1
|
David TE, Park J, Steve Fan CP. Mitral valve surgery in patients with Marfan syndrome. J Thorac Cardiovasc Surg 2025; 169:599-605. [PMID: 38678476 DOI: 10.1016/j.jtcvs.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE To review the pathology of the mitral valve (MV) and long-term outcomes of surgery in patients with Marfan syndrome (MFS). PATIENTS AND METHODS From 1988 through 2020, 60 patients with MFS had surgery to correct mitral regurgitation (MR): 19 had isolated MV surgery, 32 had combined MV and aortic root surgery, and 9 had MV surgery after aortic root surgery. Follow-up was complete for a median of 16.1 years. RESULTS MV pathology was myxomatous degeneration in all patients and of advanced degree in 78.6% with bileaflet prolapse in 65.5%, mitral annulus disjunction in 57.5%, and mitral annulus calcification in 8.2% of patients. The MV was repaired in 47 patients and replaced in 13. Kaplan-Meier estimates of cumulative mortality at 20 years 21.3% for all patients, 6.7% after MV repair, and 57.8% after replacement (P < .001). MV reoperations were performed in 5 patients: 2 after repair and 3 after replacement. The cumulative incidence rate of reoperations on the MV was 3.8% at 10 years and 11.0% at 20 years in the entire cohort. Among 47 patients who had MV repair, moderate MR developed in 11 patients and severe in 2. Both patients with severe MR underwent MV reoperation. The cumulative incidence rate of recurrent moderate or severe MR after MV repair was 20.4% at 10 years, and 36.5% at 20 years. CONCLUSIONS MV repair was associated with better survival than MV replacement, but recurrent MR after repair occurred in approximately one-third of the patients at 20 years after surgery.
Collapse
Affiliation(s)
- Tirone E David
- Division of Cardiovascular Surgery of the Peter Munk Cardiac Centre, Toronto General Hospital and University of Toronto, Toronto, Ontario, Canada.
| | - Joy Park
- Division of Cardiovascular Surgery of the Peter Munk Cardiac Centre, Toronto General Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Chun-Po Steve Fan
- Division of Cardiovascular Surgery of the Peter Munk Cardiac Centre, Toronto General Hospital and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Khaledian N, Villard PF, Hammer PE, Perrin DP, Berger MO. Image-based simulation of mitral valve dynamic closure including anisotropy. Med Image Anal 2025; 99:103323. [PMID: 39243597 DOI: 10.1016/j.media.2024.103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
Simulation of the dynamic behavior of mitral valve closure could improve clinical treatment by predicting surgical procedures outcome. We propose here a method to achieve this goal by using the immersed boundary method. In order to go towards patient-based simulation, we tailor our method to be adapted to a valve extracted from medical image data. It includes investigating segmentation process, smoothness of geometry, case setup and the shape of the left ventricle. We also study the influence of leaflet tissue anisotropy on the quality of the valve closure by comparing with an isotropic model. As part of the anisotropy analysis, we study the influence of the principal material direction by comparing methods to obtain them without dissection. Results show that our method can be scaled to various image-based data. We evaluate the mitral valve closure quality based on measuring bulging area, contact map, and flow rate. The results show also that the anisotropic material model more precisely represents the physiological characteristics of the valve tissue. Furthermore, results indicate that the orientation of the principal material direction plays a role in the effectiveness of the valve seal.
Collapse
Affiliation(s)
| | | | - Peter E Hammer
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Douglas P Perrin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
3
|
Amin S, Dewey H, Lasso A, Sabin P, Han Y, Vicory J, Paniagua B, Herz C, Nam H, Cianciulli A, Flynn M, Laurence DW, Harrild D, Fichtinger G, Cohen MS, Jolley MA. Euclidean and Shape-Based Analysis of the Dynamic Mitral Annulus in Children using a Novel Open-Source Framework. J Am Soc Echocardiogr 2024; 37:259-267. [PMID: 37995938 PMCID: PMC10872766 DOI: 10.1016/j.echo.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The dynamic shape of the normal adult mitral annulus has been shown to be important to mitral valve function. However, annular dynamics of the healthy mitral valve in children have yet to be explored. The aim of this study was to model and quantify the shape and major modes of variation of pediatric mitral valve annuli in four phases of the cardiac cycle using transthoracic echocardiography. METHODS The mitral valve annuli of 100 children and young adults with normal findings on three-dimensional echocardiography were modeled in four different cardiac phases using the SlicerHeart extension for 3D Slicer. Annular metrics were quantified using SlicerHeart, and optimal normalization to body surface area was explored. Mean annular shapes and the principal components of variation were computed using custom code implemented in a new SlicerHeart module (Annulus Shape Analyzer). Shape was regressed over metrics of age and body surface area, and mean shapes for five age-stratified groups were generated. RESULTS The ratio of annular height to commissural width of the mitral valve ("saddle shape") changed significantly throughout age for systolic phases (P < .001) but within a narrow range (median range, 0.20-0.25). Annular metrics changed statistically significantly between the diastolic and systolic phases of the cardiac cycle. Visually, the annular shape was maintained with respect to age and body surface area. Principal-component analysis revealed that the pediatric mitral annulus varies primarily in size (mode 1), ratio of annular height to commissural width (mode 2), and sphericity (mode 3). CONCLUSIONS The saddle-shaped mitral annulus is maintained throughout childhood but varies significantly throughout the cardiac cycle. The major modes of variation in the pediatric mitral annulus are due to size, ratio of annular height to commissural width, and sphericity. The generation of age- and size-specific mitral annular shapes may inform the development of appropriately scaled absorbable or expandable mitral annuloplasty rings for children.
Collapse
Affiliation(s)
- Silvani Amin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hannah Dewey
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, Ontario, Canada
| | - Patricia Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ye Han
- Kitware Inc., Clifton Park, New York
| | | | | | - Christian Herz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hannah Nam
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alana Cianciulli
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maura Flynn
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Devin W Laurence
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David Harrild
- Division of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gabor Fichtinger
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, Ontario, Canada
| | - Meryl S Cohen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
Muacevic A, Adler JR. Cardiac Complications in Marfan Syndrome: A Review. Cureus 2022; 14:e29800. [PMID: 36340521 PMCID: PMC9622027 DOI: 10.7759/cureus.29800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Marfan syndrome (MFS) is a rare inherited disorder of the connective tissue with an autosomal dominant mode of inheritance which happens as a result of a mutation in the fibrillin-1 (FBN1) gene located on chromosome 15q21.1. This mutation results in the defective formation of microfibrils and increased levels of active transforming growth factor beta (TGF beta), leading to defective connective tissue synthesis. These changes affect various parts of the body but most notably affected are the heart, eyes, and the musculoskeletal system. The standard presenting features of a person suffering from MFS are tall stature with a large arm span, kyphosis, congenital dislocation of the lens (ectopia lentis) and cardiovascular manifestations. The 2010 modified Ghent criteria are used to diagnose MFS on the basis of parameters such as cardiovascular, eye, and musculoskeletal disorders. The cardiovascular manifestations in a patient with MFS are the leading causes of mortality. The most common and dreaded complication is an aortic aneurysm and subsequent dissection. Cardiomyopathy and arrhythmia are also potential killers in such patients. This article aims to look at the various cardiac complications mentioned above and gain an understanding of their pathogenesis, incidence, and outcome. It also includes a brief overview of the rare complication post-Bentall graft infection, and its cause, diagnosis, and management. Various articles by several different authors from around the world were searched for information regarding the pathogenesis, incidence, and outcomes of these patients and are referenced below.
Collapse
|
5
|
Lasso A, Herz C, Nam H, Cianciulli A, Pieper S, Drouin S, Pinter C, St-Onge S, Vigil C, Ching S, Sunderland K, Fichtinger G, Kikinis R, Jolley MA. SlicerHeart: An open-source computing platform for cardiac image analysis and modeling. Front Cardiovasc Med 2022; 9:886549. [PMID: 36148054 PMCID: PMC9485637 DOI: 10.3389/fcvm.2022.886549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiovascular disease is a significant cause of morbidity and mortality in the developed world. 3D imaging of the heart's structure is critical to the understanding and treatment of cardiovascular disease. However, open-source tools for image analysis of cardiac images, particularly 3D echocardiographic (3DE) data, are limited. We describe the rationale, development, implementation, and application of SlicerHeart, a cardiac-focused toolkit for image analysis built upon 3D Slicer, an open-source image computing platform. We designed and implemented multiple Python scripted modules within 3D Slicer to import, register, and view 3DE data, including new code to volume render and crop 3DE. In addition, we developed dedicated workflows for the modeling and quantitative analysis of multi-modality image-derived heart models, including heart valves. Finally, we created and integrated new functionality to facilitate the planning of cardiac interventions and surgery. We demonstrate application of SlicerHeart to a diverse range of cardiovascular modeling and simulation including volume rendering of 3DE images, mitral valve modeling, transcatheter device modeling, and planning of complex surgical intervention such as cardiac baffle creation. SlicerHeart is an evolving open-source image processing platform based on 3D Slicer initiated to support the investigation and treatment of congenital heart disease. The technology in SlicerHeart provides a robust foundation for 3D image-based investigation in cardiovascular medicine.
Collapse
Affiliation(s)
- Andras Lasso
- Laboratory for Percutaneous Surgery, School of Computing, Queen's University, Kingston, ON, Canada
| | - Christian Herz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hannah Nam
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Alana Cianciulli
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Simon Drouin
- Software and Information Technology Engineering, École de Technologie Supérieure, Montreal, QC, Canada
| | | | - Samuelle St-Onge
- Software and Information Technology Engineering, École de Technologie Supérieure, Montreal, QC, Canada
| | - Chad Vigil
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Stephen Ching
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kyle Sunderland
- Laboratory for Percutaneous Surgery, School of Computing, Queen's University, Kingston, ON, Canada
| | - Gabor Fichtinger
- Laboratory for Percutaneous Surgery, School of Computing, Queen's University, Kingston, ON, Canada
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Matthew A. Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States,Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States,*Correspondence: Matthew A. Jolley
| |
Collapse
|
6
|
Nam HH, Herz C, Lasso A, Cianciulli A, Flynn M, Huang J, Wang Z, Paniagua B, Vicory J, Kabir S, Simpson J, Harrild D, Marx G, Cohen MS, Glatz AC, Jolley MA. Visualization and Quantification of the Unrepaired Complete Atrioventricular Canal Valve Using Open-Source Software. J Am Soc Echocardiogr 2022; 35:985-996.e11. [PMID: 35537615 PMCID: PMC9452462 DOI: 10.1016/j.echo.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Repair of complete atrioventricular canal (CAVC) is often complicated by residual left atrioventricular valve regurgitation. The structure of the mitral and tricuspid valves in biventricular hearts has previously been shown to be associated with valve dysfunction. However, the three-dimensional (3D) structure of the entire unrepaired CAVC valve has not been quantified. Understanding the 3D structure of the CAVC may inform optimized repair. METHODS Novel open-source work flows were created in SlicerHeart for the modeling and quantification of CAVC valves on the basis of 3D echocardiographic images. These methods were applied to model the annulus, leaflets, and papillary muscle (PM) structure of 35 patients (29 with trisomy 21) with CAVC using transthoracic 3D echocardiography. The mean leaflet and annular shapes were calculated and visualized using shape analysis. Metrics of the complete native CAVC valve structure were compared with those of normal mitral valves using the Mann-Whitney U test. Associations between CAVC structure and atrioventricular valve regurgitation were analyzed. RESULTS CAVC leaflet metrics varied throughout systole. Compared with normal mitral valves, the left CAVC PMs were more acutely angled in relation to the annular plane (P < .001). In addition, the anterolateral PM was laterally and inferiorly rotated in CAVC, while the posteromedial PM was more superiorly and laterally rotated, relative to normal mitral valves (P < .001). Lower native CAVC atrioventricular valve annular height and annular height-to-valve width ratio before repair were both associated with moderate or greater left atrioventricular valve regurgitation after repair (P < .01). CONCLUSIONS It is feasible to model and quantify 3D CAVC structure using 3D echocardiographic images. The results demonstrate significant variation in CAVC structure across the cohort and differences in annular, leaflet, and PM structure compared with the mitral valve. These tools may be used in future studies to catalyze future research intended to identify structural associations of valve dysfunction and to optimize repair in this vulnerable and complex population.
Collapse
Affiliation(s)
- Hannah H Nam
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Christian Herz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, Ontario, Canada
| | - Alana Cianciulli
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maura Flynn
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jing Huang
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zi Wang
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Saleha Kabir
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, United Kingdom
| | - John Simpson
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, United Kingdom
| | - David Harrild
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Gerald Marx
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Meryl S Cohen
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew C Glatz
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| |
Collapse
|
7
|
Nam HH, Dinh PV, Lasso A, Herz C, Huang J, Posada A, Aly AH, Pouch AM, Kabir S, Simpson J, Glatz AC, Harrild DM, Marx G, Fichtinger G, Cohen MS, Jolley MA. Dynamic Annular Modeling of the Unrepaired Complete Atrioventricular Canal Annulus. Ann Thorac Surg 2022; 113:654-662. [PMID: 33359720 PMCID: PMC8219815 DOI: 10.1016/j.athoracsur.2020.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Repair of complete atrioventricular canal (CAVC) is often complicated by atrioventricular valve regurgitation, particularly of the left-sided valve. Understanding the 3-dimensional (3D) structure of the atrioventricular canal annulus before repair may help to inform optimized repair. However, the 3D shape and movement of the CAVC annulus has been neither quantified nor rigorously compared with a normal mitral valve annulus. METHODS The complete annuli of 43 patients with CAVC were modeled in 4 cardiac phases using transthoracic 3D echocardiograms and custom code. The annular structure was compared with the annuli of 20 normal pediatric mitral valves using 3D metrics and statistical shape analysis (Procrustes analysis). RESULTS The unrepaired CAVC annulus varied in shape significantly throughout the cardiac cycle. Procrustes analysis visually demonstrated that the average normalized CAVC annular shape is more planar than the normal mitral annulus. Quantitatively, the annular height-to-valve width ratio of the native left CAVC atrioventricular valve was significantly lower than that of a normal mitral valve in all systolic phases (P < .001). CONCLUSIONS The left half of the CAVC annulus is more planar than that of a normal mitral valve with an annular height-to-valve width ratio similar to dysfunctional mitral valves. Given the known importance of annular shape to mitral valve function, further exploration of the association of 3D structure to valve function in CAVC is warranted.
Collapse
Affiliation(s)
- Hannah H Nam
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Patrick V Dinh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andras Lasso
- Laboratory for Percutaneous Surgery, Queen's University, Kingston, Ontario, Canada
| | - Christian Herz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jing Huang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Adriana Posada
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ahmed H Aly
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alison M Pouch
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saleha Kabir
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, United Kingdom
| | - John Simpson
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, United Kingdom
| | - Andrew C Glatz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David M Harrild
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Gerald Marx
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Gabor Fichtinger
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Meryl S Cohen
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Lidal IB, Bathen T, Johansen H, Velvin G. A scoping review presenting a wide variety of research on paediatric and adolescent patients with Marfan syndrome. Acta Paediatr 2020; 109:1758-1771. [PMID: 31977115 PMCID: PMC7496935 DOI: 10.1111/apa.15186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
Abstract
AIM The present study aimed to map and summarise the research on children, aged 0-18 years, with Marfan syndrome, identify research gaps and point to research agendas. METHODS A scoping review was systematically performed by searching multiple databases from January 1996 to April 2019. Primary studies presenting results on at least six individuals aged 0-18 years with Marfan syndrome, diagnosed according to the Ghent nosology, were selected. RESULTS From 2341 de-duplicated records, 92 papers were included, mapped and described. Their topics were diagnostics (12%), cardiovascular matters (50%), skeletal matters (22%), ocular matters (9%), other medical aspects (5%) and psychosocial perspectives (2%). Most studies were from Europe and North America and published between 1999 and 2019 in subject-specific or paediatric journals, while a few were published in genetics journals. All studies had quantitative designs, and very few were multicentre studies. Each study had six to 608 subjects for a total of approximately 5809. CONCLUSION A wide range of research topics on adolescent and paediatric Marfan syndrome was found, but qualitative studies and a focus on psychosocial matters were lacking. Future investigations addressing noncardiovascular consequences and patient experiences are needed, as well as studies reaffirming or replicating existing intervention study results.
Collapse
Affiliation(s)
| | - Trine Bathen
- TRS Resource Centre for Rare DisordersSunnaas Rehabilitation HospitalOsloNorway
| | - Heidi Johansen
- TRS Resource Centre for Rare DisordersSunnaas Rehabilitation HospitalOsloNorway
| | - Gry Velvin
- TRS Resource Centre for Rare DisordersSunnaas Rehabilitation HospitalOsloNorway
| |
Collapse
|
9
|
Abstract
We reviewed the recent literature for echocardiographic assessment of mitral valve abnormalities in children. A literature search was performed within the National Library of Medicine using the keywords "mitral regurgitation and/or stenosis, children." The search was refined by adding the keywords "echocardiographic definition, classification, and evaluation." Thirty-one studies were finally included. Significant advances in echocardiographic imaging of mitral valve defects, mainly due to the implementation of three-dimensional technology, contribute to a better understanding of the underlying anatomy. However, heterogeneity between classification systems of mitral valve disease severity is a serious problem. For regurgitant lesions, there is only very limited evidence from small studies that support the adoption of quantitative/semi-quantitative indexes commonly employed in adults. Despite the lack of evidence base, qualitative evaluation of regurgitation severity is often employed. For stenotic lesions, no clear categorisation based on trans-valvular echocardiography-derived "gradients" has been consistently applied to define mild, moderate, or severe obstruction across different paediatric age ranges. Quantitative parameters such as valve area have also been poorly validated in children. Adult recommendations are frequently applied without validation for the paediatric age. In conclusion, significant advances in the anatomical evaluation of mitral valve diseases have been made, thanks to three-dimensional echocardiography; however, limitations remain in the quantitative/semi-quantitative estimation of disease severity, both with respect to valvular regurgitation and stenosis. Because adult echocardiographic recommendations should not be simply translated to the paediatric age, more specific paediatric guidelines and standards for the assessment of mitral valve diseases are needed.
Collapse
|