent epidemiological studies suggest that exposure to DDVP correlates with an increased incidence of liver disease. However, data regarding the hepatotoxicity of DDVP remain limited. Additionally, the regulatory mechanisms underlying DDVP-induced liver injury have not been thoroughly investigated. In this study, we utilized Wistar rats and BRL-3A cells to establish in vivo and in vitro models for examining the effects of DDVP exposure on liver damage. Our findings indicate that DDVP impairs hepatocyte autophagy and increases ROS activity. RNA sequencing and metabolomic analyses revealed that the pathways affected by DDVP exposure in hepatocytes include ABC transporters and amino acid biosynthesis processes. Furthermore, targeting IRGM overexpression through hepatic portal vein injection of adeno-associated virus mitigated DDVP-induced liver injury. These results demonstrate that DDVP exposure induces liver damage in rats through mechanisms that are dependent on ROS and autophagy, at least in part by downregulating IRGM. Our study offers new insights into the molecular mechanisms of liver injury following organophosphate poisoning and suggests that IRGM may represent a novel therapeutic target for DDVP-induced liver injury.
Collapse
Affiliation(s)
- Pengcheng Zhang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Zixian Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaqi Yao
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuhong Jiang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hang Lei
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijun Xie
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu zhou, Sichuan 646000, China
| | - Juan Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianlin Zhao
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lv Zhu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meihua Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenfu Tang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Kleidonas D, Hilfiger L, Lenz M, Häussinger D, Vlachos A. Ammonium chloride reduces excitatory synaptic transmission onto CA1 pyramidal neurons of mouse organotypic slice cultures. Front Cell Neurosci 2024; 18:1410275. [PMID: 39411004 PMCID: PMC11473415 DOI: 10.3389/fncel.2024.1410275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Acute liver dysfunction commonly leads to rapid increases in ammonia concentrations in both the serum and the cerebrospinal fluid. These elevations primarily affect brain astrocytes, causing modifications in their structure and function. However, its impact on neurons is not yet fully understood. In this study, we investigated the impact of elevated ammonium chloride levels (NH4Cl, 5 mM) on synaptic transmission onto CA1 pyramidal neurons in mouse organotypic entorhino-hippocampal tissue cultures. We found that acute exposure to NH4Cl reversibly reduced excitatory synaptic transmission and affected CA3-CA1 synapses. Notably, NH4Cl modified astrocytic, but not CA1 pyramidal neuron, passive intrinsic properties. To further explore the role of astrocytes in NH4Cl-induced attenuation of synaptic transmission, we used methionine sulfoximine to target glutamine synthetase, a key astrocytic enzyme for ammonia clearance in the central nervous system. Inhibition of glutamine synthetase effectively prevented the downregulation of excitatory synaptic activity, underscoring the significant role of astrocytes in adjusting excitatory synapses during acute ammonia elevation.
Collapse
Affiliation(s)
- Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Louis Hilfiger
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Li X, Xiao Y, Zhu Y, Li P, Zhou J, Yang J, Chen Z, Du H, Yu H, Guo Y, Bian H, Li Z. Regulation of autophagy by ST3GAL2-mediated α2-3 sialylated glycosphingolipids in hepatic encephalopathy. Int J Biol Macromol 2024; 278:135196. [PMID: 39256125 DOI: 10.1016/j.ijbiomac.2024.135196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
In neurological diseases, the regulation of autophagy plays a crucial role in their pathology, particularly the relationship between autophagy and hepatic encephalopathy (HE) which merits detailed investigation. Glycosphingolipids are abundant and broadly functional in the nervous system and are closely associated with autophagy. However, the specific link and mechanisms between glycosphingolipids and autophagy in HE remain unclear. This study aims to explore the impact of glycosphingolipid changes on the autophagy in HE and its potential mechanisms. Utilizing lectin microarrays, we observed elevated expression levels of α2-3 sialylated glycosphingolipid in the brain tissue of HBV transgenic mice and ammonia-induced astrocyte models, suggesting that the increase in α2-3 sialylated glycosphingolipid is related to HE. Further research revealed that the increased expression of α2-3 sialylated glycosphingolipid, mediated by ST3GAL2, affects autophagy by regulating the autophagy initiation complex Vps34-Beclin-1. In summary, our research not only comprehensively reveals the changes in brain glycosphingolipid during HBV-related HE but also elucidates the interactions and regulatory mechanisms between α2-3 sialylated glycosphingolipid and autophagy. This study provides a new perspective on understanding the pathogenesis of HE and offers novel theories and targets for future research and treatment strategies.
Collapse
Affiliation(s)
- Xiaocheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China; Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yaqing Xiao
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yayun Zhu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Pengfei Li
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiejun Zhou
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiajun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Zhuo Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yonghong Guo
- The Infectious Disease Department, Gongli Hospital, Pudong New Area, Shanghai, China.
| | - Huijie Bian
- Cell Engineering Research Centre and Department of Cell Biology, Fourth Military Medical University, Xi'an, China.
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
7
|
Wang Q, Zhang Q, Wang X, Luo H, Du T, Wu L, Tan M, Chen Y, Wu X, Sun S, Liu Z, Xie Y, Yuan W. TGM2-Mediated Autophagy Contributes to the Radio-Resistance of Non-Small Cell Lung Cancer Stem-like Cells. Biomedicines 2024; 12:2231. [PMID: 39457544 PMCID: PMC11504678 DOI: 10.3390/biomedicines12102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: Cancer cells with 'stemness' are generally resistant to chemoradiotherapy. This study aims to compare the differences in radiation sensitivity of A549 and CD44+A549 stem-like cells to X-rays and carbon ion radiation (C-ions), and to find a target that can kill cancer stem-like cells (CSCs) of non-small cell lung cancer (NSCLC). Methods: The study used two cell lines (A549 and CD44+A549). The tumorigenicity of cells was tested with animal experiments. The cells were irradiated with X-rays and C-ions. Cell viability was detected using the CCK-8 and EdU assay. A liquid chromatograph-mass spectrometer (LC-MS) helped detect metabolic differences. Protein and mRNA expression were detected using a Western blot, reverse transcription-quantitative (RT-qPCR), and PCR array. The autophagic activity was monitored with a CYTO-ID® Autophagy Detection Kit 2.0. Immunofluorescence and co-immunoprecipitation helped to observe the localization and interaction relationships. Results: First, we verified the radio-resistance of CD44+A549 stem-like cells. LC-MS indicated the difference in autophagy between the two cells, followed by establishing a correlation between the radio-resistance and autophagy. Subsequently, the PCR array proved that TGM2 is significantly upregulated in CD44+A549 stem-like cells. Moreover, the TGM2 knockdown by small interfering RNA could decrease the radio-resistance of CD44+A549 cells. Bioinformatic analyses and experiments showed that TGM2 is correlated with the expression of CD44 and LC3B. Additionally, TGM2 could directly interact with LC3B. Conclusions: We established the CD44-TGM2-LC3 axis: CD44 mediates radio-resistance of CD44+A549 stem-like cells through TGM2 regulation of autophagy. Our study may provide new biomarkers and strategies to alleviate the radio-resistance of CSCs in NSCLC.
Collapse
Affiliation(s)
- Qian Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
- Graduate School of the Chinese Academy of Sciences, Beijing 101499, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
- Graduate School of the Chinese Academy of Sciences, Beijing 101499, China
| | - Tianqi Du
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Luyao Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
- Graduate School of the Chinese Academy of Sciences, Beijing 101499, China
| | - Mingyu Tan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Yanliang Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Xun Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
- Graduate School of the Chinese Academy of Sciences, Beijing 101499, China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
- Graduate School of the Chinese Academy of Sciences, Beijing 101499, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
- Graduate School of the Chinese Academy of Sciences, Beijing 101499, China
| | - Wenzhen Yuan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Q.W.)
| |
Collapse
|
8
|
Li X, Xiao Y, Li P, Zhu Y, Guo Y, Bian H, Li Z. Sialyltransferase ST3GAL6 silencing reduces α2,3-sialylated glycans to regulate autophagy by decreasing HSPB8-BAG3 in the brain with hepatic encephalopathy. J Zhejiang Univ Sci B 2024; 25:485-498. [PMID: 38910494 PMCID: PMC11199091 DOI: 10.1631/jzus.b2300917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/20/2024] [Indexed: 05/23/2024]
Abstract
End-stage liver diseases, such as cirrhosis and liver cancer caused by hepatitis B, are often combined with hepatic encephalopathy (HE); ammonia poisoning is posited as one of its main pathogenesis mechanisms. Ammonia is closely related to autophagy, but the molecular mechanism of ammonia's regulatory effect on autophagy in HE remains unclear. Sialylation is an essential form of glycosylation. In the nervous system, abnormal sialylation affects various physiological processes, such as neural development and synapse formation. ST3 β-galactoside α2,3-sialyltransferase 6 (ST3GAL6) is one of the significant glycosyltransferases responsible for adding α2,3-linked sialic acid to substrates and generating glycan structures. We found that the expression of ST3GAL6 was upregulated in the brains of mice with HE and in astrocytes after ammonia induction, and the expression levels of α2,3-sialylated glycans and autophagy-related proteins microtubule-associated protein light chain 3 (LC3) and Beclin-1 were upregulated in ammonia-induced astrocytes. These findings suggest that ST3GAL6 is related to autophagy in HE. Therefore, we aimed to determine the regulatory relationship between ST3GAL6 and autophagy. We found that silencing ST3GAL6 and blocking or degrading α2,3-sialylated glycans by way of Maackia amurensis lectin-II (MAL-II) and neuraminidase can inhibit autophagy. In addition, silencing the expression of ST3GAL6 can downregulate the expression of heat shock protein β8 (HSPB8) and Bcl2-associated athanogene 3 (BAG3). Notably, the overexpression of HSPB8 partially restored the reduced autophagy levels caused by silencing ST3GAL6 expression. Our results indicate that ST3GAL6 regulates autophagy through the HSPB8-BAG3 complex.
Collapse
Affiliation(s)
- Xiaocheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yaqing Xiao
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Pengfei Li
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yayun Zhu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yonghong Guo
- The Infectious Disease Department, Gongli Hospital, Pudong New Area, Shanghai 200135, China. ,
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, China. ,
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
9
|
Li D, Yu SF, Lin L, Guo JR, Huang SM, Wu XL, You HL, Cheng XJ, Zhang QY, Zeng YQ, Pan XD. Deficiency of leucine-rich repeat kinase 2 aggravates thioacetamide-induced acute liver failure and hepatic encephalopathy in mice. J Neuroinflammation 2024; 21:123. [PMID: 38725082 PMCID: PMC11084037 DOI: 10.1186/s12974-024-03125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/05/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) is closely associated with inflammatory responses. However, as a crucial regulator of the immune and inflammatory responses, the role of leucine-rich repeat kinase 2 (LRRK2) in the pathogenesis of HE remains unraveled. Herein, we investigated this issue in thioacetamide (TAA)-induced HE following acute liver failure (ALF). METHODS TAA-induced HE mouse models of LRRK2 wild type (WT), LRRK2 G2019S mutation (Lrrk2G2019S) and LRRK2 knockout (Lrrk2-/-) were established. A battery of neurobehavioral experiments was conducted. The biochemical indexes and pro-inflammatory cytokines were detected. The prefrontal cortex (PFC), striatum (STR), hippocampus (HIP), and liver were examined by pathology and electron microscopy. The changes of autophagy-lysosomal pathway and activity of critical Rab GTPases were analyzed. RESULTS The Lrrk2-/--HE model reported a significantly lower survival rate than the other two models (24% vs. 48%, respectively, p < 0.05), with no difference found between the WT-HE and Lrrk2G2019S-HE groups. Compared with the other groups, after the TAA injection, the Lrrk2-/- group displayed a significant increase in ammonium and pro-inflammatory cytokines, aggravated hepatic inflammation/necrosis, decreased autophagy, and abnormal phosphorylation of lysosomal Rab10. All three models reported microglial activation, neuronal loss, disordered vesicle transmission, and damaged myelin structure. The Lrrk2-/--HE mice presented no severer neuronal injury than the other genotypes. CONCLUSIONS LRRK2 deficiency may exacerbate TAA-induced ALF and HE in mice, in which inflammatory response is evident in the brain and aggravated in the liver. These novel findings indicate a need of sufficient clinical awareness of the adverse effects of LRRK2 inhibitors on the liver.
Collapse
Affiliation(s)
- Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China.
- Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fujian, 350001, China.
| | - Shu-Fang Yu
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China
| | - Lin Lin
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Jie-Ru Guo
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China
| | - Si-Mei Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Fujian, 350001, China
| | - Xi-Lin Wu
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Han-Lin You
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Juan Cheng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Qiu-Yang Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yu-Qi Zeng
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiao-Dong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
- Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou, 350001, China.
| |
Collapse
|
10
|
Pierzchala K, Hadjihambi A, Mosso J, Jalan R, Rose CF, Cudalbu C. Lessons on brain edema in HE: from cellular to animal models and clinical studies. Metab Brain Dis 2024; 39:403-437. [PMID: 37606786 PMCID: PMC10957693 DOI: 10.1007/s11011-023-01269-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Brain edema is considered as a common feature associated with hepatic encephalopathy (HE). However, its central role as cause or consequence of HE and its implication in the development of the neurological alterations linked to HE are still under debate. It is now well accepted that type A and type C HE are biologically and clinically different, leading to different manifestations of brain edema. As a result, the findings on brain edema/swelling in type C HE are variable and sometimes controversial. In the light of the changing natural history of liver disease, better description of the clinical trajectory of cirrhosis and understanding of molecular mechanisms of HE, and the role of brain edema as a central component in the pathogenesis of HE is revisited in the current review. Furthermore, this review highlights the main techniques to measure brain edema and their advantages/disadvantages together with an in-depth description of the main ex-vivo/in-vivo findings using cell cultures, animal models and humans with HE. These findings are instrumental in elucidating the role of brain edema in HE and also in designing new multimodal studies by performing in-vivo combined with ex-vivo experiments for a better characterization of brain edema longitudinally and of its role in HE, especially in type C HE where water content changes are small.
Collapse
Affiliation(s)
- Katarzyna Pierzchala
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland.
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jessie Mosso
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), EPFL, Lausanne, Switzerland
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- European Foundation for the Study of Chronic Liver Failure (EF Clif), Barcelona, Spain
| | - Christopher F Rose
- Hépato-Neuro Laboratory, Centre de Recherche du Centre Hospitalier de l', Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, QC, Montreal, H3T 1J4, Canada
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland.
| |
Collapse
|
11
|
Li X, Wang S, Zhang M, Li M. The SLC38A9-mTOR axis is involved in autophagy in the juvenile yellow catfish (Pelteobagrus fulvidraco) under ammonia stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123211. [PMID: 38142034 DOI: 10.1016/j.envpol.2023.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
The primary objective of this study was to examine the effect of acute ammonia stress on hepatic physiological alterations in yellow catfish by performing a comprehensive analysis of the metabolome and transcriptome. The present study showed that ammonia stress led to liver metabolic disruption, functional incapacitation, and oxidative damage. Transcriptomic and metabolomic analyses revealed transcriptional and metabolic differences in the liver of yellow catfish under control and high ammonia stress conditions. After 96 h of acute exposure to ammonia, the mRNA levels of 596 liver genes were upregulated, whereas those of 603 genes were downregulated. Enrichment analysis of the differentially expressed genes identified multiple signalling pathways associated with autophagy, including the endocytosis, autophagy-animal, and mammalian target of rapamycin signalling pathways. A total of 186 upregulated and 117 downregulated metabolites, primarily associated with amino acid biosynthesis pathways, were identified. Multi-omics integration revealed the solute carrier family 38 member 9 (SLC38A9)-mammalian target of rapamycin axis as a signalling nexus for amino acid-mediated modulation of autophagy flux, and q-PCR was used to assess the expression of autophagy-related genes (LC3a and sqstm1), revealing an initial inhibition followed by the restoration of autophagic flux during ammonia stress. Subsequent utilisation of arginine as a specific SLC38A9 activator during ammonia stress demonstrated that augmented SLC38A9 expression hindered autophagy, exacerbated ammonia toxicity, and caused a physiological decline (total cholesterol, total triglyceride, acid phosphatase, alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase levels were significantly increased), oxidative stress, and apoptosis. Autophagy activation may be an adaptive mechanism to resist ammonia stress.
Collapse
Affiliation(s)
- Xue Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Shidong Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Muzi Zhang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
12
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
13
|
Zeng L, Zheng W, Liu X, Zhou Y, Jin X, Xiao Y, Bai Y, Pan Y, Zhang J, Shao C. SDC1-TGM2-FLOT1-BHMT complex determines radiosensitivity of glioblastoma by influencing the fusion of autophagosomes with lysosomes. Theranostics 2023; 13:3725-3743. [PMID: 37441590 PMCID: PMC10334832 DOI: 10.7150/thno.81999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Rationale: Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Radiotherapy has long been an important treatment for GBM. Despite recent advances in tumor radiotherapy, the prognosis of GBM remains poor due to radioresistance. Autophagy has been reported as a basic factor to prolong the survival of tumor under radiation stress, but the molecular mechanism of how autophagy contributes to GBM radioresistance was still lacking. Methods: We established radioresistant GBM cells and identified their protein profiles by Tandem mass tag (TMT) quantitative proteomic analysis, then chose the radioresistant genes based on the TMT analysis of GBM cells and differentially expressed genes (DEGs) analysis of GEO database. Colony formation, flow cytometry, qPCR, western blotting, mRFP-GFP-LC3, transmission electron microscopy, immunofluorescence, and co-IP assays were conducted to investigate the regulation mechanisms among these new-found molecules. Results: Syndecan 1 (SDC1) and Transglutaminase 2 (TGM2) were both overexpressed in the radioresistant GBM cells and tissues, contributing to the dismal prognosis of radiotherapy. Mechanically, after irradiation, SDC1 carried TGM2 from cell membrane into cytoplasm, and transported to lysosomes by binding to flotillin 1 (FLOT1), then TGM2 recognized the betaine homocysteine methyltransferase (BHMT) on autophagosomes to coordinate the encounter between autophagosomes and lysosomes. Conclusions: The SDC1-TGM2-FLOT1-BHMT copolymer, a novel member of the protein complexes involved in the fusion of lysosomes and autophagosomes, maintained the autophagic flux in the irradiated tumor cells and ultimately enhanced radioresistance of GBM, which provides new insights of the molecular mechanism and therapeutic targets of radioresistant GBM.
Collapse
Affiliation(s)
- Liang Zeng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wang Zheng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoya Jin
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuqi Xiao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Zhu D, Zhu Y, Liu L, He X, Fu S. Metabolomic analysis of vascular cognitive impairment due to hepatocellular carcinoma. Front Neurol 2023; 13:1109019. [PMID: 37008043 PMCID: PMC10062391 DOI: 10.3389/fneur.2022.1109019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/26/2022] [Indexed: 03/18/2023] Open
Abstract
IntroductionScreening for metabolically relevant differentially expressed genes (DEGs) shared by hepatocellular carcinoma (HCC) and vascular cognitive impairment (VCI) to explore the possible mechanisms of HCC-induced VCI.MethodsBased on metabolomic and gene expression data for HCC and VCI, 14 genes were identified as being associated with changes in HCC metabolites, and 71 genes were associated with changes in VCI metabolites. Multi-omics analysis was used to screen 360 DEGs associated with HCC metabolism and 63 DEGs associated with VCI metabolism.ResultsAccording to the Cancer Genome Atlas (TCGA) database, 882 HCC-associated DEGs were identified and 343 VCI-associated DEGs were identified. Eight genes were found at the intersection of these two gene sets: NNMT, PHGDH, NR1I2, CYP2J2, PON1, APOC2, CCL2, and SOCS3. The HCC metabolomics prognostic model was constructed and proved to have a good prognostic effect. The HCC metabolomics prognostic model was constructed and proved to have a good prognostic effect. Following principal component analyses (PCA), functional enrichment analyses, immune function analyses, and TMB analyses, these eight DEGs were identified as possibly affecting HCC-induced VCI and the immune microenvironment. As well as gene expression and gene set enrichment analyses (GSEA), a potential drug screen was conducted to investigate the possible mechanisms involved in HCC-induced VCI. The drug screening revealed the potential clinical efficacy of A-443654, A-770041, AP-24534, BI-2536, BMS- 509744, CGP-60474, and CGP-082996.ConclusionHCC-associated metabolic DEGs may influence the development of VCI in HCC patients.
Collapse
Affiliation(s)
- Dan Zhu
- Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yamei Zhu
- Deptartment of Infectious Diseases, Wuhua Ward, 920th Hospital of Joint Logistics Support Force of Chinese PLA, Kunming, Yunnan, China
| | - Lin Liu
- Dalian Hunter Information Consulting Co. LTD, Dalian, China
| | - Xiaoxue He
- Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shizhong Fu
- Deptartment of Infectious Diseases, Wuhua Ward, 920th Hospital of Joint Logistics Support Force of Chinese PLA, Kunming, Yunnan, China
- *Correspondence: Shizhong Fu ;
| |
Collapse
|
15
|
Cellular Pathogenesis of Hepatic Encephalopathy: An Update. Biomolecules 2023; 13:biom13020396. [PMID: 36830765 PMCID: PMC9953810 DOI: 10.3390/biom13020396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome derived from metabolic disorders due to various liver failures. Clinically, HE is characterized by hyperammonemia, EEG abnormalities, and different degrees of disturbance in sensory, motor, and cognitive functions. The molecular mechanism of HE has not been fully elucidated, although it is generally accepted that HE occurs under the influence of miscellaneous factors, especially the synergistic effect of toxin accumulation and severe metabolism disturbance. This review summarizes the recently discovered cellular mechanisms involved in the pathogenesis of HE. Among the existing hypotheses, ammonia poisoning and the subsequent oxidative/nitrosative stress remain the mainstream theories, and reducing blood ammonia is thus the main strategy for the treatment of HE. Other pathological mechanisms mainly include manganese toxicity, autophagy inhibition, mitochondrial damage, inflammation, and senescence, proposing new avenues for future therapeutic interventions.
Collapse
|
16
|
Kim JE, Park H, Kang TC. Peroxiredoxin 6 Regulates Glutathione Peroxidase 1-Medited Glutamine Synthase Preservation in the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2023; 12:antiox12010156. [PMID: 36671018 PMCID: PMC9855017 DOI: 10.3390/antiox12010156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Clasmatodendrosis (an autophagic astroglial degeneration) plays an important role in the regulation of spontaneous seizure duration but not seizure frequency or behavioral seizure severity in chronic epilepsy rats. Recently, it has been reported that N-acetylcysteine (NAC), a precursor to glutathione (GSH), attenuates clasmatodendritic degeneration and shortens spontaneous seizure duration in chronic epilepsy rats, although the underlying mechanisms of its anti-convulsive effects are not fully understood. To elucidate this, the present study was designed to investigate whether NAC affects astroglial glutamine synthase (GS) expression mediated by GSH peroxidase 1 (GPx1) and/or peroxiredoxin 6 (Prdx6) in the epileptic hippocampus. As compared to control animals, GS and GPx1 expressions were upregulated in reactive CA1 astrocytes of chronic epilepsy rats, while their expressions were significantly decreased in clasmatodendritic CA1 astrocytes and reactive astrocytes within the molecular layer of the dentate gyrus. Prdx6 expression was increased in reactive CA1 astrocytes as well as clasmatodendritic CA1 astrocytes. In the molecular layer of the dentate gyrus, Prdx6 expression levels were similar to those in control animals. NAC ameliorated clasmatodendrosis through the increment of GS and GPx1 expressions, while it abolished Prdx6 upregulation. 1-hexadecyl-3-(trifluoroethgl)-sn-glycerol-2 phosphomethanol (MJ33, a selective inhibitor of aiPLA2 activity of Prdx6) alleviated clasmatodendrosis by enhancing GPx1 and GS expressions in clasmatodendritic CA1 astrocytes without changing the Prdx6 level. NAC or MJ33 did not affect GS, GPx1 and Prdx6 expression in astrocytes within the molecular layer of the dentate gyrus. These findings indicate that upregulated aiPLA2 activity of Prdx6 may abolish GPx1-mediated GS preservation and lead to clasmatodendrosis in CA1 astrocytes, which would extend spontaneous seizure duration due to impaired glutamate-glutamine conversion regulated by GS. Therefore, the present data suggest that aiPLA2 activity of Prdx6 in astrocytes may be one of the upstream effectors of seizure duration in the epileptic hippocampus.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiolog, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hana Park
- Department of Anatomy and Neurobiolog, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiolog, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: ; Tel.: +82-33-248-2524; Fax: +82-33-248-2525
| |
Collapse
|
17
|
Hepatic Encephalopathy: Current and Emerging Treatment Modalities. Clin Gastroenterol Hepatol 2022; 20:S9-S19. [PMID: 35940731 DOI: 10.1016/j.cgh.2022.04.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy (HE) is a potentially reversible neurocognitive complication of cirrhosis. It has been reported in at least 30% of patients with cirrhosis and imposes a significant economic burden on caregivers and the healthcare system. Ammonia has been recognized as the culprit in HE development, and all the currently approved treatments mostly act on this toxin to help with HE resolution. After a brief overview of HE characteristics and pathophysiology, this review explores the current accepted treatments for this debilitating complication of cirrhosis. This is followed by an overview of the novel available therapies and a brief focus on future treatment modalities for HE.
Collapse
|
18
|
Häussinger D, Dhiman RK, Felipo V, Görg B, Jalan R, Kircheis G, Merli M, Montagnese S, Romero-Gomez M, Schnitzler A, Taylor-Robinson SD, Vilstrup H. Hepatic encephalopathy. Nat Rev Dis Primers 2022; 8:43. [PMID: 35739133 DOI: 10.1038/s41572-022-00366-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 01/18/2023]
Abstract
Hepatic encephalopathy (HE) is a prognostically relevant neuropsychiatric syndrome that occurs in the course of acute or chronic liver disease. Besides ascites and variceal bleeding, it is the most serious complication of decompensated liver cirrhosis. Ammonia and inflammation are major triggers for the appearance of HE, which in patients with liver cirrhosis involves pathophysiologically low-grade cerebral oedema with oxidative/nitrosative stress, inflammation and disturbances of oscillatory networks in the brain. Severity classification and diagnostic approaches regarding mild forms of HE are still a matter of debate. Current medical treatment predominantly involves lactulose and rifaximin following rigorous treatment of so-called known HE precipitating factors. New treatments based on an improved pathophysiological understanding are emerging.
Collapse
Affiliation(s)
- Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Radha K Dhiman
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, (Uttar Pradesh), India
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rajiv Jalan
- Liver Failure Group ILDH, Division of Medicine, UCL Medical School, Royal Free Campus, London, UK.,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Gerald Kircheis
- Department of Gastroenterology, Diabetology and Hepatology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, Brandenburg an der Havel, Germany
| | - Manuela Merli
- Department of Translational and Precision Medicine, Universita' degli Studi di Roma - Sapienza, Roma, Italy
| | | | - Manuel Romero-Gomez
- UCM Digestive Diseases, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon D Taylor-Robinson
- Department of Surgery and Cancer, St. Mary's Hospital Campus, Imperial College London, London, UK
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
Li J, Chen C, Li C, Hu Z, Tan J, Zeng L. Genome-Wide Knockout Screen Identifies EGLN3 Involving in Ammonia Neurotoxicity. Front Cell Dev Biol 2022; 10:820692. [PMID: 35425766 PMCID: PMC9001847 DOI: 10.3389/fcell.2022.820692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatic encephalopathy (HE) is a brain dysfunction associated with poor quality of life, increased morbidity and mortality. The pathogenesis of HE is still not fully clarified and effective therapeutic strategies are imperative. Among multiple factors that contribute to the pathophysiological process of HE, ammonia neurotoxicity is thought to be central in the pathogenesis of HE. Therefore, in this study, we subjected SH-SY5Y cells to ammonia insult and performed a pooled genome-wide CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) knockout screen to unveil the underlying molecular mechanisms of ammonia neurotoxicity and discover new potential therapeutic targets for HE. We found that EGLN3 (egl-9 family hypoxia-inducible factor 3) UCP3,GTPBP5, OR4D11 and SDR9C7 with 6 unique sgRNAs may contribute to protection against ammonia injury, while EGLN3 may be most related to ammonia resistance. We knocked down EGLN3 by transfecting neurons with specific shRNA lentivirus and confirmed that EGLN3 knockdown decreased ammonia-induced caspase-3 activation and apoptosis. We also demonstrated that EGLN3 knockdown ameliorated ammonia induced decreased expression of Bcl-2, increased expression of Bax and inhibited release of cytochrome c into the cytosol in neurons, suggesting that EGLN3 inhibition protected against ammonia induced apoptosis through mitochondrial dependent apoptosis pathway. Future therapeutic strategies regulating EGLN3 may be applied to the management of HE.
Collapse
Affiliation(s)
- Jiequn Li
- Department of Liver Transplant, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenchen Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Liuwang Zeng,
| |
Collapse
|
20
|
Zhang Q, Cao S, Qiu F, Kang N. Incomplete autophagy: Trouble is a friend. Med Res Rev 2022; 42:1545-1587. [PMID: 35275411 DOI: 10.1002/med.21884] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
Incomplete autophagy is an impaired self-eating process of intracellular macromolecules and organelles in which accumulated autophagosomes do not fuse with lysosomes for degradation, resulting in the blockage of autophagic flux. In this review, we summarized the literature over the past decade describing incomplete autophagy, and found that different from the double-edged sword effect of general autophagy on promoting cell survival or death, incomplete autophagy plays a crucial role in disrupting cellular homeostasis, and promotes only cell death. What matters is that incomplete autophagy is closely relevant to the pathogenesis and progression of various human diseases, which, meanwhile, intimately linking to the pharmacologic and toxicologic effects of several compounds. Here, we comprehensively reviewed the latest progress of incomplete autophagy on molecular mechanisms and signaling pathways. Moreover, implications of incomplete autophagy for pharmacotherapy are also discussed, which has great relevance for our understanding of the distinctive role of incomplete autophagy in cellular physiology and disease. Consequently, targeting incomplete autophagy may contribute to the development of novel generation therapeutic agents for diverse human diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Department of Medicinal Chemistry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
21
|
Fares HM, Lyu X, Xu X, Dong R, Ding M, Mi S, Wang Y, Li X, Yuan S, Sun L. Autophagy in cancer: The cornerstone during glutamine deprivation. Eur J Pharmacol 2022; 916:174723. [PMID: 34973953 DOI: 10.1016/j.ejphar.2021.174723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022]
Abstract
Over the past two decades, researchers have revealed the crucial functions of glutamine in supporting the hyperproliferation state of cancer cells. Glutamine acts on maintaining high energy production, supporting redox status and amino acid homeostasis. Therefore, cancer cells exhibit excessive uptake of the extracellular glutamine, synthesize it in some cases, and recycle intracellular and extracellular proteins to provide an additional source of glutamine to satisfy the increasing glutamine demand. On the other hand, autophagy's role is still debated regarding tumor initiation and progression. However, most cancer cells urgently need autophagy to overcome the existential threats during glutamine restriction stress. Downstream to various stress pathways induced during such a condition, autophagy is considered an indispensable cytoprotective tool to maintain cell integrity and survival. However, the overactivation of the autophagy process is related to lethal consequences. This review summarized glutamine pathways to control autophagy and highlighted autophagy's primary activation pathways, and discussed the roles during glutamine deprivation.
Collapse
Affiliation(s)
- Hamza M Fares
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiaodan Lyu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiaoting Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Renchao Dong
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Muyao Ding
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Shichao Mi
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Yifan Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xue Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
22
|
Schrimpf A, Knappe O, Qvartskhava N, Poschmann G, Stühler K, Bidmon HJ, Luedde T, Häussinger D, Görg B. Hyperammonemia-induced changes in the cerebral transcriptome and proteome. Anal Biochem 2022; 641:114548. [DOI: 10.1016/j.ab.2022.114548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/10/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
|
23
|
Claeys W, Van Hoecke L, Lefere S, Geerts A, Verhelst X, Van Vlierberghe H, Degroote H, Devisscher L, Vandenbroucke RE, Van Steenkiste C. The neurogliovascular unit in hepatic encephalopathy. JHEP Rep 2021; 3:100352. [PMID: 34611619 PMCID: PMC8476774 DOI: 10.1016/j.jhepr.2021.100352] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological complication of hepatic dysfunction and portosystemic shunting. It is highly prevalent in patients with cirrhosis and is associated with poor outcomes. New insights into the role of peripheral origins in HE have led to the development of innovative treatment strategies like faecal microbiota transplantation. However, this broadening of view has not been applied fully to perturbations in the central nervous system. The old paradigm that HE is the clinical manifestation of ammonia-induced astrocyte dysfunction and its secondary neuronal consequences requires updating. In this review, we will use the holistic concept of the neurogliovascular unit to describe central nervous system disturbances in HE, an approach that has proven instrumental in other neurological disorders. We will describe HE as a global dysfunction of the neurogliovascular unit, where blood flow and nutrient supply to the brain, as well as the function of the blood-brain barrier, are impaired. This leads to an accumulation of neurotoxic substances, chief among them ammonia and inflammatory mediators, causing dysfunction of astrocytes and microglia. Finally, glymphatic dysfunction impairs the clearance of these neurotoxins, further aggravating their effect on the brain. Taking a broader view of central nervous system alterations in liver disease could serve as the basis for further research into the specific brain pathophysiology of HE, as well as the development of therapeutic strategies specifically aimed at counteracting the often irreversible central nervous system damage seen in these patients.
Collapse
Key Words
- ABC, ATP-binding cassette
- ACLF, acute-on-chronic liver failure
- AD, acute decompensation
- ALF, acute liver failure
- AOM, azoxymethane
- AQP4, aquaporin 4
- Acute Liver Failure
- Ammonia
- BBB, blood-brain barrier
- BCRP, breast cancer resistance protein
- BDL, bile duct ligation
- Blood-brain barrier
- Brain edema
- CCL, chemokine ligand
- CCR, C-C chemokine receptor
- CE, cerebral oedema
- CLD, chronic liver disease
- CLDN, claudin
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Cirrhosis
- Energy metabolism
- GS, glutamine synthetase
- Glymphatic system
- HE, hepatic encephalopathy
- HO-1, heme oxygenase 1
- IL-, interleukin
- MMP-9, matrix metalloproteinase 9
- MRP, multidrug resistance associated protein
- NGVU
- NGVU, neurogliovascular unit
- NKCC1, Na-K-2Cl cotransporter 1
- Neuroinflammation
- OCLN, occludin
- ONS, oxidative and nitrosative stress
- Oxidative stress
- P-gp, P-glycoprotein
- PCA, portacaval anastomosis
- PSS, portosystemic shunt
- S1PR2, sphingosine-1-phosphate receptor 2
- SUR1, sulfonylurea receptor 1
- Systemic inflammation
- TAA, thioacetamide
- TGFβ, transforming growth factor beta
- TJ, tight junction
- TNF, tumour necrosis factor
- TNFR1, tumour necrosis factor receptor 1
- ZO, zonula occludens
- mPT, mitochondrial pore transition
Collapse
Affiliation(s)
- Wouter Claeys
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent; Ghent University, Ghent, Belgium
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Helena Degroote
- Hepatology Research Unit, Department of Internal Medicine and Paediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent; Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- Barriers in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Van Steenkiste
- Antwerp University, Department of Gastroenterology and Hepatology, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| |
Collapse
|
24
|
Zimmermann M, Reichert AS. Rapid metabolic and bioenergetic adaptations of astrocytes under hyperammonemia - a novel perspective on hepatic encephalopathy. Biol Chem 2021; 402:1103-1113. [PMID: 34331848 DOI: 10.1515/hsz-2021-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022]
Abstract
Hepatic encephalopathy (HE) is a well-studied, neurological syndrome caused by liver dysfunctions. Ammonia, the major toxin during HE pathogenesis, impairs many cellular processes within astrocytes. Yet, the molecular mechanisms causing HE are not fully understood. Here we will recapitulate possible underlying mechanisms with a clear focus on studies revealing a link between altered energy metabolism and HE in cellular models and in vivo. The role of the mitochondrial glutamate dehydrogenase and its role in metabolic rewiring of the TCA cycle will be discussed. We propose an updated model of ammonia-induced toxicity that may also be exploited for therapeutic strategies in the future.
Collapse
Affiliation(s)
- Marcel Zimmermann
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Zhu F, Xiang Y, Zeng L. Progress on mitochondrial silence information regulator family in epilepsy. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:403-408. [PMID: 34402260 PMCID: PMC8710281 DOI: 10.3724/zdxbyxb-2021-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/24/2021] [Indexed: 06/13/2023]
Abstract
SIRT3, SIRT4 and SIRT5 are located in mitochondria and also known as mitochondrial sirtuins. They play important roles in regulating many cellular functions including cell survival, cell cycle or apoptosis, DNA repair and metabolism. Mitochondrial sirtuins are involved in the protection of mitochondrial integrity and energy metabolism under stress regulating the expression of neurotransmitter receptors, neurotrophins, extracellular matrix proteins and various transcription factors, thus involved in epileptogenesis triggered by both genetic or acquired factors. Here we review research progress on the actions of mitochondrial sirtuin in epilepsy; and discuss the challenges and perspectives of mitochondrial sirtuin as a potential therapeutic target for epilepsy.
Collapse
|
26
|
Abdoli N, Sadeghian I, Azarpira N, Ommati MM, Heidari R. Taurine mitigates bile duct obstruction-associated cholemic nephropathy: effect on oxidative stress and mitochondrial parameters. Clin Exp Hepatol 2021; 7:30-40. [PMID: 34027113 PMCID: PMC8122090 DOI: 10.5114/ceh.2021.104675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
AIM OF THE STUDY Cholestasis is a serious complication affecting other organs such as the liver and kidney. Oxidative stress and mitochondrial impairment are proposed as the primary mechanisms for cholestasis-induced organ injury. Taurine (TAU) is the most abundant free amino acid in the human body, which is not incorporated in the structure of proteins. Several pharmacological effects have been attributed to TAU. It has been reported that TAU effectively mitigated oxidative stress and modulated mitochondrial function. The current study aimed to evaluate the impact of TAU on oxidative stress biomarkers and mitochondrial parameters in the kidney of cholestatic animals. MATERIAL AND METHODS Bile duct ligated (BDL) rats were used as an antioxidant model of cholestasis. Animals were treated with TAU (500 and 1000 mg/kg, oral) for seven consecutive days. Animals were anesthetized (thiopental 80 mg/kg, i.p.), and kidney and blood specimens were collected. RESULTS Severe elevation in serum and urine biomarkers of renal injury was evident in the BDL group. Significant lipid peroxidation, reactive oxygen species (ROS) formation, and protein carbonylation were detected in the kidney of BDL animals. Furthermore, depleted glutathione reservoirs and a significant decrease in the antioxidant capacity of renal tissue were detected in cholestatic rats. Renal tubular atrophy and interstitial inflammation were evident in BDL animals. Cholestasis also caused significant mitochondrial dysfunction in the kidney. TAU significantly prevented cholestasis-induced renal injury by inhibiting oxidative stress and mitochondrial impairment. CONCLUSIONS These data indicate TAU as a potential therapeutic agent in the management of cholestasis-induced renal injury.
Collapse
Affiliation(s)
- Narges Abdoli
- Iran Food and Drug Administration, Ministry of Health, Tehran, Iran
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
27
|
Chu YY, Wang X, Dai HL. Update on pharmacotherapy of hepatic encephalopathy. Shijie Huaren Xiaohua Zazhi 2021; 29:58-64. [DOI: 10.11569/wcjd.v29.i2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy (HE) is a central nervous system disease caused by serious liver diseases or various portal vein systemic circulation abnormalities. The pathogenesis and pathophysiology of HE have not been fully elucidated yet, and among others, the most important is still the theory of ammonia intoxication proposed in the 1930s. Therefore, reducing blood ammonia is currently the main therapeutic strategy for HE, along with improving nervous system function. Thanks to the clarification of the mechanism underlying ammonia-induced brain cell injury in recent years, researchers have proposed some novel therapeutic targets and related drugs. This work will make a brief summary regarding the update of HE drugs with regard to ammonia reduction, nervous system improvement, and intervention of ammonia toxicity targets.
Collapse
Affiliation(s)
- Yu-Ying Chu
- School of Nursing, Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Xue Wang
- School of Nursing, Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Hong-Liang Dai
- School of Nursing, Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
28
|
Rose CF, Amodio P, Bajaj JS, Dhiman RK, Montagnese S, Taylor-Robinson SD, Vilstrup H, Jalan R. Hepatic encephalopathy: Novel insights into classification, pathophysiology and therapy. J Hepatol 2020; 73:1526-1547. [PMID: 33097308 DOI: 10.1016/j.jhep.2020.07.013] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy (HE) is a frequent and serious complication of both chronic liver disease and acute liver failure. HE manifests as a wide spectrum of neuropsychiatric abnormalities, from subclinical changes (mild cognitive impairment) to marked disorientation, confusion and coma. The clinical and economic burden of HE is considerable, and it contributes greatly to impaired quality of life, morbidity and mortality. This review will critically discuss the latest classification of HE, as well as the pathogenesis and pathophysiological pathways underlying the neurological decline in patients with end-stage liver disease. In addition, management strategies, diagnostic approaches, currently available therapeutic options and novel treatment strategies are discussed.
Collapse
Affiliation(s)
- Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada.
| | - Piero Amodio
- Department of Medicine, University of Padova, Padova, Italy
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia, USA
| | - Radha Krishan Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Simon D Taylor-Robinson
- Department of Surgery and Cancer, St. Mary's Hospital Campus, Imperial College London, London, United Kingdom
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain.
| |
Collapse
|
29
|
Drews L, Zimmermann M, Westhoff P, Brilhaus D, Poss RE, Bergmann L, Wiek C, Brenneisen P, Piekorz RP, Mettler-Altmann T, Weber APM, Reichert AS. Ammonia inhibits energy metabolism in astrocytes in a rapid and glutamate dehydrogenase 2-dependent manner. Dis Model Mech 2020; 13:dmm047134. [PMID: 32917661 PMCID: PMC7657470 DOI: 10.1242/dmm.047134] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/02/2020] [Indexed: 01/02/2023] Open
Abstract
Astrocyte dysfunction is a primary factor in hepatic encephalopathy (HE) impairing neuronal activity under hyperammonemia. In particular, the early events causing ammonia-induced toxicity to astrocytes are not well understood. Using established cellular HE models, we show that mitochondria rapidly undergo fragmentation in a reversible manner upon hyperammonemia. Further, in our analyses, within a timescale of minutes, mitochondrial respiration and glycolysis were hampered, which occurred in a pH-independent manner. Using metabolomics, an accumulation of glucose and numerous amino acids, including branched chain amino acids, was observed. Metabolomic tracking of 15N-labeled ammonia showed rapid incorporation of 15N into glutamate and glutamate-derived amino acids. Downregulating human GLUD2 [encoding mitochondrial glutamate dehydrogenase 2 (GDH2)], inhibiting GDH2 activity by SIRT4 overexpression, and supplementing cells with glutamate or glutamine alleviated ammonia-induced inhibition of mitochondrial respiration. Metabolomic tracking of 13C-glutamine showed that hyperammonemia can inhibit anaplerosis of tricarboxylic acid (TCA) cycle intermediates. Contrary to its classical anaplerotic role, we show that, under hyperammonemia, GDH2 catalyzes the removal of ammonia by reductive amination of α-ketoglutarate, which efficiently and rapidly inhibits the TCA cycle. Overall, we propose a critical GDH2-dependent mechanism in HE models that helps to remove ammonia, but also impairs energy metabolism in mitochondria rapidly.
Collapse
Affiliation(s)
- Leonie Drews
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marcel Zimmermann
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dominik Brilhaus
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rebecca E Poss
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Laura Bergmann
- Institute for Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery (ENT), Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Peter Brenneisen
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Roland P Piekorz
- Institute for Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Mohammadi H, Sayad A, Mohammadi M, Niknahad H, Heidari R. N-acetyl cysteine treatment preserves mitochondrial indices of functionality in the brain of hyperammonemic mice. Clin Exp Hepatol 2020; 6:106-115. [PMID: 32728627 PMCID: PMC7380475 DOI: 10.5114/ceh.2020.95814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
AIM OF THE STUDY Acute or chronic live failure could result in hyperammonemia and hepatic encephalopathy (HE). HE is a clinical complication characterized by severe cognitive dysfunction and coma. The ammonium ion (NH4 +) is the most suspected toxic molecule involved in the pathogenesis of HE. NH4 + is a neurotoxic agent. Different mechanisms, including oxidative/nitrosative stress, inflammatory response, excitotoxicity, and mitochondrial impairment, are proposed for NH4 +-induced neurotoxicity. N-acetyl cysteine (NAC) is a well-known thiol-reductant and antioxidant agent. Several investigations also mentioned the positive effects of NAC on mitochondrial function. In the current study, the effect of NAC treatment on brain mitochondrial indices and energy status was investigated in an animal model of HE. MATERIAL AND METHODS Acetaminophen (APAP)-induced acute liver failure was induced by a single dose of the drug (800 mg/kg, i.p.) to C57BL/6J mice. Plasma and brain levels of NH4 + were measured. Then, brain mitochondria were isolated, and several indices, including mitochondrial depolarization, ATP level, lipid peroxidation, glutathione content, mitochondrial permeabilization, and dehydrogenase activity, were assessed. RESULTS A significant increase in plasma and brain NH4 + was evident in APAP-treated animals. Moreover, mitochondrial indices of functionality were impaired, and mitochondrial oxidative stress biomarkers were significantly increased in APAP-treated mice. It was found that NAC treatment (100, 200, and 400 mg/kg, i.p.) significantly mitigated mitochondrial impairment in the brain of APAP-treated animals. CONCLUSIONS These data suggest the effects of NAC on brain mitochondrial function and energy status as a pivotal mechanism involved in its neuroprotective properties during HE.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Sayad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Mohammadi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|