1
|
Xie Z, Chen Z, Chai Y, Yao W, Ma G. Unveiling the placental bacterial microbiota: implications for maternal and infant health. Front Physiol 2025; 16:1544216. [PMID: 40161970 PMCID: PMC11949977 DOI: 10.3389/fphys.2025.1544216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
The human placenta is a unique organ that forms under specific physiological conditions and plays a crucial role in nutrient and metabolite exchange between the mother and fetus. Research on the placenta is important for understanding maternal-fetal diseases. Traditionally, the placenta was considered "sterile," but advancements in detection techniques have revealed the presence of a low level of microorganisms. This discovery challenges the traditional notion that the uterine placenta is sterile. The revelation of this truth marks a significant breakthrough in medical research, prompting more researchers to focus on this vital organ, the placenta. Placental microbial communities may originate from the oral, vaginal, and intestinal microbiota of expectant mothers. These microorganisms may reach the maternal-fetal interface, collectively shaping the placental microbiota and contributing to the composition of normal placental microbial communities. Abnormal placental microbial communities may be associated with some pregnancy complications and fetal developmental issues such as preterm birth, gestational hypertension, fetal growth restriction, and gestational diabetes mellitus. Intervention strategies targeting microbial communities, which include modulation of placental microbiota composition or function, such as probiotics, may help prevent or treat complications related to abnormal placental microbiota during pregnancy.
Collapse
Affiliation(s)
- Zhuojun Xie
- General Medicine Department, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Chai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wang Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Ma G, Chen Z, Li Z, Xiao X. Unveiling the neonatal gut microbiota: exploring the influence of delivery mode on early microbial colonization and intervention strategies. Arch Gynecol Obstet 2024; 310:2853-2861. [PMID: 39589476 DOI: 10.1007/s00404-024-07843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Recent research has emphasized the critical importance of establishing the neonatal gut microbiota for overall health and immune system development, prompting deeper studies about the early formation of neonatal gut microbiota and its influencing factors. Various factors, including maternal and environmental factors, affect the early formation of neonatal gut microbiota, in which delivery mode has been considered as one of the most crucial influencing factors. In recent years, the increasing trend of cesarean section during childbirth has become a serious challenge for global public health. This review thoroughly analyzes the effects of vaginal delivery and cesarean section on the establishment of neonatal gut microbiota and the potential long-term impacts. In addition, we analyze and discuss interventions such as probiotics, prebiotics, vaginal seeding, fecal microbiota transplantation, and breastfeeding to address the colonization defects of the neonatal gut microbiota caused by cesarean section, aiming to provide theoretical basis for the prevention and treatment of colonization defects and related diseases in infants caused by cesarean section in clinical practice and to provide a theoretical foundation for optimizing the development of neonatal gut microbiota.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Pilliol V, Mahmoud Abdelwadoud B, Aïcha H, Lucille T, Gérard A, Hervé T, Michel D, Ghiles G, Elodie T. Methanobrevibacter oralis: a comprehensive review. J Oral Microbiol 2024; 16:2415734. [PMID: 39502191 PMCID: PMC11536694 DOI: 10.1080/20002297.2024.2415734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Methanobrevibacter oralis (M. oralis) has predominated human oral microbiota methanogenic archaea as far back as the Palaeolithic era in Neanderthal populations and gained dominance from the 18th century onwards. M. oralis was initially isolated from dental plaque samples collected from two apparently healthy individuals allowing its first characterization. The culture of M. oralis is fastidious and has been the subject of several studies to improve its laboratory growth. Various PCR methods are used to identify M. oralis, targeting either the 16S rRNA gene or the mcrA gene. However, only one RTQ-PCR system, based on a chaperonin gene, offers specificity, and allows for microbial load quantification. Next-generation sequencing contributed five draft genomes, each approximately 2.08 Mb (±0.052 Mb) with a 27.82 (±0.104) average GC%, and two ancient metagenomic assembled genomes. M. oralis was then detected in various oral cavity sites in healthy individuals and those diagnosed with oral pathologies, notably periodontal diseases, and endodontic infections. Transmission pathways, possibly involving maternal milk and breastfeeding, remain to be clarified. M. oralis was further detected in brain abscesses and respiratory tract samples, bringing its clinical significance into question. This review summarizes the current knowledge about M. oralis, emphasizing its prevalence, associations with dysbiosis and pathologies in oral and extra-oral situations, and symbiotic relationships, with the aim of paving the way for further investigations.
Collapse
Affiliation(s)
- Virginie Pilliol
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Boualam Mahmoud Abdelwadoud
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Hamiech Aïcha
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Tellissi Lucille
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Aboudharam Gérard
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Tassery Hervé
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Drancourt Michel
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| | - Grine Ghiles
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Terrer Elodie
- Aix-Marseille Université, Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
- Aix Marseille Université, Assistance Publique des Hôpitaux de Marseille (Ecole de Médecine Dentaire), Microbes Evolution, Phylogénie et Infection (MEPHI), Marseille, France
| |
Collapse
|
4
|
Miller C, Luu K, Mikami B, Riel J, Qin Y, Khadka V, Lee MJ. Temporal Investigation of the Maternal Origins of Fetal Gut Microbiota. Microorganisms 2024; 12:1865. [PMID: 39338539 PMCID: PMC11434507 DOI: 10.3390/microorganisms12091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
In utero colonization or deposition of beneficial microorganisms and their by-products likely occurs through various mechanisms, such as hematogenous spread or ascension from the reproductive tract. With high-throughput sequencing techniques, the identification of microbial components in first-pass neonatal meconium has been achieved. While these components are low-biomass and often not abundant enough to culture, the presence of microbial DNA signatures may promote fetal immune tolerance or epigenetic regulation prior to birth. The aim of this study was to investigate the maternal source of the neonatal first-pass meconium microbiome. Maternal vaginal and anal samples collected from twenty-one maternal-infant dyad pairs were compared via principal component analysis to first-pass neonatal meconium microbial compositions. Results demonstrated the greatest degree of similarity between the maternal gut microbiome in the second and third trimesters and vaginal microbiome samples across pregnancy, suggesting that the maternal gut microbiota may translocate to the fetal gut during pregnancy. This study sheds light on the origin and timing of the potential transfer of maternal microbial species to offspring in utero.
Collapse
Affiliation(s)
- Corrie Miller
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| | - Kayti Luu
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| | - Brandi Mikami
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| | - Jonathan Riel
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| | - Yujia Qin
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (Y.Q.); (V.K.)
| | - Vedbar Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (Y.Q.); (V.K.)
| | - Men-Jean Lee
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal Fetal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (C.M.); (K.L.); (B.M.); (J.R.)
| |
Collapse
|
5
|
Bertero A, Banchi P, Del Carro A, Corrò M, Colitti B, Van Soom A, Bertolotti L, Rota A. Meconium microbiota in naturally delivered canine puppies. BMC Vet Res 2024; 20:363. [PMID: 39135043 PMCID: PMC11318152 DOI: 10.1186/s12917-024-04225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Microbial colonization during early life has a pivotal impact on the host health, shaping immune and metabolic functions, but little is known about timing and features of this process in dogs. The objectives of this study were to characterize the first step of intestinal microbiota development in naturally delivered canine puppies and to investigate its relationship with the maternal bacterial flora, using traditional culture and molecular analyses. Sixty puppies of two breeds, Appenzeller Cattle Dog (n = 3 dams) and Lagotto Romagnolo (n = 6), housed in the same breeding kennel, were included in the study. Swabs were collected in duplicate (for culture and for molecular analysis) from the dams' vagina and rectum at the end of parturition, from puppies' rectum, before maternal care, and from the environment (floor of the nursery and parturition box). RESULTS 93.3% meconium samples showed bacterial growth, limited to a few colonies in 57.0% of cases. High growth was detected for Enterococcus faecalis, which was the most frequently isolated bacterium. The genus Enterococcus was one of the most represented in the dams' rectum and vagina (88.9% and 55.6%, respectively). The genera Staphylococcus, Enterococcus, Escherichia and Proteus were also often isolated in meconium but were usually present in maternal samples as well, together with ubiquitous bacteria (Acinetobacter, Psychrobacter). In the environmental samples, just a few bacterial species were found, all with low microbial load. Additionally, bacteria of the phyla Proteobacteria, Firmicutes, and Actinobacteria were identified in meconium through molecular analysis, confirming the culture results and the early colonization of the newborn gut. Maternal, meconium and environmental samples had similar alpha diversity, while beta-diversity showed differences among families (i.e. a dam and her litter), and association indexes revealed a significant correlation between family members and between sample origin, suggesting a strong contribution of the maternal flora to the initial seeding of the canine neonatal gut and a strong individual dam imprint. CONCLUSION This study showed that the meconium of vaginally delivered puppies has its own microbiota immediately after birth, and that it is shaped by the dam, which gives a specific imprint to her litter.
Collapse
Affiliation(s)
- Alessia Bertero
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy.
| | - Penelope Banchi
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Angela Del Carro
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Michela Corrò
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro (Padua), Italy
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Luigi Bertolotti
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| | - Ada Rota
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco (TO), Italy
| |
Collapse
|
6
|
Eldridge LK, Soffa DR, Hickman-Brown KJ, McAnally BE, Smith MS, Wiegert JG, Poole RK. Maternal versus environmental contributions to the piglet pioneer microbiome. REPRODUCTION AND FERTILITY 2024; 5:RAF-24-0009. [PMID: 38847820 PMCID: PMC11301562 DOI: 10.1530/raf-24-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024] Open
Abstract
The pioneer microbiome is the initial colonization and establishment of microorganisms within the neonate. The objective of this project was to quantify maternal and environmental contributions to the piglet's pioneer microbiome. Sterile swabs were used to collect samples from the gilt's rectum, the farrowing crate before and after gilts were moved in, the gilt's birth canal during farrowing, and the piglet's rectum on days 0 (prior to suckling), 3, and 10 post-farrowing and at weaning (21.6 ± 1.0 days post-farrowing). During farrowing, colostrum was collected from each gilt from a representative sample of teats into a single sterile collection cup. Bacterial DNA extraction and sequencing targeted the V4 hypervariable region of the 16S rRNA gene. The relative abundance of Lactobacillus in the piglet microbiome was lower on day 3 compared to day 0, 10, and at weaning (P < 0.05). For alpha diversity, piglet samples exhibited distinct clustering for bacterial richness by day (P < 0.01). Multiple regression analyses indicated that the birth canal explained 51.6% of the variation observed in the piglet day 0 microbiome (P < 0.0001) and 6.5% of the variation in the piglet day 10 microbiome (P = 0.013). The day 10 microbiome explained 58.6% of the variation observed in the piglet microbiome at weaning (P < 0.0001). Bacterial communities of the farrowing crate and colostrum did not impact the piglet microbiome for any day (P > 0.10). Results indicate that the piglet pioneer microbiome is largely influenced by the microbiome of the birth canal.
Collapse
Affiliation(s)
- Landon K Eldridge
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Dallas R Soffa
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | | | - Brooke E McAnally
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Molly S Smith
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Jeffrey G Wiegert
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Rebecca K Poole
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Tian Z, Zhang X, Yao G, Jin J, Zhang T, Sun C, Wang Z, Zhang Q. Intestinal flora and pregnancy complications: Current insights and future prospects. IMETA 2024; 3:e167. [PMID: 38882493 PMCID: PMC11170975 DOI: 10.1002/imt2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 06/18/2024]
Abstract
Numerous studies have demonstrated the pivotal roles of intestinal microbiota in many physiopathological processes through complex interactions with the host. As a unique period in a woman's lifespan, pregnancy is characterized by changes in hormones, immunity, and metabolism. The gut microbiota also changes during this period and plays a crucial role in maintaining a healthy pregnancy. Consequently, anomalies in the composition and function of the gut microbiota, namely, gut microbiota dysbiosis, can predispose individuals to various pregnancy complications, posing substantial risks to both maternal and neonatal health. However, there are still many controversies in this field, such as "sterile womb" versus "in utero colonization." Therefore, a thorough understanding of the roles and mechanisms of gut microbiota in pregnancy and its complications is essential to safeguard the health of both mother and child. This review provides a comprehensive overview of the changes in gut microbiota during pregnancy, its abnormalities in common pregnancy complications, and potential etiological implications. It also explores the potential of gut microbiota in diagnosing and treating pregnancy complications and examines the possibility of gut-derived bacteria residing in the uterus/placenta. Our aim is to expand knowledge in maternal and infant health from the gut microbiota perspective, aiding in developing new preventive and therapeutic strategies for pregnancy complications based on intestinal microecology.
Collapse
Affiliation(s)
- Zhenyu Tian
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Xinjie Zhang
- Department of Biology University College London London UK
| | - Guixiang Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Jiajia Jin
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Tongxue Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Chunhua Sun
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Zhe Wang
- Department of Geriatrics Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
- Cardiovascular Disease Research Center of Shandong First Medical University Central Hospital Affiliated to Shandong First Medical University Jinan China
| |
Collapse
|
8
|
Gajecka M, Gutaj P, Jaskiewicz K, Rydzanicz M, Szczapa T, Kaminska D, Kosewski G, Przyslawski J, Ploski R, Wender-Ozegowska E. Effects of maternal type 1 diabetes and confounding factors on neonatal microbiomes. Diabetologia 2024; 67:312-326. [PMID: 38030736 PMCID: PMC10789840 DOI: 10.1007/s00125-023-06047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
AIMS/HYPOTHESIS Body niche-specific microbiota in maternal-neonatal dyads from gravidae with type 1 diabetes have not been quantitatively and functionally examined. Similarly, the impact of pregnancy-specific factors, such as the presence of comorbidities known to occur more frequently among gravidae with type 1 diabetes, including Caesarean delivery, as well as antibiotic prophylaxis, level of glycaemic control during each trimester of pregnancy and insulin administration, has not been adequately considered. The aims of this study were to characterise the maternal and neonatal microbiomes, assess aspects of microbiota transfer from the maternal microbiomes to the neonatal microbiome and explore the impact of type 1 diabetes and confounding factors on the microbiomes. METHODS In this observational case-control study, we characterised microbiome community composition and function using 16S rRNA amplicon sequencing in a total of 514 vaginal, rectal and ear-skin swabs and stool samples derived from 92 maternal-neonatal dyads (including 50 gravidae with type 1 diabetes) and in-depth clinical metadata from throughout pregnancy and delivery. RESULTS Type 1 diabetes-specific microbiota were identified among gravidae with type 1 diabetes and their neonates. Neonatal microbiome profiles of ear-skin swabs and stool samples were established, indicating the taxa more prevalent among neonates born to mothers with type 1 diabetes compared with neonates born to control mothers. Without taking into account the type 1 diabetes status of mothers, both delivery mode and intrapartum antibiotic prophylaxis were found to have an influence on neonatal microbiota composition (both p=0.001). In the logistic regression analysis involving all confounding variables, neonatal ear-skin microbiome variation was explained by maternal type 1 diabetes status (p=0.020) and small for gestational age birthweight (p=0.050). Moreover, in women with type 1 diabetes, a relationship was found between HbA1c levels >55 mmol/mol (>7.2%) measured in the first trimester of pregnancy and neonatal ear-skin microbiota composition (p=0.008). In the PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) assessment, pathways concerning carbohydrate biosynthesis were predicted as key elements of the microbial functional profiles dysregulated in type 1 diabetes. Additionally, in SourceTracker analysis, we found that, on average, 81.0% of neonatal microbiota was attributed to maternal sources. An increase in the contribution of maternal rectum microbiota and decrease in the contribution of maternal cervix microbiota were found in ear-skin samples of vaginally delivered neonates of mothers with type 1 diabetes compared with neonates born to control mothers (83.2% vs 59.5% and 0.7% vs 5.2%, respectively). CONCLUSIONS/INTERPRETATION These findings indicate that, in addition to maternal type 1 diabetes, glycaemic dysregulation before/in the first trimester of pregnancy, mode of delivery and intrapartum antibiotic prophylaxis may contribute to the inoculation and formation of the neonatal microbiomes. DATA AVAILABILITY The BioProject (PRJNA961636) and associated SRA metadata are available at http://www.ncbi.nlm.nih.gov/bioproject/961636 . Processed data on probiotic supplementation and the PICRUSt analysis are available in the Mendeley Data Repository ( https://doi.org/10.17632/g68rwnnrfk.1 ).
Collapse
Affiliation(s)
- Marzena Gajecka
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| | - Pawel Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Tomasz Szczapa
- Department of Neonatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Dorota Kaminska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Kosewski
- Chair and Department of Bromatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Juliusz Przyslawski
- Chair and Department of Bromatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
9
|
Dong YH, Luo YH, Liu CJ, Huang WY, Feng L, Zou XY, Zhou JY, Li XR. Changes in microbial composition and interaction patterns of female urogenital tract and rectum in response to HPV infection. J Transl Med 2024; 22:125. [PMID: 38303030 PMCID: PMC10832222 DOI: 10.1186/s12967-024-04916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Previous studies have shown that changes in the microbial community of the female urogenital tract are associated with Human papillomavirus (HPV) infection. However, research on this association was mostly focused on a single site, and there are currently few joint studies on HPV infection and multiple sites in the female urogenital tract. METHODS We selected 102 healthy women from Yunnan Province as the research object, collected cervical exfoliation fluid, vaginal, urethral, and rectal swabs for microbial community analysis, and measured bacterial load, and related cytokine content. The link between HPV, microbiota, and inflammation was comprehensively evaluated using bioinformatics methods. FINDINGS The impact of HPV infection on the microbial composition of different parts varies. We have identified several signature bacterial genera that respond to HPV infection in several detection sites, such as Corynebacterium, Lactobacillus, Campylobacter, and Cutibacterium have been detected in multiple sites, reflecting their potential significance in cross body sites HPV infection responses. There was a solid microbial interaction network between the cervix, vagina, and urethra. The interrelationships between inflammatory factors and different bacterial genera might also affect the immune system's response to HPV infection. INTERPRETATION It might be an effective strategy to prevent and treat HPV infection by simultaneously understanding the correlation between the microbial changes in multiple parts of the female urogenital tract and rectum and HPV infection, and controlling the microbial network related to HPV infection in different parts.
Collapse
Affiliation(s)
- Yong-Hong Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yu-Hua Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Wen-Yu Huang
- Changchun Institute of Biological Products Co., Ltd., Changchun, 130012, Jilin, China
| | - Lin Feng
- Guangdong Hybribio Biotech Co., Ltd., Chaozhou, 521000, Guangdong, China
| | - Xing-Yuan Zou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jin-Yan Zhou
- Pediatrics Department, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China.
| | - Xiao-Ran Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
10
|
Turunen J, Tejesvi MV, Paalanne N, Pokka T, Amatya SB, Mishra S, Kaisanlahti A, Reunanen J, Tapiainen T. Investigating prenatal and perinatal factors on meconium microbiota: a systematic review and cohort study. Pediatr Res 2024; 95:135-145. [PMID: 37591927 PMCID: PMC10798900 DOI: 10.1038/s41390-023-02783-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND The first-pass meconium has been suggested as a proxy for the fetal gut microbiota because it is formed in utero. This systematic review and cohort study investigated how pre- and perinatal factors influence the composition of the meconium microbiota. METHODS We performed the systematic review using Covidence by searching PubMed, Scopus, and Web of Science databases with the search terms "meconium microbiome" and "meconium microbiota". In the cohort study, we performed 16 S rRNA gene sequencing on 393 meconium samples and analyzed the sequencing data using QIIME2. RESULTS Our systematic review identified 69 studies exploring prenatal factors, immediate perinatal factors, and microbial composition in relation to subsequent health of infants but gave only limited comparative evidence regarding factors related to the composition of the meconium microbiota. The cohort study pointed to a low-biomass microbiota consisting of the phyla Firmicutes, Proteobacteria and Actinobacteriota and the genera Staphylococcus, Escherichia-Shigella and Lactobacillus, and indicated that immediate perinatal factors affected the composition of the meconium microbiota more than did prenatal factors. CONCLUSIONS This finding supports the idea that the meconium microbiota mostly starts developing during delivery. IMPACT It is unclear when the first-pass meconium microbiota develops, and what are the sources of the colonization. In this systematic review, we found 69 studies exploring prenatal factors, immediate perinatal factors, and microbial composition relative to subsequent health of infants, but there was no consensus on the factors affecting the meconium microbiota development. In this cohort study, immediate perinatal factors markedly affected the meconium microbiota development while prenatal factors had little effect on it. As the meconium microbiota composition was influenced by immediate perinatal factors, the present study supports the idea that the initial gut microbiota develops mainly during delivery.
Collapse
Affiliation(s)
- Jenni Turunen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.
- Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Mysore V Tejesvi
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Niko Paalanne
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Tytti Pokka
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Research Service Unit, Oulu University Hospital, Oulu, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Surbhi Mishra
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Anna Kaisanlahti
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Justus Reunanen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Terhi Tapiainen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
11
|
Basbas C, Garzon A, Schlesener C, van Heule M, Profeta R, Weimer BC, Silva-Del-Rio N, Byrne BA, Karle B, Aly SS, Lima FS, Pereira RV. Unveiling the microbiome during post-partum uterine infection: a deep shotgun sequencing approach to characterize the dairy cow uterine microbiome. Anim Microbiome 2023; 5:59. [PMID: 37986012 PMCID: PMC10662892 DOI: 10.1186/s42523-023-00281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND The goal of this study was to assess the microbial ecology and diversity present in the uterus of post-partum dairy cows with and without metritis from 24 commercial California dairy farms using shotgun metagenomics. A set subset of 95 intrauterine swab samples, taken from a larger selection of 307 individual cow samples previously collected, were examined for α and β diversity and differential abundance associated with metritis. Cows within 21 days post-partum were categorized into one of three clinical groups during sample collection: control (CT, n = 32), defined as cows with either no vaginal discharge or a clear, non-purulent mucus vaginal discharge; metritis (MET, n = 33), defined as a cow with watery, red or brown colored, and fetid vaginal discharge; and purulent discharge cows (PUS, n = 31), defined as a non-fetid purulent or mucopurulent vaginal discharge. RESULTS All three clinical groups (CT, MET, and PUS) were highly diverse, with the top 12 most abundant genera accounting for 10.3%, 8.8%, and 10.1% of mean relative abundance, respectively. The α diversity indices revealed a lower diversity from samples collected from MET and PUS when compared to CT cows. PERMANOVA statistical testing revealed a significant difference (P adjusted < 0.01) in the diversity of genera between CT and MET samples (R2 = 0.112, P = 0.003) and a non-significant difference between MET and PUS samples (R2 = 0.036, P = 0.046). ANCOM-BC analysis revealed that from the top 12 most abundant genera, seven genera were increased in the natural log fold change (LFC) of abundance in MET when compared to CT samples: Bacteroides, Clostridium, Fusobacterium, Phocaeicola, Porphyromonas, Prevotella, and Streptococcus. Two genera, Dietzia and Microbacterium, were decreased in natural LFC of abundance when comparing MET (regardless of treatment) and CT, while no changes in natural LFC of abundance were observed for Escherichia, Histophilus, and Trueperella. CONCLUSIONS The results presented here, are the current deepest shotgun metagenomic analyses conducted on the bovine uterine microbiome to date (mean of 256,425 genus-level reads per sample). Our findings support that uterine samples from cows without metritis (CT) had increased α-diversity but decreased β-diversity when compared to metritis or PUS cows, characteristic of dysbiosis. In summary, our findings highlight that MET cows have an increased abundance of Bacteroides, Porphyromonas, and Fusobacterium when compared to CT and PUS, and support the need for further studies to better understand their potential causal role in metritis pathogenesis.
Collapse
Affiliation(s)
- Carl Basbas
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Adriana Garzon
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Cory Schlesener
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
- 100K Pathogen Genome Project, University of California, Davis, CA, USA
| | - Machteld van Heule
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Rodrigo Profeta
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Bart C Weimer
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
- 100K Pathogen Genome Project, University of California, Davis, CA, USA
| | - Noelia Silva-Del-Rio
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Barbara A Byrne
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, USA
| | - Betsy Karle
- Cooperative Extension, Division of Agriculture and Natural Resources, University of California, Orland, CA, USA
| | - Sharif S Aly
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA
| | - Fabio S Lima
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Richard V Pereira
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
12
|
Dias S, Pheiffer C, Adam S. The Maternal Microbiome and Gestational Diabetes Mellitus: Cause and Effect. Microorganisms 2023; 11:2217. [PMID: 37764061 PMCID: PMC10535124 DOI: 10.3390/microorganisms11092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a growing public health concern that affects many pregnancies globally. The condition is associated with adverse maternal and neonatal outcomes including gestational hypertension, preeclampsia, placental abruption, preterm birth, stillbirth, and fetal growth restriction. In the long-term, mothers and children have an increased risk of developing metabolic diseases such as type 2 diabetes and cardiovascular disease. Accumulating evidence suggest that alterations in the maternal microbiome may play a role in the pathogenesis of GDM and adverse pregnancy outcomes. This review describes changes in the maternal microbiome during the physiological adaptations of pregnancy, GDM and adverse maternal and neonatal outcomes. Findings from this review highlight the importance of understanding the link between the maternal microbiome and GDM. Furthermore, new therapeutic approaches to prevent or better manage GDM are discussed. Further research and clinical trials are necessary to fully realize the therapeutic potential of the maternal microbiome and translate these findings into clinical practice.
Collapse
Affiliation(s)
- Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.D.); (C.P.)
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.D.); (C.P.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Diabetes Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
13
|
Beckers KF, Gomes VCL, Crissman KR, Liu CC, Schulz CJ, Childers GW, Sones JL. Metagenetic Analysis of the Pregnant Microbiome in Horses. Animals (Basel) 2023; 13:1999. [PMID: 37370509 DOI: 10.3390/ani13121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Placentitis is the leading cause of infectious abortion in the horse. Additionally, it can result in weak and/or growth restricted offspring. While the etiology of ascending placentitis is well described in mares, less is known regarding the pathogenesis of other types, such as nocardioform placentitis. This study aims to identify the microbial communities in different body sites of the pregnant mare in early gestation to establish a core microbiome that may be perturbed in pathologic pregnancies such as placentitis. We hypothesize that the equine placenta harbors a distinct resident microbiome in early pregnancy when characterized by metagenetics and that there will be a disparity in bacterial communities from the oral, vaginal, and fecal microbiome. Samples were collected from the oral cavity, vagina, anus, and the allantoic portion of the allantochorion ("placenta") from five pregnant mares between 96 and 120 days of gestation. The V4 region of the 16S rRNA gene was amplified for Illumina MiSeq sequencing to examine core bacterial communities present in the different body sites. Microbial community composition of the pregnant ponies by body site was significantly different (Bray-Curtis dissimilarity). The placenta was significantly different from the feces, oral cavity, and vagina. Alpha diversity measuring the Shannon diversity matrix was significant, with the body sites being a compounding variable, meaning there was a difference in richness and evenness in the different microbial communities. Feces had the greatest alpha diversity, while the oral cavity and placenta similarly had the least. In conclusion, metagenetics did reveal distinct community differences in the oral, fecal, vaginal, and placenta cavities of the horse. The equine placenta does show similarities in its microbial communities to the oral cavity. Further research needs to be completed to investigate how bacteria may be translocated to the placenta from these other body sites and how they contribute to the development of placentitis.
Collapse
Affiliation(s)
- Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviane C L Gomes
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kassandra R Crissman
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Christopher J Schulz
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, USA
| | - Gary W Childers
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, USA
| | - Jenny L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
14
|
Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut 2023; 72:772-786. [PMID: 36720630 PMCID: PMC10086306 DOI: 10.1136/gutjnl-2022-328970] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
The microbiome has been proven to be associated with many diseases and has been used as a biomarker and target in disease prevention and intervention. Currently, the vital role of the microbiome in pregnant women and newborns is increasingly emphasised. In this review, we discuss the interplay of the microbiome and the corresponding immune mechanism between mothers and their offspring during the perinatal period. We aim to present a comprehensive picture of microbial transmission and potential immune imprinting before and after delivery. In addition, we discuss the possibility of in utero microbial colonisation during pregnancy, which has been highly debated in recent studies, and highlight the importance of the microbiome in infant development during the first 3 years of life. This holistic view of the role of the microbial interplay between mothers and infants will refine our current understanding of pregnancy complications as well as diseases in early life and will greatly facilitate the microbiome-based prenatal diagnosis and treatment of mother-infant-related diseases.
Collapse
Affiliation(s)
- Liwen Xiao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of System Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
15
|
Panzer JJ, Romero R, Greenberg JM, Winters AD, Galaz J, Gomez-Lopez N, Theis KR. Is there a placental microbiota? A critical review and re-analysis of published placental microbiota datasets. BMC Microbiol 2023; 23:76. [PMID: 36934229 PMCID: PMC10024458 DOI: 10.1186/s12866-023-02764-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/10/2023] [Indexed: 03/20/2023] Open
Abstract
The existence of a placental microbiota is debated. The human placenta has historically been considered sterile and microbial colonization was associated with adverse pregnancy outcomes. Yet, recent DNA sequencing investigations reported a microbiota in typical human term placentas. However, this detected microbiota could represent background DNA or delivery-associated contamination. Using fifteen publicly available 16S rRNA gene datasets, existing data were uniformly re-analyzed with DADA2 to maximize comparability. While Amplicon Sequence Variants (ASVs) identified as Lactobacillus, a typical vaginal bacterium, were highly abundant and prevalent across studies, this prevalence disappeared after applying likely DNA contaminant removal to placentas from term cesarean deliveries. A six-study sub-analysis targeting the 16S rRNA gene V4 hypervariable region demonstrated that bacterial profiles of placental samples and technical controls share principal bacterial ASVs and that placental samples clustered primarily by study origin and mode of delivery. Contemporary DNA-based evidence does not support the existence of a placental microbiota.ImportanceEarly-gestational microbial influences on human development are unclear. By applying DNA sequencing technologies to placental tissue, bacterial DNA signals were observed, leading some to conclude that a live bacterial placental microbiome exists in typical term pregnancy. However, the low-biomass nature of the proposed microbiome and high sensitivity of current DNA sequencing technologies indicate that the signal may alternatively derive from environmental or delivery-associated bacterial DNA contamination. Here we address these alternatives with a re-analysis of 16S rRNA gene sequencing data from 15 publicly available placental datasets. After identical DADA2 pipeline processing of the raw data, subanalyses were performed to control for mode of delivery and environmental DNA contamination. Both environment and mode of delivery profoundly influenced the bacterial DNA signal from term-delivered placentas. Aside from these contamination-associated signals, consistency was lacking across studies. Thus, placentas delivered at term are unlikely to be the original source of observed bacterial DNA signals.
Collapse
Affiliation(s)
- Jonathan J Panzer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA.
- Detroit Medical Center, Detroit, Michigan, USA.
| | - Jonathan M Greenberg
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Andrew D Winters
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
16
|
Nathan AM, Chong KN, Teh CSJ, Hng SY, Eg KP, de Bruyne JA, Muhamad AN, Adam Q, Zaki RA, Razali N. Colonization of the Newborn Respiratory Tract and Its Association with Respiratory Morbidity in the first six months of life: A Prospective Cohort Study. Int J Infect Dis 2022; 122:712-720. [PMID: 35843493 DOI: 10.1016/j.ijid.2022.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We aimed to determine the association between newborn bacterial colonization and infant respiratory morbidity, in the first six months of life. METHODS This prospective study included healthy newborn infants. Nasopharyngeal swabs performed within 72hrs of delivery were analyzed via polymerase chain reaction. We assessed cumulative respiratory morbidity of infants at 6-months-old. RESULTS Four hundred and twenty-six mother-infant pairs were recruited. In 53.3% (n=225) of newborns, S. pneumoniae (46%) and S. aureus (7.3%) was isolated. None had H. influenzae nor M. catarrhalis. At 6-months-old, 50.7% had experienced respiratory symptoms, 25% had unscheduled doctor visits, and 10% were treated with nebulizers. Colonization with S.pneumoniae was associated with reduced risk of any respiratory symptom (aOR 0.39[95% CI 0.16,0.50]), unscheduled doctor visits (aOR 0.35 [95% CI 0.18,0.67]) and nebulizer treatment (aOR 0.23 [95% CI 0.07,0.72]) at 6 months. Pregnancy-induced hypertension was also associated with increased need for nebulizer treatment (aOR 9.11 [95% CI 1.43,58.1]). CONCLUSION Colonization of the newborn respiratory tract occurred in 53% of infants. Streptococcus pneumoniae was the most common organism, and this was associated with a reduced risk for respiratory morbidity at six months of life.
Collapse
Affiliation(s)
- Anna Marie Nathan
- Department of Paediatrics, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kai Ning Chong
- Department of Paediatrics, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Shih Ying Hng
- Department of Paediatrics, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kah Peng Eg
- Department of Paediatrics, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jessie Anne de Bruyne
- Department of Paediatrics, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anis Najwa Muhamad
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Quraisiah Adam
- Department of Paediatrics, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rafdzah Ahmad Zaki
- Center for Epidemiology and Evidence-Based Practice, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nuguelis Razali
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Liu CJ, Xiao WY, Fang JF, Dong YH, Ye KF, He MP, Wang YS, Li X, Zhao ZM, Yuan T, Zhao T, He CY, Zhang SM, Yang E, Wu XM, Li XR. Genital Microbiota of Women From Six Ethnic Groups With and Without Human Papillomavirus Infection in Shangri-La, China. Front Cell Infect Microbiol 2022; 12:935068. [PMID: 35873154 PMCID: PMC9304955 DOI: 10.3389/fcimb.2022.935068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Background A diversity of microorganisms is associated with human health and exists in a state of dynamic equilibrium. This diversity has direct implications for the assessment of susceptibility to infectious diseases, especially human papillomavirus (HPV) infection. Methods Here, we investigated the relationships between HPV infection and vaginal, cervical, and gut microbiota composition and assessed the levels of genital immune mediators. We selected a multiethnic area in Yunnan Province, China, to collect samples from healthy women of childbearing age. A total of 82 healthy women of childbearing age were included in this study. Vaginal, cervical, and rectal swabs were collected to analyze the microbial community, and cytokines were analyzed in some samples. Findings Different proportions and types of HPV infection were detected in cervical (44%), vaginal (18%), and rectal (18%) swabs. HPV detected in cervical swabs was generally a high-risk type, while low-risk HPV types were primarily detected in vaginal and rectal swabs. There were some differences in this proportion as well as in the microbial community composition among different ethnic groups. Rectal samples exhibited the highest diversity index, while vaginal samples displayed the lowest diversity index. Lactobacillus dominated most of the vaginal samples, was decreased in HPV-positive samples, and differed among different ethnic groups. However, the sequence proportion of Lactobacillus in the cervix exhibited the opposite trend in those affected by HPV infection. The dynamic balance between the potential pathogens Gardnerella and Lactobacillus determines the health of the female genital system. Interpretation This study constitutes the first step toward personalized medicine for women’s reproductive health, wherein differences between the genital microbiomes of individuals would be considered in risk assessment and for subsequent disease diagnosis and treatment.
Collapse
Affiliation(s)
- Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wen-Yu Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jun-Feng Fang
- Gynaecology Department, The First People’s Hospital of Yunnan Province, Kunming, China
- Gynaecology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yong-Hong Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ke-Fan Ye
- Gynaecology Department, The First People’s Hospital of Yunnan Province, Kunming, China
- Gynaecology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Meng-Ping He
- Obstetrics and Gynecology Department, Diqing Tibetan Autonomous Prefectural People’s Hospital, DiQing, China
| | - Yan-Song Wang
- Obstetrics and Gynecology Department, Diqing Tibetan Autonomous Prefectural People’s Hospital, DiQing, China
| | - Xiao Li
- Gynaecology Department, The First People’s Hospital of Yunnan Province, Kunming, China
- Gynaecology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zhi-Min Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tao Yuan
- Gynaecology Department, The First People’s Hospital of Yunnan Province, Kunming, China
- Gynaecology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ting Zhao
- Gynaecology Department, The First People’s Hospital of Yunnan Province, Kunming, China
- Gynaecology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Chun-Yan He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Shu-Ming Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - En Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiao-Mei Wu
- Gynaecology Department, The First People’s Hospital of Yunnan Province, Kunming, China
- Gynaecology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Xiao-Ran Li, ; Xiao-Mei Wu,
| | - Xiao-Ran Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Xiao-Ran Li, ; Xiao-Mei Wu,
| |
Collapse
|
18
|
Hanachi M, Maghrebi O, Bichiou H, Trabelsi F, Bouyahia NM, Zhioua F, Belghith M, Harigua-Souiai E, Baouendi M, Guizani-Tabbane L, Benkahla A, Souiai O. Longitudinal and Comparative Analysis of Gut Microbiota of Tunisian Newborns According to Delivery Mode. Front Microbiol 2022; 13:780568. [PMID: 35547149 PMCID: PMC9083410 DOI: 10.3389/fmicb.2022.780568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/15/2022] [Indexed: 12/01/2022] Open
Abstract
Microbiota colonization is a dynamic process that impacts the health status during an individual's lifetime. The composition of the gut microbiota of newborns is conditioned by multiple factors, including the delivery mode (DM). Nonetheless, the DM's influence remains uncertain and is still the subject of debate. In this context, the medical indication and the emergency of a cesarean delivery might have led to confounding conclusions regarding the composition and diversity of the neonatal microbiome. Herein, we used high-resolution shotgun sequencing to decipher the composition and dynamics of the gut microbiota composition of Tunisian newborns. Stool samples were collected from 5 elective cesarean section (ECS) and 5 vaginally delivered (VD) newborns at the following time points: Day 0, Day 15, and Day 30. The ECS and VD newborns showed the same level of bacterial richness and diversity. In addition, our data pointed to a shift in microbiota community composition during the first 2 weeks, regardless of the DM. Both ECS and VD showed a profile dominated by Proteobacteria, Actinobacteria, and Firmicutes. However, ECS showed an underrepresentation of Bacteroides and an enrichment of opportunistic pathogenic species of the ESKAPE group, starting from the second week. Besides revealing the intestinal microbiota of Tunisian newborns, this study provides novel insights into the microbiota perturbations caused by ECS.
Collapse
Affiliation(s)
- Mariem Hanachi
- Laboratory of Bioinformatics, bioMathematics and Biostatistics—LR16IPT09, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Faculty of Science of Bizerte, University of Carthage, Tunis, Tunisia
| | - Olfa Maghrebi
- Laboratory of Transmission, Control, and Immunobiology of Infections—LR16 IPT02, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Haifa Bichiou
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules—LR16 IPT06, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Ferdaous Trabelsi
- Service de Gynécologie et Obstétrique, Hôpital Régional de Zaghouan, Zaghouan, Tunisia
| | - Najla Maha Bouyahia
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Aziza Othmana, Tunis, Tunisia
| | - Fethi Zhioua
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Aziza Othmana, Tunis, Tunisia
| | - Meriam Belghith
- Laboratory of Transmission, Control, and Immunobiology of Infections—LR16 IPT02, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology—LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Meriem Baouendi
- Laboratory of Bioinformatics, bioMathematics and Biostatistics—LR16IPT09, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules—LR16 IPT06, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Alia Benkahla
- Laboratory of Bioinformatics, bioMathematics and Biostatistics—LR16IPT09, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Oussema Souiai
- Laboratory of Bioinformatics, bioMathematics and Biostatistics—LR16IPT09, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
19
|
Linehan K, Dempsey EM, Ryan CA, Ross RP, Stanton C. First encounters of the microbial kind: perinatal factors direct infant gut microbiome establishment. MICROBIOME RESEARCH REPORTS 2022; 1:10. [PMID: 38045649 PMCID: PMC10688792 DOI: 10.20517/mrr.2021.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2023]
Abstract
The human gut microbiome harbors a diverse range of microbes that play a fundamental role in the health and well-being of their host. The early-life microbiome has a major influence on human development and long-term health. Perinatal factors such as maternal nutrition, antibiotic use, gestational age and mode of delivery influence the initial colonization, development, and function of the neonatal gut microbiome. The perturbed early-life gut microbiome predisposes infants to diseases in early and later life. Understanding how perinatal factors guide and shape the composition of the early-life microbiome is essential to improving infant health. The following review provides a synopsis of perinatal factors with the most decisive influences on initial microbial colonization of the infant gut.
Collapse
Affiliation(s)
- Kevin Linehan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Eugene M. Dempsey
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - C. Anthony Ryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
| |
Collapse
|
20
|
Winters AD, Romero R, Greenberg JM, Galaz J, Shaffer ZD, Garcia-Flores V, Kracht DJ, Gomez-Lopez N, Theis KR. Does the Amniotic Fluid of Mice Contain a Viable Microbiota? Front Immunol 2022; 13:820366. [PMID: 35296083 PMCID: PMC8920496 DOI: 10.3389/fimmu.2022.820366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The existence of an amniotic fluid microbiota (i.e., a viable microbial community) in mammals is controversial. Its existence would require a fundamental reconsideration of fetal in utero exposure to and colonization by microorganisms and the role of intra-amniotic microorganisms in fetal immune development as well as in pregnancy outcomes. In this study, we determined whether the amniotic fluid of mice harbors a microbiota in late gestation. The profiles of the amniotic fluids of pups located proximally or distally to the cervix were characterized through quantitative real-time PCR, 16S rRNA gene sequencing, and culture (N = 21 dams). These profiles were compared to those of technical controls for bacterial and DNA contamination. The load of 16S rRNA genes in the amniotic fluid exceeded that in controls. Additionally, the 16S rRNA gene profiles of the amniotic fluid differed from those of controls, with Corynebacterium tuberculostearicum being differentially more abundant in amniotic fluid profiles; however, this bacterium was not cultured from amniotic fluid. Of the 42 attempted bacterial cultures of amniotic fluids, only one yielded bacterial growth – Lactobacillus murinus. The 16S rRNA gene of this common murine-associated bacterium was not detected in any amniotic fluid sample, suggesting it did not originate from the amniotic fluid. No differences in the 16S rRNA gene load, 16S rRNA gene profile, or bacterial culture were observed between the amniotic fluids located Proximally and distally to the cervix. Collectively, these data indicate that, although there is a modest DNA signal of bacteria in murine amniotic fluid, there is no evidence that this signal represents a viable microbiota. While this means that amniotic fluid is not a source of microorganisms for in utero colonization in mice, it may nevertheless contribute to fetal exposure to microbial components. The developmental consequences of this observation warrant further investigation.
Collapse
Affiliation(s)
- Andrew D. Winters
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Detroit Medical Center, Detroit, MI, United States
| | - Jonathan M. Greenberg
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zachary D. Shaffer
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- MD/PhD Combined Degree Program, Wayne State University School of Medicine, Detroit, MI, United States
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - David J. Kracht
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Kevin R. Theis, ; Nardhy Gomez-Lopez,
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Kevin R. Theis, ; Nardhy Gomez-Lopez,
| |
Collapse
|
21
|
Cheng Y, Selma-Royo M, Cao X, Calatayud M, Qi Q, Zhou J, Zeng L, Garcia-Mantrana I, Collado MC, Han B. Influence of Geographical Location on Maternal-Infant Microbiota: Study in Two Populations From Asia and Europe. Front Cell Infect Microbiol 2022; 11:663513. [PMID: 35186776 PMCID: PMC8855098 DOI: 10.3389/fcimb.2021.663513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Early gut microbial colonization is driven by many factors, including mode of birth, breastfeeding, and other environmental conditions. Characters of maternal-neonatal microbiota were analyzed from two distinct populations in similar latitude but different continents (Oriental Asia and Europe). A total number of 120 healthy families from China (n=60) and Spain (n=60) were included. Maternal and neonatal microbiota profiles were obtained at birth by 16S rRNA gene profiling. Clinical records were collected. Geographical location influenced maternal-neonatal microbiota. Indeed, neonatal and maternal cores composed by nine genera each one were found independently of location. Geographical location was the most important variable that impact the overall structure of maternal and neoantal microbiota. For neonates, delivery mode effect on neonatal microbial community could modulate how the other perinatal factors, as geographical location or maternal BMI, impact the neoantal initial seeding. Furthermore, lower maternal pre-pregnancy BMI was associated with higher abundance of Faecalibacterium in maternal microbiota and members from Lachnospiraceae family in both mothers and infants. At genus-level, Chinese maternal-neonate dyads possessed higher number of phylogenetic shared microbiota than that of Spanish dyads. Bifidobacterium and Escherichia/Shigella were the genera most shared between dyads in the two groups highlighting their importance in neonatal colonization and mother-infant transmission. Our data showed that early gut microbiota establishment and development is affected by interaction of complex variables, where environment would be a critical factor.
Collapse
Affiliation(s)
- Yue Cheng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Xin Cao
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Marta Calatayud
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Qi Qi
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jing Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lingxia Zeng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Izaskun Garcia-Mantrana
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Bei Han
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
22
|
Guzzardi MA, Ederveen THA, Rizzo F, Weisz A, Collado MC, Muratori F, Gross G, Alkema W, Iozzo P. Maternal pre-pregnancy overweight and neonatal gut bacterial colonization are associated with cognitive development and gut microbiota composition in pre-school-age offspring. Brain Behav Immun 2022; 100:311-320. [PMID: 34920092 DOI: 10.1016/j.bbi.2021.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/03/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
Maternal gestational obesity is a risk factor for offspring's neurodevelopment and later neuro-cognitive disorders. Altered gut microbiota composition has been found in patients with neurocognitive disorders, and in relation to maternal metabolic health. We explored the associations between gut microbiota and cognitive development during infancy, and their link with maternal obesity. In groups of children from the Pisa birth Cohort (PISAC), we analysed faecal microbiota composition by 16S rRNA marker gene sequencing of first-pass meconium samples and of faecal samples collected at age 3, 6, 12, 24, 36 months, and its relationship with maternal gestational obesity or diabetes, and with cognitive development, as measured from 6 to 60 months of age by the Griffith's Mental Development Scales. Gut microbiota composition in the first phases of life is dominated by Bifidobacteria (Actinobacteria phylum), with contribution of Escherichia/Shigella and Klebsiella genera (Proteobacteria phylum), whereas Firmicutes become more dominant at 36 months of age. Maternal overweight leads to lower abundance of Bifidobacterium, Blautia and Ruminococcus, and lower practical reasoning scores in the offspring at the age of 36 months. In the whole population, microbiota in the first-pass meconium samples shows much higher alpha diversity compared to later samples, and its composition, particularly Bifidobacterium and Veillonella abundances, correlates with practical reasoning scores at 60 months of age. Maternal overweight correlates with bacterial colonization and with the development of reasoning skills at pre-school age. Associations between neonatal gut colonization and later cognitive function provide new perspectives of primary (antenatal) prevention of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.
| | - Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands.
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy; Genome Research Center for Health (CRGS), Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy; Genome Research Center for Health (CRGS), Baronissi, SA, Italy.
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain.
| | | | - Gabriele Gross
- Medical and Scientific Affairs, Nutrition, RB Mead Johnson Nutrition Institute, Nijmegen, the Netherlands.
| | - Wynand Alkema
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands.
| | - Patricia Iozzo
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.
| |
Collapse
|
23
|
Abstract
Meconium constitutes infants' first bowel movements postnatally. The consistency and microbial load of meconium are different from infant and adult stool. While recent evidence suggests that meconium is sterile in utero, rapid colonization occurs after birth. The meconium microbiome has been associated with negative health outcomes, but its composition is not well described, especially in preterm infants. Here, we characterized the meconium microbiomes from 330 very preterm infants (gestational ages 28 to 32 weeks) from 15 hospitals in Germany and in fecal samples from a subset of their mothers (N = 217). Microbiome profiles were compiled using 16S rRNA gene sequencing with negative and positive controls. The meconium microbiome was dominated by Bifidobacterium, Staphylococcus, and Enterococcus spp. and was associated with gestational age at birth and age at sample collection. Bifidobacterial abundance was negatively correlated with potentially pathogenic genera. The amount of bacterial DNA in meconium samples varied greatly across samples and was associated with the time since birth but not with gestational age or hospital site. In samples with low bacterial load, human mitochondrial sequences were highly amplified using commonly used, bacterial-targeted 16S rRNA primers. Only half of the meconium samples contained sufficient bacterial material to study the microbiome using a standard approach. To facilitate future meconium studies, we present a five-level scoring system (“MecBac”) that predicts the success of 16S rRNA bacterial sequencing for meconium samples. These findings provide a foundational characterization of an understudied portion of the human microbiome and will aid the design of future meconium microbiome studies. IMPORTANCE Meconium is present in the intestines of infants before and after birth and constitutes their first bowel movements postnatally. The consistency, composition and microbial load of meconium is largely different from infant and adult stool. While recent evidence suggests that meconium is sterile in utero, rapid colonization occurs after birth. The meconium microbiome has been associated with short-term and long-term negative health outcomes, but its composition is not yet well described, especially in preterm infants. We provide a characterization of the microbiome structure and composition of infant meconium and maternal feces from a large study cohort and propose a method to evaluate meconium samples for bacterial sequencing suitability. These findings provide a foundational characterization of an understudied portion of the human microbiome and will aid the design of future meconium microbiome studies.
Collapse
|
24
|
Bolte EE, Moorshead D, Aagaard KM. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med 2022; 14:4. [PMID: 35016706 PMCID: PMC8751292 DOI: 10.1186/s13073-021-01005-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
At the dawn of the twentieth century, the medical care of mothers and children was largely relegated to family members and informally trained birth attendants. As the industrial era progressed, early and key public health observations among women and children linked the persistence of adverse health outcomes to poverty and poor nutrition. In the time hence, numerous studies connecting genetics ("nature") to public health and epidemiologic data on the role of the environment ("nurture") have yielded insights into the importance of early life exposures in relation to the occurrence of common diseases, such as diabetes, allergic and atopic disease, cardiovascular disease, and obesity. As a result of these parallel efforts in science, medicine, and public health, the developing brain, immune system, and metabolic physiology are now recognized as being particularly vulnerable to poor nutrition and stressful environments from the start of pregnancy to 3 years of age. In particular, compelling evidence arising from a diverse array of studies across mammalian lineages suggest that modifications to our metagenome and/or microbiome occur following certain environmental exposures during pregnancy and lactation, which in turn render risk of childhood and adult diseases. In this review, we will consider the evidence suggesting that development of the offspring microbiome may be vulnerable to maternal exposures, including an analysis of the data regarding the presence or absence of a low-biomass intrauterine microbiome.
Collapse
Affiliation(s)
- Erin E Bolte
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - David Moorshead
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - Kjersti M Aagaard
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA.
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA.
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
- Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, USA.
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
25
|
Wang S, Zeng S, Egan M, Cherry P, Strain C, Morais E, Boyaval P, Ryan CA, Dempsey E, Ross RP, Stanton C. Metagenomic analysis of mother-infant gut microbiome reveals global distinct and shared microbial signatures. Gut Microbes 2022; 13:1-24. [PMID: 33960282 PMCID: PMC8115609 DOI: 10.1080/19490976.2021.1911571] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence indicates maternal microbiota as one major reservoir for pioneering microbes in infants. However, the global distinct and identical features of mother-infant gut microbiota at various taxonomic resolutions and metabolic functions across cohorts and potential of infant microbial prediction based on their paired mother's gut microbiota remain unclear. Here, we analyzed 376 mother-infant dyads (468 mother and 1024 infant samples) of eight studies from six countries and observed higher diversity at species and strain levels in maternal gut microbiota but not their metabolic functions. A number of 290 species were shared in at least one mother-infant dyad, with 26 species (five at strain level) observed across cohorts. The profile of mother-infant shared species and strains was further influenced by delivery mode and feeding regimen. The mother-sourced species in infants exhibited similar strain heterogeneity but more metabolic functions compared to other-sourced species, suggesting the comparable stability and fitness of shared and non-shared species and the potential role of shared species in the early gut microbial community, respectively. Predictive models showed moderate performance accuracy for shared species and strains occurrences in infants. These generalized mother-infant shared species and strains may be considered as the primary targets for future work toward infant microbiome development and probiotics exploration.
Collapse
Affiliation(s)
- Shaopu Wang
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Shuqin Zeng
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Muireann Egan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul Cherry
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Emilene Morais
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | - C. Anthony Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Eugene Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland,INFANT Centre, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland,CONTACT Catherine Stanton APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
26
|
Socha-Banasiak A, Pawłowska M, Czkwianianc E, Pierzynowska K. From Intrauterine to Extrauterine Life-The Role of Endogenous and Exogenous Factors in the Regulation of the Intestinal Microbiota Community and Gut Maturation in Early Life. Front Nutr 2022; 8:696966. [PMID: 34977104 PMCID: PMC8718557 DOI: 10.3389/fnut.2021.696966] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Differentiation of the digestive tube and formation of the gut unit as a whole, are regulated by environmental factors through epigenetic modifications which enhance cellular plasticity. The critical period of DNA imprinting lasts from conception until approximately the 1,000th day of human life. During pregnancy, besides agents that may directly promote epigenetic programming (e.g., folate, zinc, and choline supplementation), some factors (e.g., antibiotic use, dietary components) can affect the composition of the mother's microbiota, in turn affecting the fetal microbiome which interacts with the offspring's intestinal epithelial cells. According to available literature that confirms intrauterine microbial colonization, the impact of the microbiome and its metabolites on the genome seems to be key in fetal development, including functional gut maturation and the general health status of the offspring, as well as later on in life. Although the origin of the fetal microbiome is still not well-understood, the bacteria may originate from both the vagina, as the baby is born, as well as from the maternal oral cavity/gut, through the bloodstream. Moreover, the composition of the fetal gut microbiota varies depending on gestational age, which in turn possibly affects the regulation of the immune system at the barrier between mother and fetus, leading to differences in the ability of microorganisms to access and survive in the fetal environment. One of the most important local functions of the gut microbiota during the prenatal period is their exposure to foreign antigens which in turn contributes to immune system and tissue development, including fetal intestinal Innate Lymphoid Cells (ILCs). Additional factors that determine further infant microbiome development include whether the infant is born premature or at term, the method of delivery, maternal antibiotic use, and the composition of the mother's milk, among others. However, the latest findings highlight the fact that a more diverse infant gut microbiome at birth facilitates the proliferation of stem cells by microbial metabolites and accelerates infant development. This phenomenon confirms the unique role of microbiome. This review emphasizes the crucial perinatal and postnatal factors that may influence fetal and neonatal microbiota, and in turn gut maturation.
Collapse
Affiliation(s)
- Anna Socha-Banasiak
- Department of Gastroenterology, Allergology and Pediatrics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Malwina Pawłowska
- Department of Gastroenterology, Allergology and Pediatrics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Elżbieta Czkwianianc
- Department of Gastroenterology, Allergology and Pediatrics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Kateryna Pierzynowska
- Department of Biology, Lund University, Lund, Sweden.,Department of Animal Physiology, The Kielanowski Institute of Animal Nutrition and Physiology Polish Academy of Sciences, Jablonna, Poland
| |
Collapse
|
27
|
Zakis DR, Paulissen E, Kornete L, Kaan AMM, Nicu EA, Zaura E. The evidence for placental microbiome and its composition in healthy pregnancies: A systematic review. J Reprod Immunol 2021; 149:103455. [PMID: 34883392 DOI: 10.1016/j.jri.2021.103455] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/11/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To assess the available scientific evidence regarding the placental microbial composition of a healthy pregnancy, the quality of this evidence, and the potential relation between placental and oral microbiome. MATERIALS AND METHODS Data sources: MEDLINE and EMBASE up to August 1, 2019. STUDY ELIGIBILITY CRITERIA Human subjects; healthy women; term deliveries; healthy normal birth weight; assessment of microorganisms (bacteria) in placental tissue; full research papers in English. The quality of the included studies was assessed by a modified Joanna Briggs Institute checklist for analytical cross-sectional studies. RESULTS 57 studies passed the inclusion criteria. Of these, 33 had a high risk of quality bias (e.g., insufficient infection control, lack of negative controls, poor description of the healthy cases). The remaining 24 studies had a low (N = 12) to moderate (N = 12) risk of bias and were selected for in-depth analysis. Of these 24 studies, 22 reported microorganisms in placental tissues, where Lactobacillus (11 studies), Ureaplasma (7), Fusobacterium (7), Staphylococcus (7), Prevotella (6) and Streptococcus (6) were among the most frequently identified genera. Methylobacterium (4), Propionibacterium (3), Pseudomonas (3) and Escherichia (2), among others, although frequently reported in placental samples, were often reported as contaminants in studies that used negative controls. CONCLUSIONS The results support the existence of a low biomass placental microbiota in healthy pregnancies. Some of the microbial taxa found in the placenta might have an oral origin. The high risk of quality bias for the majority of the included studies indicates that the results of individual papers should be interpreted with caution.
Collapse
Affiliation(s)
- Davis R Zakis
- Department of Conservative Dentistry and Oral Health, Faculty of Dentistry, Rīga Stradiņš University, Latvia; Department of Cariology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Eva Paulissen
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Liga Kornete
- Faculty of Medicine, Rīga Stradiņš University, Latvia
| | - A M Marije Kaan
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Elena A Nicu
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Early Neonatal Meconium Does Not Have a Demonstrable Microbiota Determined through Use of Robust Negative Controls with cpn60-Based Microbiome Profiling. Microbiol Spectr 2021; 9:e0006721. [PMID: 34585952 PMCID: PMC8557823 DOI: 10.1128/spectrum.00067-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Detection of bacterial DNA within meconium is often cited as evidence supporting in utero colonization. However, many studies fail to adequately control for contamination. We aimed to define the microbial content of meconium under properly controlled conditions. DNA was extracted from 141 meconium samples and subjected to cpn60-based microbiome profiling, with controls to assess contamination throughout. Total bacterial loads of neonatal meconium, infant stool, and controls were compared by 16S rRNA quantitative PCR (qPCR). Viable bacteria within meconium were cultured, and isolate clonality was assessed by pulsed-field gel electrophoresis (PFGE). Meconium samples did not differ significantly from controls with respect to read numbers or taxonomic composition. Twenty (14%) outliers with markedly higher read numbers were collected significantly later after birth and appeared more like transitional stool than meconium. Total bacterial loads were significantly higher in stool than in meconium, which did not differ from that of sequencing controls, and correlated well with read numbers. Cultured isolates were most frequently identified as Staphylococcus epidermidis, Enterococcus faecalis, or Escherichia coli, with PFGE indicating high intraspecies diversity. Our findings highlight the importance of robust controls in studies of low microbial biomass samples and argue against meaningful bacterial colonization in utero. Given that meconium microbiome profiles could not be distinguished from sequencing controls, and that viable bacteria within meconium appeared uncommon and largely consistent with postnatal skin colonization, there does not appear to be a meconium microbiota. IMPORTANCE Much like the recent placental microbiome controversy, studies of neonatal meconium reporting bacterial communities within the fetal and neonatal gut imply that microbial colonization begins prior to birth. However, recent work has shown that placental microbiomes almost exclusively represent contamination from lab reagents and the environment. Here, we demonstrate that prior studies of neonatal meconium are impacted by the same issue, showing that the microbial content of meconium does not differ from negative controls that have never contained any biological material. Our culture findings similarly supported this notion and largely comprised bacteria normally associated with healthy skin. Overall, our work adds to the growing body of evidence against the in utero colonization hypothesis.
Collapse
|
29
|
Shen W, Qiu W, Liu Y, Liao W, Ma Y, He Y, Wang Z, Zhou H. Postnatal age is strongly correlated with the early development of the gut microbiome in preterm infants. Transl Pediatr 2021; 10:2313-2324. [PMID: 34733672 PMCID: PMC8506066 DOI: 10.21037/tp-21-367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/27/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The gut microbiome plays a potential role in clinical events in preterm infants and may affect their lateral development. Understanding the initial colonization of microbes in the gut, their early dynamic changes, and the major factors correlated with these changes would provide crucial information about the developmental process in early life. METHODS The present study enrolled 151 preterm infants and examined the longitudinal dynamics of their fecal microbiome profiles during the period of hospitalization using 16S ribosomal RNA gene sequencing. Random forest modeling was used to predict postnatal age (Age), postmenstrual age (PMA), and gestational age (GA), using gut microbiome features. RESULTS Principal coordinate analysis revealed that the gut microbiome of the preterm infants displayed an obvious time-dependent change pattern, which showed the strongest association with Age, followed by PMA, and a much weaker association with (GA). Random forest modeling further evidenced the time-dependent change pattern, with the Pearson's correlation coefficients between the actual values and the gut microbiome-predicted values being 0.68, 0.53, and 0.38 for postnatal, postmenstrual, and gestational age, respectively. The microbiome dynamism could be further divided into four Age stages, each with its own characteristic microbial taxa. The first 1-4 days (T1 stage) represented the meconium microbiome, with colonization of a high diversity of microbes before or during delivery. During 5-15 days (T2 stage), the gut microbiome of the preterm infants underwent a rapid turnover, in which microbial diversity declined, and stabilized afterward. Enterobacteriaceae, Enterococcaceae, Streptococcaceae, Staphylococcaceae, and Clostridiaceae were the major classes in the gut microbiome in the lateral stages of development (T3-T4 stage). CONCLUSIONS Postnatal age, rather than the gestational age, is significantly correlated with the gut microbiome of preterm infants, suggesting that clinical interventions contribute more to the early dynamics of gut microbiome in preterm infants than the natural development of the gut.
Collapse
Affiliation(s)
- Wei Shen
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Qiu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Liu
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weihua Liao
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Ma
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Heida FH, Kooi EMW, Wagner J, Nguyen TY, Hulscher JBF, van Zoonen AGJF, Bos AF, Harmsen HJM, de Goffau MC. Weight shapes the intestinal microbiome in preterm infants: results of a prospective observational study. BMC Microbiol 2021; 21:219. [PMID: 34289818 PMCID: PMC8293572 DOI: 10.1186/s12866-021-02279-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/28/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The intestinal microbiome in preterm infants differs markedly from term infants. It is unclear whether the microbiome develops over time according to infant specific factors. METHODS We analysed (clinical) metadata - to identify the main factors influencing the microbiome composition development - and the first meconium and faecal samples til the 4th week via 16 S rRNA amplican sequencing. RESULTS We included 41 infants (gestational age 25-30 weeks; birth weight 430-990 g. Birth via Caesarean section (CS) was associated with placental insufficiency during pregnancy and lower BW. In meconium samples and in samples from weeks 2 and 3 the abundance of Escherichia and Bacteroides (maternal faecal representatives) were associated with vaginal delivery while Staphylococcus (skin microbiome representative) was associated with CS. Secondly, irrespective of the week of sampling or the mode of birth, a transition was observed as children children gradually increased in weight from a microbiome dominated by Staphylococcus (Bacilli) towards a microbiome dominated by Enterobacteriaceae (Gammaproteobacteria). CONCLUSIONS Our data show that the mode of delivery affects the meconium microbiome composition. They also suggest that the weight of the infant at the time of sampling is a better predictor for the stage of progression of the intestinal microbiome development/maturation than postconceptional age as it less confounded by various infant-specific factors.
Collapse
Affiliation(s)
- Fardou H Heida
- Division of Obstetrics & Gynecology, Isala Klinieken, University of Groningen, Zwolle, the Netherlands.
- Division of Pediatric Surgery Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Elisabeth M W Kooi
- Division of Neonatology Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Josef Wagner
- Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, Melbourne, Australia
| | - Thi-Yen Nguyen
- Division of Pediatric Surgery Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan B F Hulscher
- Division of Pediatric Surgery Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anne G J F van Zoonen
- Division of Pediatric Surgery Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arend F Bos
- Division of Neonatology Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hermie J M Harmsen
- Division of Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marcus C de Goffau
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Parasites and Microboes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
31
|
Coelho GDP, Ayres LFA, Barreto DS, Henriques BD, Prado MRMC, Passos CMD. Acquisition of microbiota according to the type of birth: an integrative review. Rev Lat Am Enfermagem 2021; 29:e3446. [PMID: 34287544 PMCID: PMC8294792 DOI: 10.1590/1518.8345.4466.3446] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/29/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE to analyze scientific evidence regarding the relationship between the type of birth and the microbiota acquired by newborns. METHOD this integrative review addresses the role of the type of delivery on newborns' microbial colonization. A search was conducted in the Medical Literature Analysis and Retrieval System Online/PubMed and Virtual Health Library databases using the descriptors provided by Medical Subject Headings (MeSH) and Health Science Descriptors (DeCS). RESULTS infants born vaginally presented a greater concentration of Bacteroides, Bifidobacteria, and Lactobacillus in the first days of life and more significant microbial variability in the following weeks. The microbiome of infants born via C-section is similar to the maternal skin and the hospital setting and less diverse, mainly composed of Staphylococcus, Streptococcus, and Clostridium. CONCLUSION the maternal vaginal microbiota provides newborns with a greater variety of colonizing microorganisms responsible for boosting and preparing the immune system. Vaginal birth is the ideal birth route, and C-sections should only be performed when there are medical indications.
Collapse
Affiliation(s)
| | | | | | - Bruno David Henriques
- Universidade Federal de Viçosa, Departamento de Medicina e Enfermagem, Viçosa, MG, Brasil
| | | | | |
Collapse
|
32
|
Williams N, Vella R, Zhou Y, Gao H, Mass K, Townsel C, Campbell W, Luo G. Investigating the origin of the fetal gut and placenta microbiome in twins. J Matern Fetal Neonatal Med 2021; 35:7025-7035. [PMID: 34130585 DOI: 10.1080/14767058.2021.1936487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE It is widely accepted that the microbiota is critical for human well-being; however, the origin of microbiota in the newborn is not well understood. In this study, we hypothesized that within a maternal-twin dyad (MTD) the meconium microbiome will be similar to the placenta microbiome and the meconium microbiome of within MTD will be similar to one another. METHODS Prospectively, meconium (proxy for fetal gut), placenta and maternal buccal, skin, vaginal, stool samples were collected from a cohort of MTDs at time of delivery hospitalization. We performed gene sequencing using the V4 region of 16S rRNA with rigorous negative controls. Alpha and beta diversity indices were computed to characterize the microbial community of MTD samples. A p value of <.05 was considered significant. RESULTS From 17 MTD, 87/132 samples were successfully sequenced. The alpha diversity of the microbiome collected from all the body sites were different (p ≤ .001). The meconium samples when compared to other samples in the MTD microbial community were different (p = .009) and the Bray-Curtis dissimilarity was greater than 0.95 for all of the comparisons (beta diversity). The MTD within-twin placenta microbiome samples were also different, confirmed by Bray-Curtis pairwise dissimilarity distance, 0.83. CONCLUSION The fetal gut microbiome is different from placenta and maternal buccal, skin, vaginal and stool microbiome. We clearly identified a distinct placenta microbiome. Furthermore, placentas in the same MTD have distinct microbiomes, suggesting that fetal gut and placenta origin is complex and remains unclear.
Collapse
Affiliation(s)
- Nayo Williams
- El Paso Maternal Fetal Medicine, Las Palmas Del Sol Healthcare, El Paso, TX, USA
| | - Raven Vella
- University of Connecticut School of Medicine, UConn Health, Farmington, CT, USA
| | - Yanjiao Zhou
- University of Connecticut School of Medicine, UConn Health, Farmington, CT, USA
| | - Haijun Gao
- Department of Obstetrics and Gynecology, Howard University, Washington, DC, USA
| | - Kendra Mass
- University of Connecticut, Microbial Analysis Research Services, Storrs, CT, USA
| | - Courtney Townsel
- Division of Maternal-Fetal Medicine, University of Michigan, Ann Harbor, MI, USA
| | - Winston Campbell
- University of Connecticut School of Medicine, UConn Health, Farmington, CT, USA
| | - Guoyang Luo
- Department of Obstetrics and Gynecology, Howard University, Washington, DC, USA
| |
Collapse
|
33
|
Agrawal M, Sabino J, Frias-Gomes C, Hillenbrand CM, Soudant C, Axelrad JE, Shah SC, Ribeiro-Mourão F, Lambin T, Peter I, Colombel JF, Narula N, Torres J. Early life exposures and the risk of inflammatory bowel disease: Systematic review and meta-analyses. EClinicalMedicine 2021; 36:100884. [PMID: 34308303 PMCID: PMC8257976 DOI: 10.1016/j.eclinm.2021.100884] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Early life exposures impact immune system development and therefore the risk of immune-mediated diseases, including inflammatory bowel disease (IBD). We systematically reviewed the impact of pre-, peri‑, and postnatal exposures up to the age of five years on subsequent IBD diagnosis. METHODS We identified case-control and cohort studies reporting on the association between early life environmental factors and Crohn's disease (CD), ulcerative colitis (UC), or IBD overall. Databases were search from their inception until May 24th, 2019 until July 14th, 2020. We conducted meta-analyses for quantitative review of relevant risk factors that were comparable across studies and qualitative synthesis of the literature for a wide range of early life exposures, including maternal health and exposures during pregnancy, perinatal factors, birth month and related-factors, breastfeeding, hygiene-related factors and social factors, immigration, antibiotics, offspring health, including infections, and passive smoking. PROSPERO registration: CRD42019134980. FINDINGS Prenatal exposure to antibiotics (OR 1.8; 95% CI 1.2-2.5) and tobacco smoke (OR 1.5; 95% CI 1.2-1.9), and early life otitis media (OR 2.1; 95% CI 1.2-3.6) were associated with IBD. There was a trend towards an association between exposure to antibiotics in infancy and IBD (OR: 1.7, 95% CI 0.97, 2.9), supported by positive data on population-based data. Breastfeeding was protective against IBD. Other early life risk factors had no association with IBD, but data were limited and heterogenous. INTERPRETATION Early life is an important period of susceptibility for IBD development later in life. Tobacco smoke, infections and antibiotics were associated positively, and breastfeeding was associated negatively with IBD. Our findings offer an opportunity to develop primary prevention strategies. FUNDING This study did not receive any funding.
Collapse
Affiliation(s)
- Manasi Agrawal
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - João Sabino
- Gastroenterology Division, University Hospital of Leuven, Leuven, Belgium
| | - Catarina Frias-Gomes
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures 2674-514, Portugal
| | - Christen M. Hillenbrand
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Celine Soudant
- Levy Library, The Mount Sinai Medical Center, New York, NY, United States
- Medical Library, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jordan E. Axelrad
- Division of Gastroenterology, New York University Grossman School of Medicine, New York, NY, United States
| | - Shailja C. Shah
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Section of Gastroenterology, Veterans Affairs Tennessee Valley Healthcare System, Nashville campus, Nashville, TN, United States
| | - Francisco Ribeiro-Mourão
- Pediatrics Department, Unidade Local de Saúde do Alto Minho, Viana do Castelo, Portugal
- Pediatrics Department, Centro Materno Infantil do Norte – Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Thomas Lambin
- Department of Gastroenterology, Claude Huriez Hospital, University of Lille, Lille, France
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jean-Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Neeraj Narula
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive, Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Joana Torres
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures 2674-514, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Portugal
- Corresponding author.
| |
Collapse
|
34
|
Lim S, Rajagopal S, Jeong YR, Nzegwu D, Wright ML. Group B Streptococcus and the vaginal microbiome among pregnant women: a systematic review. PeerJ 2021; 9:e11437. [PMID: 34046261 PMCID: PMC8136278 DOI: 10.7717/peerj.11437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/20/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Vaginal microbiome studies frequently report diversity metrics and communities of microbiomes associated with reproductive health outcomes. Reports of Streptococcus agalactiae (also known as Group B Streptococcus or GBS), the leading cause of neonatal infectious morbidity and mortality, are notably lacking from the studies of the vaginal microbiome, despite being a known contributor to preterm birth and other complications. Therefore, the purpose of this systematic review was to explore the frequency of GBS reporting in vaginal microbiome literature pertaining to pregnancy and to examine methodological bias that contributes to differences in species and genus-level microbiome reporting. Lack of identification of GBS via sequencing-based approaches due to methodologic or reporting bias may result incomplete understanding of bacterial composition during pregnancy and subsequent birth outcomes. METHODOLOGY A systematic review was conducted following the PRISMA guideline. Three databases (PubMed, CINAHL, and Web of Science) were used to identify papers for review based on the search terms "vaginal microbiome", "pregnancy", and "16S rRNA sequencing". Articles were evaluated for methods of DNA extraction and sequencing, 16S region, taxonomy classification database, number of participants or vaginal specimens, and pregnancy trimester. RESULTS Forty-five research articles reported employing a metagenomic approach or 16S approach for vaginal microbiome analysis during pregnancy that explicitly reported taxonomic composition and were included in this review. Less than 30% of articles reported the presence of GBS (N = 13). No significant differences in methodology were identified between articles that reported versus did not report GBS. However, there was large variability across research methods used for vaginal microbiome analysis and species-level bacterial community reporting. CONCLUSION Considerable differences in study design and data formatting methods may contribute to underrepresentation of GBS, and other known pathogens, in existing vaginal microbiome literature. Previous studies have identified considerable variation in methodology across vaginal microbiome studies. This study adds to this body of work because in addition to laboratory or statistical methods, how results and data are shared (e.g., only analyzing genus level data or 20 most abundant microbes), may hinder reproducibility and limit our understanding of the influence of less abundant microbes. Sharing detailed methods, analysis code, and raw data may improve reproducibility and ability to more accurately compare microbial communities across studies.
Collapse
Affiliation(s)
- Sungju Lim
- School of Nursing, The University of Texas at Austin, Austin, TX, United States of America
| | - Shilpa Rajagopal
- College of Natural Sciences, Biology Instructional Office, The University of Texas at Austin, Austin, TX, United States of America
| | - Ye Ryn Jeong
- School of Nursing, The University of Texas at Austin, Austin, TX, United States of America
| | - Dumebi Nzegwu
- College of Liberal Arts, Department of Health and Society, The University of Texas at Austin, Austin, TX, United States of America
| | - Michelle L. Wright
- School of Nursing, The University of Texas at Austin, Austin, TX, United States of America
- Dell Medical School, Department of Women’s Health, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
35
|
Husso A, Lietaer L, Pessa-Morikawa T, Grönthal T, Govaere J, Van Soom A, Iivanainen A, Opsomer G, Niku M. The Composition of the Microbiota in the Full-Term Fetal Gut and Amniotic Fluid: A Bovine Cesarean Section Study. Front Microbiol 2021; 12:626421. [PMID: 33995290 PMCID: PMC8119756 DOI: 10.3389/fmicb.2021.626421] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
The development of a healthy intestinal immune system requires early microbial exposure. However, it remains unclear whether microbial exposure already begins at the prenatal stage. Analysis of such low microbial biomass environments are challenging due to contamination issues. The aims of the current study were to assess the bacterial load and characterize the bacterial composition of the amniotic fluid and meconium of full-term calves, leading to a better knowledge of prenatal bacterial seeding of the fetal intestine. Amniotic fluid and rectal meconium samples were collected during and immediately after elective cesarean section, performed in 25 Belgian Blue cow-calf couples. The samples were analyzed by qPCR, bacterial culture using GAM agar and 16S rRNA gene amplicon sequencing. To minimize the effects of contaminants, we included multiple technical controls and stringently filtered the 16S rRNA gene sequencing data to exclude putative contaminant sequences. The meconium samples contained a significantly higher amount of bacterial DNA than the negative controls and 5 of 24 samples contained culturable bacteria. In the amniotic fluid, the amount of bacterial DNA was not significantly different from the negative controls and all samples were culture negative. Bacterial sequences were identified in both sample types and were primarily of phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, with some individual variation. We conclude that most calves encounter in utero maternal-fetal transmission of bacterial DNA, but the amount of bacterial DNA is low and viable bacteria are rare.
Collapse
Affiliation(s)
- Aleksi Husso
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Leen Lietaer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tiina Pessa-Morikawa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Grönthal
- Central Laboratory, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jan Govaere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Antti Iivanainen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Geert Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mikael Niku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Guo J, Han X, Huang W, You Y, Zhan J. Gut dysbiosis during early life: causes, health outcomes, and amelioration via dietary intervention. Crit Rev Food Sci Nutr 2021; 62:7199-7221. [PMID: 33909528 DOI: 10.1080/10408398.2021.1912706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The colonization and maturation of gut microbiota (GM) is a delicate and precise process, which continues to influence not only infancy and childhood but also adulthood health by affecting immunity. However, many perinatal factors, including gestational age, delivery mode, antibiotic administration, feeding mode, and environmental and maternal factors, can disturb this well-designed process, increasing the morbidity of various gut dysbiosis-related diseases, such as type-1-diabetes, allergies, necrotizing enterocolitis, and obesity. In this review, we discussed the early-life colonization and maturation of the GM, factors influencing this process, and diseases related to the disruption of this process. Moreover, we focused on discussing dietary interventions, including probiotics, oligosaccharides, nutritional supplementation, and exclusive enteral nutrition, in ameliorating early-life dysbiosis and diseases related to it. Furthermore, possible mechanisms, and shortcomings, as well as potential solutions to the drawbacks of dietary interventions, were also discussed.
Collapse
Affiliation(s)
- Jielong Guo
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xue Han
- Peking University School of Basic Medical Science, Peking University Health Science Centre, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Grech A, Collins CE, Holmes A, Lal R, Duncanson K, Taylor R, Gordon A. Maternal exposures and the infant gut microbiome: a systematic review with meta-analysis. Gut Microbes 2021; 13:1-30. [PMID: 33978558 PMCID: PMC8276657 DOI: 10.1080/19490976.2021.1897210] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 02/04/2023] Open
Abstract
Early life, including the establishment of the intestinal microbiome, represents a critical window of growth and development. Postnatal factors affecting the microbiome, including mode of delivery, feeding type, and antibiotic exposure have been widely investigated, but questions remain regarding the influence of exposures in utero on infant gut microbiome assembly. This systematic review aimed to synthesize evidence on exposures before birth, which affect the early intestinal microbiome. Five databases were searched in August 2019 for studies exploring pre-pregnancy or pregnancy 'exposure' data in relation to the infant microbiome. Of 1,441 publications identified, 76 were included. Factors reported influencing microbiome composition and diversity included maternal antibiotic and probiotic uses, dietary intake, pre-pregnancy body mass index (BMI), gestational weight gain (GWG), diabetes, mood, and others. Eleven studies contributed to three meta-analyses quantifying associations between maternal intrapartum antibiotic exposure (IAP), BMI and GWG, and infant microbiome alpha diversity (Shannon Index). IAP, maternal overweight/obesity and excessive GWG were all associated with reduced diversity. Most studies were observational, few included early recruitment or longitudinal follow-up, and the timing, frequency, and methodologies related to stool sampling and analysis were variable. Standardization and collaboration are imperative to enhance understanding in this complex and rapidly evolving area.
Collapse
Affiliation(s)
- Allison Grech
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales(NSW), Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Clare E Collins
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew Holmes
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| | - Ravin Lal
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales(NSW), Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Kerith Duncanson
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Rachael Taylor
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Adrienne Gordon
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales(NSW), Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
38
|
Chen K, Yuan T. The role of microbiota in neonatal hyperbilirubinemia. Am J Transl Res 2020; 12:7459-7474. [PMID: 33312382 PMCID: PMC7724329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Hyperbilirubinemia accounts for about 60% of full-term and 80% of preterm neonates globally, which is characterized by physiologically elevated unconjugated bilirubin in serum, but abnormally high levels of bilirubin have potential neurotoxic effects. Several factors contribute to the development of neonatal hyperbilirubinemia, including isoimmunization, dysregulated gut flora, genetic alteration and environmental factors. Animal studies have pinpointed the causal roles of several bacteria in bilirubin metabolism. Human studies have revealed microbiota composition in hyperbilirubinemia and found that gut microbiota affect newborns with different severity of hyperbilirubinemia. However, dysbiosis and subsequent changes in microbiota-related metabolic processes are not always considered. This review aims to describe the critical microbiota signatures for neonatal hyperbilirubinemia and focus on the underlying pathogenetic mechanism. These scientific bases give a new and accurate therapeutic strategy for the application of gut microbiota.
Collapse
Affiliation(s)
- Kewei Chen
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health Zhejiang, PR China
| | - Tianming Yuan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health Zhejiang, PR China
| |
Collapse
|
39
|
O'Neill IJ, Sanchez Gallardo R, Saldova R, Murphy EF, Cotter PD, McAuliffe FM, van Sinderen D. Maternal and infant factors that shape neonatal gut colonization by bacteria. Expert Rev Gastroenterol Hepatol 2020; 14:651-664. [PMID: 32552141 DOI: 10.1080/17474124.2020.1784725] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Early life is a critical developmental window coinciding with the establishment of a community of neonatal gut microbes which are vitally important for immune development. The composition of this microbial community is affected by multiple factors. AREAS COVERED The effect of pre-pregnancy and pregnancy maternal health, maternal nutrition, pregnancy disorders such as gestational diabetes, maternal antibiotic usage, delivery mode, infant feeding, and infant antibiotic usage on gut microbial composition are outlined along with the potential impact of associated microbiota differences on infant health. EXPERT OPINION Recent developments in understanding what shapes our microbiota indicates that the greatest impact on infant gut microbiota composition during the first year of life is seen with the mode of delivery, infant diet, and infant antibiotic usage. Current data is insufficient to fully establish the role of apparently less important factors such as maternal health on microbiota development although their impact is likely smaller. Technological advances will allow for improved understanding of underlying mechanisms by which specific microbes impact on infant health, which in time will enable full appreciation of the role of the gut microbiota in early life development.
Collapse
Affiliation(s)
- Ian J O'Neill
- APC Microbiome Ireland, National University of Ireland , Cork, Ireland
| | - Rocio Sanchez Gallardo
- APC Microbiome Ireland, National University of Ireland , Cork, Ireland.,School of Microbiology, National University of Ireland , Cork, Ireland
| | - Radka Saldova
- The National Institute for Bioprocessing, Research, and Training (NIBRT) , Dublin, Ireland.,UCD School of Medicine, College of Health and Agricultural Science, University College Dublin , Dublin, Ireland
| | - Eileen F Murphy
- Alimentary Health Group, Cork Airport Business Park , Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, National University of Ireland , Cork, Ireland.,Teagasc Food Research Centre , Cork, Ireland
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital , Dublin, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, National University of Ireland , Cork, Ireland.,School of Microbiology, National University of Ireland , Cork, Ireland
| |
Collapse
|
40
|
Al Alam D, Danopoulos S, Grubbs B, Ali NABM, Mac Aogáin M, Chotirmall SH, Warburton D, Gaggar A, Ambalavanan N, Lal CV. Reply to de Steenhuijsen Piters and Bogaert: Bacterial DNA in Fetal Lung Samples May Be Explained by Sample Contamination. Am J Respir Crit Care Med 2020; 201:1311-1312. [PMID: 32049546 PMCID: PMC7233351 DOI: 10.1164/rccm.202001-0221le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Amit Gaggar
- University of Alabama at BirminghamBirmingham, Alabama
| | | | | |
Collapse
|
41
|
Ye C, Katagiri S, Miyasaka N, Kobayashi H, Khemwong T, Nagasawa T, Izumi Y. The periodontopathic bacteria in placenta, saliva and subgingival plaque of threatened preterm labor and preterm low birth weight cases: a longitudinal study in Japanese pregnant women. Clin Oral Investig 2020; 24:4261-4270. [PMID: 32333174 DOI: 10.1007/s00784-020-03287-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/14/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This study determined the quantity of periodontopathic bacteria in saliva, subgingival plaque, and placenta on the threatened preterm labor (TPL) and preterm low birth weight (PLBW) subjects in order to identify specific periodontal pathogens with high association to adverse pregnancy outcomes. METHODS We used real-time PCR with TaqMan probe and ELISA to detect the amount of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Fusobacterium nucleatum, and Prevotella intermedia in subgingival plaque, saliva, and placenta tissue, in addition to serum IgG titers against these bacteria in 28 patients with TPL and 36 healthy pregnant women. RESULTS Thirteen of 64 births delivered PLBW infants. All 6 periodontopathic bacteria were detected in the placenta samples. The amount of F. nucleatum and detection frequency of T. denticola in placental samples was significantly higher in the TPL group than in the healthy group. Meanwhile, the age, anti-P. gingival IgG in serum, amount of P. gingivalis and T. forsythia in plaque samples, detection frequency of P. intermedia in saliva, and percentage of pocket probing depth ≥ 5 mm were higher in TPL-PLBW births than those in TPL-Healthy delivery (HD) group and/or in H-HD group. Ordinal logistic regression analysis revealed that the presence of F. nucleatum in placental tissues was significantly associated with TPL, while the maternal age was significantly associated with PLBW in TPL. CONCLUSION Our findings suggested all 6 bacteria may access the placenta. The increased presence of F. nucleatum in placenta might be related to TPL, while advanced maternal age might be associated with PLBW in TPL. CLINICAL RELEVANCE Periodontal therapy should be applied to reduce the deep periodontal pocket sites and the colonization of periodontal pathogens in high-risk population.
Collapse
Affiliation(s)
- Changchang Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Naoyuki Miyasaka
- Department of Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | - Hiroaki Kobayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Thatawee Khemwong
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Toshiyuki Nagasawa
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
42
|
Zakošek Pipan M, Kajdič L, Kalin A, Plavec T, Zdovc I. Do newborn puppies have their own microbiota at birth? Influence of type of birth on newborn puppy microbiota. Theriogenology 2020; 152:18-28. [PMID: 32361303 DOI: 10.1016/j.theriogenology.2020.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/11/2020] [Accepted: 04/11/2020] [Indexed: 01/24/2023]
Abstract
With recent research in humans, a hypothesis known as the sterile womb paradigm has been challenged. The objectives of this study were to determine the presence of placental and fetal microbiomes in dogs, the effect of different types of parturition on the fetal microbiome, and the effect that the fetal microbiome has on early puppy development. A total of 96 newborn puppies from 17 dams were included in the study. Puppies were divided into two groups depending on the type of parturition (vaginal birth (VB) or cesarean section (CS)). Immediately after birth, swabs of the placenta and meconium were taken. Swabs of the oral and vaginal mucosa of the dam were taken in the second half of the pregnancy and just before parturition. All samples were analyzed with a classical bacteriological examination, and bacterial colonies were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The weight gain of each puppy was tracked daily in the first 7 days postpartum. Bacteria from several different genera were isolated from 86.5% of meconium samples and 57% of placenta samples. While the meconium microbiota resembled bacteria from the maternal vagina in VB puppies, the meconium microbiota of puppies born by CS indicated a relative resemblance to maternal oral and vaginal microbiota. A statistically significant difference in the relative growth rate between puppies born by VB and CS was found (p < 0.05), with puppies born by VB gaining weight faster compared to the CS group. This difference was even more noticeable when VB puppies were compared to puppies born by elective CS. Puppies born without a detectable meconium or placental microbiota showed a slower growth rate than those with a meconium microbiota, regardless of the type of parturition (p < 0.05). The findings of this study provide new information about the placental microbiome in healthy pregnant dams and suggest intrauterine colonization of the fetus in dogs. It seems that the type of delivery and bacterial colonization might be an important consideration for the weight gain in puppies in the first few days of life.
Collapse
Affiliation(s)
- Maja Zakošek Pipan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Leonida Kajdič
- Institute of Microbiology in Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Kalin
- Institute of Microbiology in Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia; Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Plavec
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia; Small Animal Veterinary Hospital Hofheim, Hofheim am Taunus, Germany
| | - Irena Zdovc
- Institute of Microbiology in Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
43
|
Aagaard KM. Mode of delivery and pondering potential sources of the neonatal microbiome. EBioMedicine 2019; 51:102554. [PMID: 31901572 PMCID: PMC6940648 DOI: 10.1016/j.ebiom.2019.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Kjersti M Aagaard
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, 1 Baylor Plaza, Houston, TX 77401, United States; Center for Microbiome and Metagenomics Research, 1 Baylor Plaza, Houston, TX 77401, United States; Molecular & Human Genetics, 1 Baylor Plaza, Houston, TX 77401, United States; Molecular & Cell Biology at Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77401, United States.
| |
Collapse
|