1
|
Liu C, Peng H, Yu J, Luo P, Xiong C, Chen H, Fan H, Ma Y, Ou W, Zhang S, Yang C, Zhao L, Zhang Y, Guo X, Ke Q, Wang T, Deng C, Li W, Xiang AP, Xia K. Impaired ketogenesis in Leydig Cells drives testicular aging. Nat Commun 2025; 16:4224. [PMID: 40328805 PMCID: PMC12056170 DOI: 10.1038/s41467-025-59591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Testicular aging commonly leads to testosterone deficiency and impaired spermatogenesis, yet the underlying mechanisms remain elusive. Here, we show that Leydig cells are particularly vulnerable to aging processes in testis. Single-cell RNA sequencing identifies the expression of Hmgcs2, the gene encoding rate-limiting enzyme of ketogenesis, decreases significantly in Leydig cells from aged mice. Additionally, the concentrations of ketone bodies β-hydroxybutyric acid and acetoacetic acid in young testes are substantially higher than that in serum, but significantly diminish in aged testes. Silencing of Hmgcs2 in young Leydig cells drives cell senescence and accelerated testicular aging. Mechanistically, β-hydroxybutyric acid upregulates the expression of Foxo3a by facilitating histone acetylation, thereby mitigating Leydig cells senescence and promoting testosterone production. Consistently, enhanced ketogenesis by genetic manipulation or oral β-hydroxybutyric acid supplementation alleviates Leydig cells senescence and ameliorates testicular aging in aged mice. These findings highlight defective ketogenesis as a pivotal factor in testicular aging, suggesting potential therapeutic avenues for addressing age-related testicular dysfunction.
Collapse
Grants
- This work was supported by National Key Research and Development Program of China(2022YFA1104100), National Natural Science Foundation of China (82430050, 32130046, 82371611, 82371609, 82171564, 82101669, 82301847, 82171617, 82301796), Key Research and Development Program of Guangdong Province (2019B020235002), Natural Science Foundation of Guangdong Province (2022A1515010371), Guangdong Basic and Applied Basic Research Foundation (2021A1515010377), Key Scientific and Technological Program of Guangzhou City (2023B01J1002), Pioneering talents project of Guangzhou Development Zone (2021-L029), China Postdoctoral Science Foundation (2023M733656), Shenzhen Nanshan District Health System Science and Technology Major Project (NSZD2023049), Sanming Project of Medicine in Shenzhen Nanshan (SZSM202103012).
Collapse
Affiliation(s)
- Congyuan Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Peng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiajie Yu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peng Luo
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, The Key Laboratory for Reproductive Medicine of Guangdong Province, Guangzhou, Guangdong, China
| | - Chuanfeng Xiong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Chen
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hang Fan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wangsheng Ou
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suyuan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuifeng Yang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lerong Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuchen Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolu Guo
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Wang S, Ren J, Jing Y, Qu J, Liu GH. Perspectives on biomarkers of reproductive aging for fertility and beyond. NATURE AGING 2024; 4:1697-1710. [PMID: 39672897 DOI: 10.1038/s43587-024-00770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
Reproductive aging, spanning an age-related functional decline in the female and male reproductive systems, compromises fertility and leads to a range of health complications. In this Perspective, we first introduce a comprehensive framework for biomarkers applicable in clinical settings and discuss the existing repertoire of biomarkers used in practice. These encompass functional, imaging-based and biofluid-based biomarkers, all of which reflect the physiological characteristics of reproductive aging and help to determine the reproductive biological age. Next, we delve into the molecular alterations associated with aging in the reproductive system, highlighting the gap between these changes and their potential as biomarkers. Finally, to enhance the precision and practicality of assessing reproductive aging, we suggest adopting cutting-edge technologies for identifying new biomarkers and conducting thorough validations in population studies before clinical applications. These advancements will foster improved comprehension, prognosis and treatment of subfertility, thereby increasing chances of preserving reproductive health and resilience in populations of advanced age.
Collapse
Affiliation(s)
- Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- Aging Biomarker Consortium, Beijing, China
- Key Laboratory of RNA Science and Engineering, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Qu
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
3
|
Ding W, Xu Y, Kondracki AJ, Sun Y. Childhood adversity and accelerated reproductive events: a systematic review and meta-analysis. Am J Obstet Gynecol 2024; 230:315-329.e31. [PMID: 37820985 DOI: 10.1016/j.ajog.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE Accelerated female reproductive events represent the early onset of reproductive events involving puberty, menarche, pregnancy loss, first sexual intercourse, first birth, parity, and menopause. This study aimed to explore the association between childhood adversity and accelerated female reproductive events. DATA SOURCES PubMed, Web of Science, and Embase were systematically searched from September 22, 2022 to September 23, 2022. STUDY ELIGIBILITY CRITERIA Observational cohort, cross-sectional, and case-control studies in human populations were included if they reported the time of reproductive events for female individuals with experience of childhood adversity and were published in English. METHODS Two reviewers independently screened studies, obtained data, and assessed study quality, and conflicts were resolved by a third reviewer. Dichotomous outcomes were evaluated using meta-analysis, and pooled odds ratios and 95% confidence intervals were generated using random-effects models. Moderation analysis and meta-regression were used to investigate heterogeneity. RESULTS In total, 21 cohort studies, 9 cross-sectional studies, and 3 case-control studies were identified. Overall, female individuals with childhood adversity were nearly 2 times more likely to report accelerated reproductive events than those with no adversity exposure (odds ratio, 1.91; 95% confidence interval, 1.33-2.76; I2=99.6%; P<.001). Moderation analysis indicated that effect sizes for the types of childhood adversity ranged from an odds ratio of 1.61 (95% confidence interval, 1.23-2.09) for low socioeconomic status to 2.13 (95% confidence interval, 1.14-3.99) for dysfunctional family dynamics. Among the 7 groups based on different reproductive events, including early onset of puberty, early menarche, early sexual initiation, teenage childbirth, preterm birth, pregnancy loss, and early menopause, early sexual initiation had a nonsignificant correlation with childhood adversity (odds ratio, 2.70; 95% confidence interval, 0.88-8.30; I2=99.9%; P<.001). Considerable heterogeneity (I2>75%) between estimates was observed for over half of the outcomes. Age, study type, and method of data collection could explain 35.9% of the variance. CONCLUSION The literature tentatively corroborates that female individuals who reported adverse events in childhood are more likely to experience accelerated reproductive events. This association is especially strong for exposure to abuse and dysfunctional family dynamics. However, the heterogeneity among studies was high, requiring caution in interpreting the findings and highlighting the need for further evaluation of the types and timing of childhood events that influence accelerated female reproductive events.
Collapse
Affiliation(s)
- Wenqin Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yuxiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Anthony J Kondracki
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Mehta S, Chahal A, Malik S, Rai RH, Malhotra N, Vajrala KR, Sidiq M, Sharma A, Sharma N, Kashoo FZ. Understanding Female and Male Insights in Psychology: Who Thinks What? J Lifestyle Med 2024; 14:1-5. [PMID: 38665321 PMCID: PMC11039442 DOI: 10.15280/jlm.2024.14.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/28/2024] Open
Abstract
Evolutionary psychology is the study of human psychological behavior. During childhood, men and women behave similarly; however, as a child approaches puberty, new physical and behavioral changes emerge. Behavioral psychology focuses on understanding the functioning and thought processes of the human mind. The general population lacks knowledge of basic behavioral differences between men and women, leaving them unaware of their role, limitations, societal responsibilities, resulting in an underestimation of their own natural talents and biology. Thus, people tend to follow societal norms rather than exploring and utilizing their natural talents. The current review was designed and conducted to enforce compression on behavioral psychology in both genders as well as to identify variations in hormonal activity and sexual preferences.
Collapse
Affiliation(s)
- Swati Mehta
- Dukhbhanjni Charitable Polyclinic, Shri Guru Hargobind Sahib Sewa Society, Haryana, India
| | - Aksh Chahal
- Department of Physiotherapy, School of Allied Health Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Shikha Malik
- Department of Physiotherapy, School of Allied Health Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Richa Hirendra Rai
- School of Physiotherapy, Delhi Pharmaceutical Sciences and Research University (DPSRU) Pushp Vihar, New Delhi, India
| | - Nitesh Malhotra
- Department of Physiotherapy, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies Faridabad, Haryana, India
| | - Krishna Reddy Vajrala
- Department of Physiotherapy, School of Allied Health Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Mohammad Sidiq
- Department of Physiotherapy, School of Allied Health Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Abhishek Sharma
- Department of Physiotherapy, Arogyam Institute of Paramedical and Allied Sciences (Affiliated to H.N.B. Uttarakhand Medical Education University), Uttarakhand, India
| | - Nidhi Sharma
- Department of Health Science, Uttaranchal College of Health Sciences, Uttaranchal University, Uttarakhand, India
| | - Faizan Zaffar Kashoo
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| |
Collapse
|
5
|
Manetti M, Marini M, Perna A, Tani A, Sgambati E. Sialylation status and its relationship with morphofunctional changes in human adult testis during sexually mature life and aging: A narrative review. Acta Histochem 2024; 126:152143. [PMID: 38382219 DOI: 10.1016/j.acthis.2024.152143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Sialic acids (Sias) are a family of electronegatively charged nine-carbon monosaccharides containing a carboxylic acid, mostly found as terminal residues in glycans of glycoproteins and glycolipids. They are bound to galactose or N-acetylgalactosamine via α2,3 or α2,6 linkage, or to other Sias especially via α2,8 linkage, which results in monomeric, oligomeric, and polymeric forms. Sias play determinant roles in a multitude of biological processes in human tissues from development to adult life until aging. In this review, we summarized the current knowledge on the sialylation status in the human testis with a main focus on sexually mature life and aging, when this organ shows significant morphofunctional changes resulting into variations of hormonal levels, as well as changes in molecules involved in mitochondrial function, receptors, and signaling proteins. Evidence suggests that Sias may have crucial morphofunctional roles in the different testicular components during the sexually mature age. With advancing age, significant loss of Sias and/or changes in sialylation status occur in all the testicular components, which seems to contribute to morphofunctional changes characteristic of the aging testis. Based on the current knowledge, further in-depth investigations will be necessary to better understand the mechanistic role of Sias in the biological processes of human testicular tissue and the significance of their changes during the aging process. Future investigations might also contribute to the development of novel prophylactic and/or therapeutic approaches that, by maintaining/restoring the correct sialylation status, could help in slowing down the testis aging process, thus preserving the testicular structure and functionality and preventing age-related pathologies.
Collapse
Affiliation(s)
- Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Mirca Marini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, Largo Brambilla 3, Florence 50134, Italy
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia 86090, Italy.
| |
Collapse
|
6
|
Rizk J, Sahu R, Duteil D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 2023; 199:109306. [PMID: 37634653 DOI: 10.1016/j.steroids.2023.109306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Androgens are a class of steroid hormones primarily associated with male sexual development and physiology, but exert pleiotropic effects in either sex. They have a crucial role in various physiological processes, including the regulation of skeletal muscle and adipose tissue homeostasis. The effects of androgens are mainly mediated through the androgen receptor (AR), a ligand-activated nuclear receptor expressed in both tissues. In skeletal muscle, androgens via AR exert a multitude of effects, ranging from increased muscle mass and strength, to the regulation of muscle fiber type composition, contraction and metabolic functions. In adipose tissue, androgens influence several processes including proliferation, fat distribution, and metabolism but they display depot-specific and organism-specific effects which differ in certain context. This review further explores the potential mechanisms underlying androgen-AR signaling in skeletal muscle and adipose tissue. Understanding the roles of androgens and their receptor in skeletal muscle and adipose tissue is essential for elucidating their contributions to physiological processes, disease conditions, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joe Rizk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Rajesh Sahu
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
7
|
Abstract
Recent publications of well-conducted population studies have informed us that the syndromic prevalence of age-related low testosterone, also known as late-onset hypogonadism, is quite low. Several well-conducted trials in middle-aged and older men with age-related decline in testosterone levels have revealed that efficacy of testosterone therapy is modest with improvement in sexual function, mood, volumetric bone density, and anemia. Although select older men might benefit from testosterone therapy, its effect on prostate cancer risk and major adverse cardiovascular events remains unclear. The results of the ongoing TRAVERSE trial will likely provide important insights into these risks.
Collapse
Affiliation(s)
- Maria Gabriela Figueiredo
- Division of Endocrinology and Metabolism, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, BLI 541, Boston, MA 02115, USA; Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thiago Gagliano-Jucá
- Division of Endocrinology and Metabolism, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, BLI 541, Boston, MA 02115, USA; Northwestern Medicine McHenry Hospital, Chicago Medical School, Rosalind Franklin University of Medicine and Science, McHenry, IL, USA
| | - Shehzad Basaria
- Division of Endocrinology and Metabolism, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, BLI 541, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Allam S, Elsakka EGE, Ismail A, Doghish AS, Yehia AM, Elkady MA, Mokhlis HA, Sayed SM, Abd Elaziz AI, Hashish AA, Amin MM, El Shahat RM, Mohammed OA. Androgen receptor blockade by flutamide down-regulates renal fibrosis, inflammation, and apoptosis pathways in male rats. Life Sci 2023; 323:121697. [PMID: 37061126 DOI: 10.1016/j.lfs.2023.121697] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
AIM this study aims to explore the effect of androgen receptor (AR) blockade by flutamide on some renal pathologic changes such as inflammation, apoptosis, and fibrosis in male rats. MAIN METHODS Firstly, we investigated the potential effect of AR blockade on renal inflammatory intermediates including IL-1β, IL-6, TNF-α, NF-Қβ proteins, and the renal gene expression of NF-Қβ. Besides inflammation, we also assessed the apoptosis pathways including the caspases 3 & 9, mTOR, pAKT proteins, and BAX gene expression. Besides inflammation and apoptosis pathways, we also investigated the effect of androgen blockade on renal fibrosis intermediates including vimentin, TGFβ-1, α-SMA, MMP-9, collagen type-III, collagen type-IV, and the renal expression of the col1A1 gene. Besides previous pathological pathways, we assessed the expression of chloride channel protein-5 (ClC-5), as an important regulator of many renal pathological changes. Finally, we assessed the impact of previous pathological changes on renal function at biochemical and pathological levels. KEY FINDINGS We found that AR blockade by flutamide was associated with the down-regulation of renal inflammation, apoptosis, and fibrosis markers. It was associated with expression down-regulation of IL-1β & IL-6, TNF-α, NF-Қβ, caspases 3 & 9, mTOR, MMP-9, collagens, TGFβ-1, and α-SMA. Away from down-regulation, we also found that AR blockade has upregulated ClC-5 and pAKT proteins. SIGNIFICANCE AR is a major player in androgens-induced nephrotoxicity. AR blockade downregulates renal fibrosis, inflammation, and apoptosis pathways. It may be helpful as a strategy for alleviation of renal side effects associated with some drugs. However; this needs further investigations.
Collapse
Affiliation(s)
- Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, 32511 Menoufia, Egypt
| | - Elsayed G E Elsakka
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Ahmed Ismail
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Amr Mohamed Yehia
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A Elkady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hamada Ahmed Mokhlis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Sara M Sayed
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (girls) Al-Azhar University, Nasr City, Cairo, Egypt
| | - Adel I Abd Elaziz
- Department of Pharmacology, Faculty of Medicine (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abdullah A Hashish
- Basic Medical Sciences Department, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mona M Amin
- Department of Pharmacology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Rehab M El Shahat
- Department of Pharmacology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia
| |
Collapse
|
9
|
Abstract
Compared to women, increasing male age is not accompanied by such marked changes in reproductive function but changes certainly do happen. These include alterations to the hypothalamo-pituitary-testicular axis, with resultant implications for testosterone production and bioavailability as well as spermatogenesis. There is a decline in sexual function as men age, with a dramatic increase in the prevalence of erectile dysfunction after the age of 40, which is a marker for both clinically evident as well as covert coronary artery disease. Despite a quantitative decline in spermatogenesis and reduced fecundability, the male potential for fertility persists throughout adult life, however there are also increasingly recognised alterations in sperm quality and function with significant implications for offspring health. These changes are relevant to both natural and medically assisted conception.
Collapse
Affiliation(s)
- Sarah Martins da Silva
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, DD1 9SY, Dundee, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK.
| |
Collapse
|
10
|
Foster H, Hagan J, Brooks-Gunn J, Garcia J. Association between intergenerational violence exposure and maternal age of menopause. Menopause 2022; 29:284-292. [PMID: 35213516 DOI: 10.1097/gme.0000000000001923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate whether maternal violence exposure personally and through her child is associated with an earlier age of menopause, controlling for covariates. METHODS Analyses used merged data from two related sources. Although mothers (n = 1,466) were interviewed in 1995 and then 20 years later (2015-17), their children were interviewed in the National Longitudinal Study of Adolescent to Adult Health repeatedly (Waves 1-4, 1994/5 to 2008-2009). Mothers reported their own age of menopause, and mothers and adolescents each reported their own exposure to violence as children and adults. RESULTS A mother's own childhood physical abuse (b = -1.60, P < .05) and her child's sexual abuse (b = -1.39, P < .01) both were associated with an earlier age of menopause. Mothers who were physically abused in childhood and have a child who experienced regular sexual abuse reached menopause 8.78 years earlier than mothers without a history of personal abuse or abuse of their child. CONCLUSIONS Our study is the first to find that age of natural menopause is associated with intergenerational violence exposures.
Collapse
Affiliation(s)
- Holly Foster
- Texas A&M University, Department of Sociology, MS 4351 TAMU, College Station, TX
- American Bar Foundation, 750 N Lake Shore Drive, Chicago, IL
| | - John Hagan
- American Bar Foundation, 750 N Lake Shore Drive, Chicago, IL
- Northwestern University, Department of Sociology, 1810 Chicago Ave, Evanston, IL
| | - Jeanne Brooks-Gunn
- Columbia University, Teachers College and College of Physicians and Surgeons, 525 W. 120 St., Box 39, New York, NY
| | - Jess Garcia
- Texas A&M University, Department of Sociology, MS 4351 TAMU, College Station, TX
| |
Collapse
|
11
|
Roelfsema F, Yang R, Veldhuis JD. Interleukin-2 Transiently Inhibits Pulsatile Growth Hormone Secretion in Young but not Older Healthy Men. J Clin Endocrinol Metab 2021; 106:2855-2864. [PMID: 34212195 PMCID: PMC8475215 DOI: 10.1210/clinem/dgab484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Interleukin-2 (IL-2), a proinflammatory cytokine, has been used to treat malignancies. Increased cortisol and adrenocorticotropin (ACTH) were noted, but growth hormone (GH) secretion was not investigated in detail. OBJECTIVE We quantified GH secretion after a single subcutaneous injection of IL-2 in 17 young and 18 older healthy men in relation to dose, age, and body composition. METHODS This was a placebo-controlled, blinded, prospectively randomized, crossover study. At 20:00 hours IL-2 (3 or 6 million units/m2) or saline was injected subcutaneously. Lights were off between 23:00 and 07:00 hours. Blood was sampled at 10-minute intervals for 24 hours. Outcome measures included convolution analysis of GH secretion. RESULTS GH profiles were pulsatile under both experimental conditions and lower in older than young volunteers. Since the effect of IL-2 might be time limited, GH analyses were performed on the complete 24-hour series and the 6 hours after IL-2 administration. Total and pulsatile 24-hour GH secretion decreased nonsignificantly. Pulsatile secretion fell over the first 6 hours after IL-2 (P = .03), with visceral fat as a covariate (P = .003), but not age (P = .10). Plots of cumulative 2-hour bins of GH pulse mass showed a distinction by treatment and age groups: A temporary GH decrease of 32% and 28% occurred in the first 2-hour bins after midnight (P = .02 and .04) in young participants, whereas in older individuals no differences were present at any time point. CONCLUSION This study demonstrates that IL-2 temporarily diminishes GH secretion in young, but not older, men.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Internal Medicine, Section Endocrinology, Leiden University Medical, Center, 2333ZA Leiden, the Netherlands
| | - Rebecca Yang
- Endocrine Research Unit, Mayo Clinic College of Medicine, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905,USA
| | - Johannes D Veldhuis
- Endocrine Research Unit, Mayo Clinic College of Medicine, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905,USA
- Correspondence: Johannes D. Veldhuis, MD, Endocrine Research Unit, Mayo Clinic College of Medicine, Center for Translational Science Activities, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
12
|
Barbosa LP, da Silva Aguiar S, Santos PA, Dos Santos Rosa T, Maciel LA, de Deus LA, Neves RVP, de Araújo Leite PL, Gutierrez SD, Sousa CV, Korhonen MT, Degens H, Simões HG. Relationship between inflammatory biomarkers and testosterone levels in male master athletes and non-athletes. Exp Gerontol 2021; 151:111407. [PMID: 34022273 DOI: 10.1016/j.exger.2021.111407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/23/2021] [Accepted: 05/16/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Aging is often associated with low-grade systemic inflammation and reduced anabolic hormone levels. To investigate whether lifelong exercise training can decrease the age-related low-grade inflammation and anabolic hormone levels, we examined hormonal and inflammatory parameters among highly-trained male masters athletes and age-matched non-athletes. METHODS From 70 elite power and endurance master athletes - EMA (51.3 ± 8.0 yr), 32 young controls - YC (23.7 ± 3.9 yr) and 24 untrained age-matched controls - MAC (47.2 ± 8.0 yr) venous blood was drawn to measure inflammatory parameters (interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α] and interleukin-10 [IL-10]) and circulating hormones (luteinizing hormone [LH], total testosterone, estradiol, sex hormone-binding globulin [SHBG] and free androgen index [FAI]). RESULTS EMA showed a better anti-inflammatory status than MAC (higher IL-10 and IL-10/IL-6 ratio and lower IL-6), but a lower anti-inflammatory status than YC (higher TNF-α) (p < 0.05). The MAC group had lower testosterone levels compared to the YC and EMA group (p < 0.05), and lower estradiol levels and testosterone/LH ratio compared to YC (p < 0.05). In the control groups (MAC and YC), testosterone correlated negatively with age and proinflammatory parameters, and positively with anti-inflammatory parameters. CONCLUSION Elite master athletics elevated levels of anti-inflammatory cytokines above that seen in non-athlete peers and mitigated the age-related reduction in testosterone levels.
Collapse
Affiliation(s)
- Lucas Pinheiro Barbosa
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga, DF, Brazil.
| | - Samuel da Silva Aguiar
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga, DF, Brazil; Department of Physical Education, UDF University Center, Brasilia, DF, Brazil
| | - Patrick Anderson Santos
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga, DF, Brazil
| | - Thiago Dos Santos Rosa
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga, DF, Brazil
| | - Larissa Alves Maciel
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga, DF, Brazil
| | - Lysleine Alves de Deus
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga, DF, Brazil
| | | | | | - Sara Duarte Gutierrez
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga, DF, Brazil
| | - Caio Victor Sousa
- Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Marko T Korhonen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyvaskyla, Finland
| | - Hans Degens
- Department of Sciences, Manchester Metropolitan University, Manchester, United Kingdom; Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Herbert Gustavo Simões
- Graduate Program in Physical Education and Health, Catholic University of Brasília, Taguatinga, DF, Brazil.
| |
Collapse
|
13
|
GIPSON CD, BIMONTE-NELSON HA. Interactions between reproductive transitions during aging and addiction: promoting translational crosstalk between different fields of research. Behav Pharmacol 2021; 32:112-122. [PMID: 32960852 PMCID: PMC7965232 DOI: 10.1097/fbp.0000000000000591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Discovery of neural mechanisms underlying neuropsychiatric disorders within the aging and addiction fields has been a main focus of the National Institutes of Health. However, there is a dearth of knowledge regarding the biological interactions of aging and addiction, which may have important influences on progression of disease and treatment outcomes in aging individuals with a history of chronic drug use. Thus, there is a large gap in these fields of research, which has slowed progress in understanding and treating substance use disorders (SUDs) as well as age-related diseases, specifically in women who experience precipitous reproductive cycle transitions during aging. The goal of this review is to highlight overlap of SUDs and age-related processes with a specific focus on menopause and smoking, and identify critical gaps. We have narrowed the focus of the review to smoking, as the majority of findings on hormonal and aging influences on drug use have come from this area of research. Further, we highlight female-specific issues such as transitional menopause and exogenous estrogen use. These issues may impact drug use cessation as well as outcomes with aging and age-related neurodegenerative diseases in women. We first review clinical studies for smoking, normal aging, and pathological aging, and discuss the few aging-related studies taking smoking history into account. Conversely, we highlight the dearth of clinical smoking studies taking age as a biological variable into account. Preclinical and clinical literature show that aging, age-related pathological brain disease, and addiction engage overlapping neural mechanisms. We hypothesize that these putative drivers interact in meaningful ways that may exacerbate disease and hinder successful treatment outcomes in such comorbid populations. We highlight areas where preclinical studies are needed to uncover neural mechanisms in aging and addiction processes. Collectively, this review highlights the need for crosstalk between different fields of research to address medical complexities of older adults, and specifically women, who smoke.
Collapse
Affiliation(s)
- Cassandra D. GIPSON
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY
- Arizona Alzheimer’s Consortium
| | | |
Collapse
|
14
|
Gipson CD, Rawls S, Scofield MD, Siemsen BM, Bondy EO, Maher EE. Interactions of neuroimmune signaling and glutamate plasticity in addiction. J Neuroinflammation 2021; 18:56. [PMID: 33612110 PMCID: PMC7897396 DOI: 10.1186/s12974-021-02072-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/05/2021] [Indexed: 02/28/2023] Open
Abstract
Chronic use of drugs of abuse affects neuroimmune signaling; however, there are still many open questions regarding the interactions between neuroimmune mechanisms and substance use disorders (SUDs). Further, chronic use of drugs of abuse can induce glutamatergic changes in the brain, but the relationship between the glutamate system and neuroimmune signaling in addiction is not well understood. Therefore, the purpose of this review is to bring into focus the role of neuroimmune signaling and its interactions with the glutamate system following chronic drug use, and how this may guide pharmacotherapeutic treatment strategies for SUDs. In this review, we first describe neuroimmune mechanisms that may be linked to aberrant glutamate signaling in addiction. We focus specifically on the nuclear factor-kappa B (NF-κB) pathway, a potentially important neuroimmune mechanism that may be a key player in driving drug-seeking behavior. We highlight the importance of astroglial-microglial crosstalk, and how this interacts with known glutamatergic dysregulations in addiction. Then, we describe the importance of studying non-neuronal cells with unprecedented precision because understanding structure-function relationships in these cells is critical in understanding their role in addiction neurobiology. Here we propose a working model of neuroimmune-glutamate interactions that underlie drug use motivation, which we argue may aid strategies for small molecule drug development to treat substance use disorders. Together, the synthesis of this review shows that interactions between glutamate and neuroimmune signaling may play an important and understudied role in addiction processes and may be critical in developing more efficacious pharmacotherapies to treat SUDs.
Collapse
Affiliation(s)
- Cassandra D Gipson
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA.
| | - Scott Rawls
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, USA
| | - Benjamin M Siemsen
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
| | - Emma O Bondy
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| | - Erin E Maher
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| |
Collapse
|
15
|
Sarkar M, Brady CW, Fleckenstein J, Forde KA, Khungar V, Molleston JP, Afshar Y, Terrault NA. Reproductive Health and Liver Disease: Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021; 73:318-365. [PMID: 32946672 DOI: 10.1002/hep.31559] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Monika Sarkar
- University of California, San Francisco, San Francisco, CA
| | | | | | | | | | - Jean P Molleston
- Indiana University and Riley Hospital for Children, Indianapolis, IN
| | - Yalda Afshar
- University of California, Los Angeles, Los Angeles, CA
| | - Norah A Terrault
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
16
|
Valencia WM, Florez H. Endocrinology. GERIATRICS FOR SPECIALISTS 2021:261-278. [DOI: 10.1007/978-3-030-76271-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Kizildag S, Hosgorler F, Koc B, Golgelioglu O, Guvendi G, Kandis S, Ates M, Uysal N. Probable Interaction of MMP-2 and VEGF in Testicular Deteriorations Related to Aging. DICLE MEDICAL JOURNAL 2019. [DOI: 10.5798/dicletip.661276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Zhang G, Cui R, Kang Y, Qi C, Ji X, Zhang T, Guo Q, Cui H, Shi G. Testosterone propionate activated the Nrf2-ARE pathway in ageing rats and ameliorated the age-related changes in liver. Sci Rep 2019; 9:18619. [PMID: 31819135 PMCID: PMC6901587 DOI: 10.1038/s41598-019-55148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to evaluate the protective efficacy of testosterone propionate (TP) on age-related liver changes via activation of the nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway in aged rats. Aged rats received subcutaneous injections of TP (2 mg/kg/d, 84 days). Oxidative stress parameters and the expression levels of signal transducer and activator of transcription 5b (STAT5b), Kelch-like ECH associating protein-1 (Keap1), Nrf2, haem oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO1) in liver tissues were examined to check whether the Nrf2-ARE pathway was involved in the age-related changes in liver. Our results showed that TP supplementation alleviated liver morphology, liver function and liver fibrosis; improved oxidative stress parameters; and increased the expression of STAT5b, Nrf2, HO-1 and NQO-1 and decreased the expression of Keap1 in the liver tissues of aged rats. These results suggested that TP increased the expression of STAT5b, and then activated the Nrf2-ARE pathway and promoted antioxidant mechanisms in aged rats. These findings may provide new therapeutic uses for TP in patients with age-related liver changes.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China.,Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Rui Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Yunxiao Kang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Chunxiao Qi
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Xiaoming Ji
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Tianyun Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Qiqing Guo
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China. .,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, P.R. China. .,Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, P.R. China.
| |
Collapse
|
19
|
Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, Ryan ED. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J Strength Cond Res 2019; 33:2019-2052. [PMID: 31343601 DOI: 10.1519/jsc.0000000000003230] [Citation(s) in RCA: 626] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragala, MS, Cadore, EL, Dorgo, S, Izquierdo, M, Kraemer, WJ, Peterson, MD, and Ryan, ED. Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res 33(8): 2019-2052, 2019-Aging, even in the absence of chronic disease, is associated with a variety of biological changes that can contribute to decreases in skeletal muscle mass, strength, and function. Such losses decrease physiologic resilience and increase vulnerability to catastrophic events. As such, strategies for both prevention and treatment are necessary for the health and well-being of older adults. The purpose of this Position Statement is to provide an overview of the current and relevant literature and provide evidence-based recommendations for resistance training for older adults. As presented in this Position Statement, current research has demonstrated that countering muscle disuse through resistance training is a powerful intervention to combat the loss of muscle strength and muscle mass, physiological vulnerability, and their debilitating consequences on physical functioning, mobility, independence, chronic disease management, psychological well-being, quality of life, and healthy life expectancy. This Position Statement provides evidence to support recommendations for successful resistance training in older adults related to 4 parts: (a) program design variables, (b) physiological adaptations, (c) functional benefits, and (d) considerations for frailty, sarcopenia, and other chronic conditions. The goal of this Position Statement is to a) help foster a more unified and holistic approach to resistance training for older adults, b) promote the health and functional benefits of resistance training for older adults, and c) prevent or minimize fears and other barriers to implementation of resistance training programs for older adults.
Collapse
Affiliation(s)
| | - Eduardo L Cadore
- School of Physical Education, Physiotherapy and Dance, Exercise Research Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sandor Dorgo
- Department of Kinesiology, University of Texas at El Paso, El Paso, Texas
| | - Mikel Izquierdo
- Department of Health Sciences, Public University of Navarre, CIBER of Frailty and Healthy Aging (CIBERFES), Navarrabiomed, Pamplona, Navarre, Spain
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Mark D Peterson
- Department of Physical Medicine and Rehabilitation, University of Michigan-Medicine, Ann Arbor, Michigan
| | - Eric D Ryan
- Department of Exercise and Sport Science, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
20
|
Maggio M, Snyder PJ, De Vita F, Ceda GP, Milaneschi Y, Lauretani F, Luci M, Cattabiani C, Peachey H, Valenti G, Cappola AR, Longo DL, Ferrucci L. Effects of transdermal testosterone treatment on inflammatory markers in elderly males. Endocr Pract 2019; 20:1170-7. [PMID: 25100359 DOI: 10.4158/ep13357.or] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE During the male aging process, testosterone (T) levels progressively fall and inflammatory biomarkers increase. Although a relationship between these 2 phenomena has been tested in previous clinical trials, there is inconclusive evidence about the potential anti-inflammatory action of T. METHODS A total of 108 healthy males >65 years with serum T concentration <475 ng/dL were recruited by direct mailings to alumni of the University of Pennsylvania and Temple University and randomized to 60-cm2 T or a placebo patch for 36 months. Ninety-six subjects completed the trial. Information and stored serum specimens from this trial were used to test the hypothesis of the inhibitory effect of T on inflammation. We evaluated 70 males (42 in the T group) who had banked specimens from multiple time points available for assays of T, C-reactive protein (CRP), tumor necrosis factor (TNF)-α, soluble TNF-α receptor-1 (TNFR1), interleukin-6 (IL-6), and soluble IL-6 receptors (sIL6r and sgp130). RESULTS The mean age ± SD at baseline was 71.8 ± 4.9 years. Testosterone replacement therapy for 36 months did not induce significant decreases in inflammatory markers. A trend toward a significant increase was observed in the placebo group for TNF-α (P = .03) and sgp130 (P = .01). Significant differences in estimated means of TNFR1 (but not other inflammatory markers), with lower levels in the T group, were observed at the 36-month time point. In T-treated subjects we found an almost significant treatment x time interaction term TNFR1 (P = .02) independent of total body fat content as assessed by dual energy X-ray absorptiometry (DXA). No serious adverse effect was observed. CONCLUSIONS Transdermal T treatment of older males for 36 months is not associated with significant changes in inflammatory markers.
Collapse
Affiliation(s)
- Marcello Maggio
- Department of Clinical and Experimental Medicine, Section of Geriatrics, University of Parma, Italy Geriatric Rehabilitation Department, University Hospital of Parma, Parma, Italy
| | - Peter J Snyder
- Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Francesca De Vita
- Geriatric Rehabilitation Department, University Hospital of Parma, Parma, Italy
| | - Gian Paolo Ceda
- Department of Clinical and Experimental Medicine, Section of Geriatrics, University of Parma, Italy Geriatric Rehabilitation Department, University Hospital of Parma, Parma, Italy
| | - Yuri Milaneschi
- Department of Psychiatry, VU University Medical Center/GGZ inGeest, Amsterdam, the Netherlands National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Fulvio Lauretani
- Geriatric Rehabilitation Department, University Hospital of Parma, Parma, Italy
| | - Michele Luci
- Department of Clinical and Experimental Medicine, Section of Geriatrics, University of Parma, Italy
| | - Chiara Cattabiani
- Department of Clinical and Experimental Medicine, Section of Geriatrics, University of Parma, Italy
| | - Helen Peachey
- Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Giorgio Valenti
- Department of Clinical and Experimental Medicine, Section of Geriatrics, University of Parma, Italy
| | - Anne R Cappola
- Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Dan L Longo
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
21
|
van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ. The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol 2018; 6:647-658. [PMID: 30017799 PMCID: PMC6089223 DOI: 10.1016/s2213-8587(18)30026-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
Abstract
During ageing, the secretory patterns of the hormones produced by the hypothalamic-pituitary axis change, as does the sensitivity of the axis to negative feedback by end hormones. Additionally, glucose homoeostasis tends towards disequilibrium with increasing age. Along with these endocrine alterations, a loss of bone and muscle mass and strength occurs, coupled with an increase in fat mass. In addition, ageing-induced effects are difficult to disentangle from the influence of other factors that are common in older people, such as chronic diseases, inflammation, and low nutritional status, all of which can also affect endocrine systems. Traditionally, the decrease in hormone activity during the ageing process has been considered to be detrimental because of the related decline in bodily functions. The concept of hormone replacement therapy was suggested as a therapeutic intervention to stop or reverse this decline. However, clearly some of these changes are a beneficial adaptation to ageing, whereas hormonal intervention often causes important adverse effects. In this paper, we discuss the effects of age on the different hypothalamic-pituitary-hormonal organ axes, as well as age-related changes in calcium and bone metabolism and glucose homoeostasis.
Collapse
Affiliation(s)
- Annewieke W van den Beld
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands; Department of Internal Medicine, Groene Hart Hospital, Gouda, Netherlands.
| | - Jean-Marc Kaufman
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - M Carola Zillikens
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Steven W J Lamberts
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Aart J van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
22
|
Amelioratory Effects of Testosterone Propionate on Age-related Renal Fibrosis via Suppression of TGF-β1/Smad Signaling and Activation of Nrf2-ARE Signaling. Sci Rep 2018; 8:10726. [PMID: 30013094 PMCID: PMC6048025 DOI: 10.1038/s41598-018-29023-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
Androgen plays a pivotal role in the progression of renal fibrosis. However, whether exogenous androgen treatment to aged male rats can improve the age-related renal fibrosis was not explored. In our study, the changes of morphological structure, renal fibrosis, ultrastructure and renal function, the expressions of extracellular matrix (ECM), matrix metalloproteinases (MMPs) and its tissue inhibitors of metalloproteinases (TIMPs), the expressions of tumor growth factor β1 (TGF-β1)/Smad signaling and oxidative stress parameters as well as nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling were tested in kidney of aged male Wistar rats after subcutaneous testosterone propionate (TP, 2 mg/kg/d, 84-day) injection. Aged rats showed significantly renal histopathological changes, increased renal fibrosis, increased thickening of the glomerular basement membrane and the Bowman’s capsule basement membrane, declined renal functional, increased ECM, lower expressions of MMP-2 and MMP-9 and higher expressions of TIMP-1 and TIMP-2 in renal tissues and higher expressions of TGF-β1/Smad signaling, as well as lower expressions of Nrf2-ARE signaling compared to young rats. TP treatment significantly improved age-related above indexes. These results suggested that TP supplement may alleviate age-related renal fibrosis via suppression of TGF-β1/Smad signaling and activation of Nrf2-ARE signaling in aged rats.
Collapse
|
23
|
Sokanovic SJ, Capo I, Medar MM, Andric SA, Kostic TS. Long-term inhibition of PDE5 ameliorates aging-induced changes in rat testis. Exp Gerontol 2018; 108:139-148. [PMID: 29660387 DOI: 10.1016/j.exger.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 01/01/2023]
Abstract
NO-cGMP signaling pathway has been implicated in reduction of testicular steroidogenesis during aging. Here we analyzed the effect of PDE5 inhibition on old testicular phenotype formation. The old phenotype exhibited low testosterone and increased nitrite levels in circulation, increased cGMP accumulation in testicular interstitial fluid (TIF), progressive atrophy of testicular seminiferous tubules and enlargement of interstitial area followed by rise in blood vessel density and slight increase in the number of Leydig cells and macrophages. Leydig cells have reduced steroidogenic capacity, increased MAP kinases expression (MEK, ERK1/2, JNK) and antiapoptotic PRKG1 and AKT, suggesting increased proliferation/survival and accumulation of senescent Leydig cells in testis. In 12 month-old rats, a long-term treatment with sildenafil (PDE5 inhibitor) normalized testosterone/nitrite levels in circulation and cGMP accumulation in TIF; improved Leydig cell steroidogenic capacity; decreased MEK, ERK1/2 and PRKG1 expression; prevented an increase in the Leydig cells number and atrophy of seminiferous tubules leading to histological appearance of young rat testes. In 18 month-old rats, long-term PDE5 inhibition partially recovered testosterone and nitrite levels in serum; normalized PRKG1 expression without effect on MEK and ERK1/2; and slowed down Leydig cell and macrophage accumulation and regressive tubular changes. Culturing of primary Leydig cells from aged rats in presence of PDE5-inhibitor stimulated steroidogenic and MAPK gene expression. Taking together, results indicate that cGMP targeting alter both steroidogenesis and signaling pathways associated with cell proliferation/survival. The long-term PDE5 inhibition improves testicular steroidogenesis and slows-down regressive changes in testes during aging.
Collapse
Affiliation(s)
- Srdjan J Sokanovic
- Laboratory for Reproductive Endocrinology and Signaling, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Capo
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Marija M Medar
- Laboratory for Reproductive Endocrinology and Signaling, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Silvana A Andric
- Laboratory for Reproductive Endocrinology and Signaling, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana S Kostic
- Laboratory for Reproductive Endocrinology and Signaling, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|
24
|
López-Lemus UA, Garza-Guajardo R, Barboza-Quintana O, Rodríguez-Hernandez A, García-Rivera A, Madrigal-Pérez VM, Guzmán-Esquivel J, García-Labastida LE, Soriano-Hernández AD, Martínez-Fierro ML, Rodríguez-Sánchez IP, Sánchez-Duarte E, Cabrera-Licona A, Ceja-Espiritu G, Delgado-Enciso I. Association Between Nonalcoholic Fatty Liver Disease and Severe Male Reproductive Organ Impairment (Germinal Epithelial Loss): Study on a Mouse Model and on Human Patients. Am J Mens Health 2018; 12:639-648. [PMID: 29577833 PMCID: PMC5987961 DOI: 10.1177/1557988318763631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Metabolic syndrome (MS) has been associated with testicular damage. Nonalcoholic fatty liver disease (NAFLD) is a multisystemic disease that affects different organs, but its effect on the testes is unknown. A study analyzing germ cell involvement on BALB/c mice was carried out. A parallel comparative study was conducted that investigated alterations in the germinal epithelium of male humans that died from an unrelated acute event. The complete medical histories and histologic samples of the thoracic aorta, liver tissue, and testicular tissue from the deceased subjects were collected. The degree of germinal epithelial loss (DGEL) was evaluated and the clinical and histologic data were compared between individuals with and without NAFLD. The only metabolic or morphologic variable that caused a significant difference in the DGEL, in both the animal model and humans, was the presence of liver steatosis. The percentage of steatosis was also correlated with the percentage of the DGEL. In humans, steatosis (greater than 20%) increased the risk 12-fold for presenting with a severe DGEL (OR: 12.5; 95% CI [1.2, 128.9]; p = .03). There was no association with age above 50 years or MS components. Steatosis grade was also correlated with atherosclerosis grade. NAFLD was a strongly associated factor implicated in severe DGEL, as well as the testis was identified as a probable target organ for damage caused by the disease. This finding could result in the search for new approach strategies in the management of men with fertility problems. Further studies are required to confirm these results.
Collapse
Affiliation(s)
| | - Raquel Garza-Guajardo
- 2 Department of Pathological Anatomy and Cytopathology, University Hospital "Dr José Eleuterio González," Autonomous University of Nuevo León, Monterrey, Nuevo León, Mexico
| | - Oralia Barboza-Quintana
- 2 Department of Pathological Anatomy and Cytopathology, University Hospital "Dr José Eleuterio González," Autonomous University of Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | | | - José Guzmán-Esquivel
- 3 Unidad de Investigación del Hospital General de Zona Nº 1. IMSS, Colima, Mexico
| | - Laura E García-Labastida
- 2 Department of Pathological Anatomy and Cytopathology, University Hospital "Dr José Eleuterio González," Autonomous University of Nuevo León, Monterrey, Nuevo León, Mexico
| | | | - Margarita L Martínez-Fierro
- 5 Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences. Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | | | | | | | | | | |
Collapse
|
25
|
Increased estrogen level can be associated with depression in males. Psychoneuroendocrinology 2018; 87:196-203. [PMID: 29107881 DOI: 10.1016/j.psyneuen.2017.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Several studies have shown a positive association between depression and obesity; however the underlying mechanisms are not fully understood. It is not known if this association is driven by altered sex hormone levels in men due to increased BMI. PATIENTS AND METHODS Data were obtained from the LIFE-Adult-Study, a population-based cohort study. A total of 3925 men (2244<60years and 1681>60years) were included into analyses. Associations between BMI, sex hormones and depressive symptomatology according to CES-D score were evaluated. RESULTS Obese men had compared to normal weight controls lower total testosterone (12.6±4.7 vs 19.4±5.5 nmol/L, p<0.001 in <60years, and 13.8±6.9 vs 18.3±5.9 nmol/L, p<0.001 in >60years group) and free testosterone (249.0±73.9 vs 337.2±82.0pmol/L, p<0.001, and 217.8±71.2 vs 263.4±72.2pmol/L, p<0.001), and increased estradiol in older group only (97.3±43.0 vs 82.3±34.2pmol/L, p<0.001 in obese). Men <60years old with depressive symptomatology had higher estradiol levels compared to those without depressive symptomatology (96.3±40.7 vs 84.4±36.6pmol/L, p<0.001), however no association with BMI was observed. CONCLUSIONS Selected sex hormone parameters were significantly different in overweight and obese compared to normal weight males and certain differences could be seen between younger and older males. Depressive symptomatology was associated with increased estradiol levels in younger men, regardless of BMI.
Collapse
|
26
|
|
27
|
|
28
|
CEDIKOVA M, PITULE P, KRIPNEROVA M, MARKOVA M, KUNCOVA J. Multiple Roles of Mitochondria in Aging Processes. Physiol Res 2016; 65:S519-S531. [DOI: 10.33549/physiolres.933538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aging is a multifactorial process influenced by genetic factors, nutrition, and lifestyle. According to mitochondrial theory of aging, mitochondrial dysfunction is widely considered a major contributor to age-related processes. Mitochondria are both the main source and targets of detrimental reactions initiated in association with age-dependent deterioration of the cellular functions. Reactions leading to increased reactive oxygen species generation, mtDNA mutations, and oxidation of mitochondrial proteins result in subsequent induction of apoptotic events, impaired oxidative phosphorylation capacity, mitochondrial dynamics, biogenesis and autophagy. This review summarizes the major changes of mitochondria related to aging, with emphasis on mitochondrial DNA mutations, the role of the reactive oxygen species, and structural and functional changes of mitochondria.
Collapse
Affiliation(s)
| | | | | | | | - J. KUNCOVA
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
29
|
Kiraly DD, Sher L. Low testosterone in a young combat veteran with dual diagnosis and suicidal behavior: a case study. Int J Adolesc Med Health 2016; 27:235-7. [PMID: 25528760 DOI: 10.1515/ijamh-2015-5018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/30/2014] [Indexed: 11/15/2022]
Abstract
Suicide and suicidal behaviors amongst combat veterans is an important public health issue. Exposure to military combat predisposes patients to increased levels of major depression, post-traumatic stress disorder (PTSD), substance abuse, and chronic pain - all of which are important risk factors for suicide. Here, we present a case study of a young combat veteran who presented with an impulsive suicide attempt that had a high potential for lethality in the context of depression, PTSD, and substance use. On routine admission laboratory work, his serum level of testosterone was seen to be low. Given the important role that testosterone plays in the regulation of mood and behavior, we posit that it is a potentially important marker for suicide risk in an already at-risk population.
Collapse
|
30
|
Krysiak R, Gilowski W, Okopien B. The Effect of Testosterone and Fenofibrate, Administered Alone or in Combination, on Cardiometabolic Risk Factors in Men with Late-Onset Hypogonadism and Atherogenic Dyslipidemia. Cardiovasc Ther 2016; 33:270-4. [PMID: 26031507 DOI: 10.1111/1755-5922.12139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Oral testosterone was found to reduce plasma levels of HDL cholesterol. No previous study has examined the effect of fibrates, known to increase HDL cholesterol, in patients with low testosterone levels requiring testosterone replacement. AIMS The study included three age-, weight-, and lipid-matched groups of older men with atherogenic dyslipidemia and late-onset hypogonadism, treated with oral testosterone undecanoate (120 mg daily, n = 15), micronized fenofibrate (200 mg daily, n = 15), or testosterone plus fenofibrate (n = 18). Plasma lipids, glucose homeostasis markers, as well as plasma levels of androgens, uric acid, high-sensitivity C-reactive protein (hsCRP), homocysteine, and fibrinogen were assessed before and after 16 weeks of therapy. RESULTS Apart from an increase in plasma testosterone and a reduction in HDL cholesterol, testosterone undecanoate tended to decrease hsCRP and to improve insulin sensitivity. Fenofibrate administered alone increased HDL cholesterol, reduced triglycerides, decreased insulin resistance, reduced circulating levels of uric acid, hsCRP, and fibrinogen, as well as increased plasma levels of homocysteine. The strongest effect on testosterone, HOMA1-IR, uric acid, hsCRP, and fibrinogen was observed if fenofibrate was administered together with testosterone. Testosterone-fenofibrate combination therapy was also devoid of unfavorable effect on HDL cholesterol and homocysteine. CONCLUSIONS Our study shows that fenofibrate produces a stronger effect on cardiometabolic risk factors in men with late-onset hypogonadism and atherogenic dyslipidemia than oral testosterone undecanoate. The obtained results suggest that this group of patients may benefit the most from the combined treatment with oral testosterone undecanoate and micronized fenofibrate.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Wojciech Gilowski
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland.,Cardiology Department, Chrzanow District Hospital, Chrzanow, Poland
| | - Bogusław Okopien
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
31
|
Ricciuti A, Travison TG, Di Dalmazi G, Talor MV, DeVincentiis L, Manley RW, Bhasin S, Caturegli P, Basaria S. A Subset of Men With Age-Related Decline in Testosterone Have Gonadotroph Autoantibodies. J Clin Endocrinol Metab 2016; 101:1535-41. [PMID: 26963952 PMCID: PMC4880156 DOI: 10.1210/jc.2016-1016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CONTEXT Age-related decline in serum testosterone (T) is being increasingly diagnosed. In most men, it associates with low or inappropriately normal gonadotropin levels, which suggests a hypothalamic-pituitary etiology. Autoantibodies against adenohypophyseal cells have been associated with pituitary dysfunction; however, the prevalence of pituitary autoimmunity in this age-related T decline has not been assessed. OBJECTIVES This is a proof-of-concept study with the objective of determining the prevalence of antibodies to gonadotrophs in older men with age-related low T and compare it with healthy young and older eugonadal men. STUDY DESIGN This is a cross-sectional case-control study of 182 men. Cases included 100 older men (≥65 years) with age-related low T levels; the control groups were composed of 50 young and 32 older healthy eugonadal men. Serum antibodies against the anterior pituitary gland were measured using a two-step approach: 1) single indirect immunofluorescence (ie, participant serum only) to determine the pattern of cytosolic staining; and 2) double indirect immunofluorescence (ie, participant serum plus a commercial adenohypophyseal hormone antibody) to identify the anterior pituitary cell type recognized by the patient's antibodies). RESULTS In participants with positive antipituitary antibodies, the granular cytosolic pattern (highly predictive of pituitary autoimmunity) was only seen in older men with age-related low T (4%) and none in control groups (0%, P = .001). Double indirect immunofluorescence confirmed that pituitary antibodies were exclusively directed against the gonadotrophs. CONCLUSION A subset of older men with age-related low T levels have specific antibodies against the gonadotrophs. Whether these antibodies are pathogenic and contributory to the age-related decline in T remains to be established.
Collapse
|
32
|
Zhang G, Li S, Kang Y, Che J, Cui R, Song S, Cui H, Shi G. Enhancement of dopaminergic activity and region-specific activation of Nrf2-ARE pathway by intranasal supplements of testosterone propionate in aged male rats. Horm Behav 2016; 80:103-116. [PMID: 26893122 DOI: 10.1016/j.yhbeh.2016.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 02/13/2016] [Accepted: 02/13/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED The potential influence of intranasal testosterone propionate (InTP) supplements on mesodopaminergic system in aged male rats was investigated by analyzing the exploratory and motor behaviors as well as dopamine neurobiochemical indices. Meanwhile, oxidative stress parameters and pathway of nuclear factor erythroid 2-related factor 2 (Nrf2)-binding antioxidant response elements (Nrf2-ARE) were examined to check whether the Nrf2-ARE pathway was involved in the InTP-induced alteration of mesodopaminergic system in aged male rats. The exploratory and motor behavioral deficits, as well as the reduced expression of dopamine, tyrosine hydroxylase, and dopamine transporter, which indicated the declined activity of mesodopaminergic system, were ameliorated in rats administered with 12-week InTP. The results indicated that chronic InTP supplements could effectively influence the brain function activity in a way opposite to the effect of aging on the mesodopaminergic system of rats. The increased levels of Nrf2, heme oxygenase-1, and NAD(P)H quinone oxidoreductase-1 in the substantia nigra and ventral tegmental area, but not in the hippocampus of InTP-administered aged male rats, indicated that the ameliorative effect of InTP supplements on mesodopaminergic system might be related to the region-specific activation of the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Shuangcheng Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yunxiao Kang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Jing Che
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, PR China
| | - Rui Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Shuang Song
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
33
|
Deficits in coordinated motor behavior and in nigrostriatal dopaminergic system ameliorated and VMAT2 expression up-regulated in aged male rats by administration of testosterone propionate. Exp Gerontol 2016; 78:1-11. [PMID: 26956479 DOI: 10.1016/j.exger.2016.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
The effects of testosterone propionate (TP) supplements on the coordinated motor behavior and nigrostriatal dopaminergic (NSDA) system were analyzed in aged male rats. The present study showed the coordinated motor behavioral deficits, the reduced activity of NSDA system and the decreased expression of vesicular monoamine transporter 2 (VMAT2) in 24 month-old male rats. Long term TP treatment improved the motor coordination dysfunction with aging. Increased tyrosine hydroxylase and dopamine transporter, as well as dopamine and its metabolites were found in the NSDA system of TP-treated 24 month-old male rats, indicative of the amelioratory effects of TP supplements on NSDA system of aged male rats. The enhancement of dopaminergic (DAergic) activity of NSDA system by TP supplements might underlie the amelioration of the coordinated motor dysfunction in aged male rats. TP supplements up-regulated VMAT2 expression in NSDA system of aged male rats. Up-regulation of VMAT2 expression in aged male rats following chronic TP treatment might be involved in the maintenance of DAergic function of NSDA system in aged male rats.
Collapse
|
34
|
Perez APS, Biancardi MF, Caires CRS, Falleiros-Junior LR, Góes RM, Vilamaior PSL, Santos FCA, Taboga SR. Prenatal exposure to ethinylestradiol alters the morphologic patterns and increases the predisposition for prostatic lesions in male and female gerbils during ageing. Int J Exp Pathol 2016; 97:5-17. [PMID: 26852889 DOI: 10.1111/iep.12153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
Ethinylestradiol (EE) is an endocrine disruptor (ED) which acts as an oestrogen agonist; this compound is known as an oral contraceptive. Male and female rodents exposed to EE during critical time points of development, such as in the prenatal period, show alterations in their reproductive tract during adulthood. Few studies have placed an emphasis on the effects of EE during ageing. Thus, this study had as it's objective the analysis of the morphological and immunohistochemical effects of exposure to EE in the prenatal period on ventral male prostate and female prostate of gerbils (Meriones unguiculatus) during ageing. The animals were exposed to EE (15 μg/kg/day) during the 18-22th days of prenatal life (EE/PRE group), and the analyses were performed when the male and female reached 12 months of age. Our results showed an increase in the development of prostatic intraepithelial neoplasia (PIN), which was observed in the male and female prostate of EE/PRE groups. Immunohistochemistry showed a rise in prostatic epithelial and basal cells immunoreactivity, respectively, and to AR and p63 in the male EE/PRE. There were alterations in the morphological pattern of the prostatic glands and increase in predisposition to emergence of prostatic lesions of both sexes during ageing. Despite male and female having been exposed to the same doses of EE, the "exposure to EE promoted modifications" more accentuated in the male prostate. Thus the male gland is more sensitive to the action of this synthetic oestrogen than the female prostate.
Collapse
Affiliation(s)
- Ana P S Perez
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas -UNICAMP, Campinas, São Paulo, Brazil
| | - Manoel F Biancardi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas -UNICAMP, Campinas, São Paulo, Brazil
| | - Cássia R S Caires
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Luiz R Falleiros-Junior
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Rejane M Góes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas -UNICAMP, Campinas, São Paulo, Brazil.,Department of Biology, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Fernanda C A Santos
- Department of Morphology, Federal University of Goiás - UFG, Goiânia, Goiás, Brazil
| | - Sebastião R Taboga
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas -UNICAMP, Campinas, São Paulo, Brazil.,Department of Biology, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
35
|
Krysiak R, Kowalska B, Szkróbka W, Okopień B. A neutral effect of testosterone therapy on macroprolactin content in men with macroprolactinemia and late-onset hypogonadism. Pharmacol Rep 2016; 68:139-43. [PMID: 26721365 DOI: 10.1016/j.pharep.2015.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND In the light of recent studies, macroprolactinemia seems to occur much more frequently than previously thought. In women, oral contraceptive pills exhibit a stimulatory effect on macroprolactin production. No previous study has investigated macroprolactin levels in androgen-treated hypogonadal men. METHODS We studied 10 men with isolated macroprolactinemia and 14 men with normal prolactin levels who because of late-onset hypogonadism were treated with intramuscular testosterone enanthate. Serum prolactin, macroprolactin content, serum testosterone and gonadotropin levels were assessed at baseline and after 4 months of therapy. RESULTS Although baseline levels of testosterone and gonadotropins were similar in men with and without macroprolactinemia, clinical symptoms were more severe in patients with elevated big-big prolactin levels. As expected, testosterone treatment increased serum testosterone, slightly reduced serum gonadotropins, as well as improved clinical condition in both patients with and without macroprolactinemia, with no difference between the groups. However, testosterone therapy did not affect serum prolactin and macroprolactin content, even after replacing intramuscular testosterone enanthate with oral testosterone undecanoate. CONCLUSIONS Our results suggest a negligible effect of testosterone replacement on macroprolactin levels in macroprolactinemic men with late-onset hypogonadism.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland.
| | - Beata Kowalska
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland; Department of Endocrinology, Provincial Hospital, Opole, Poland
| | - Witold Szkróbka
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
36
|
Lowenstine LJ, McManamon R, Terio KA. Comparative Pathology of Aging Great Apes: Bonobos, Chimpanzees, Gorillas, and Orangutans. Vet Pathol 2015; 53:250-76. [PMID: 26721908 DOI: 10.1177/0300985815612154] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The great apes (chimpanzees, bonobos, gorillas, and orangutans) are our closest relatives. Despite the many similarities, there are significant differences in aging among apes, including the human ape. Common to all are dental attrition, periodontitis, tooth loss, osteopenia, and arthritis, although gout is uniquely human and spondyloarthropathy is more prevalent in apes than humans. Humans are more prone to frailty, sarcopenia, osteoporosis, longevity past reproductive senescence, loss of brain volume, and Alzheimer dementia. Cerebral vascular disease occurs in both humans and apes. Cardiovascular disease mortality increases in aging humans and apes, but coronary atherosclerosis is the most significant type in humans. In captive apes, idiopathic myocardial fibrosis and cardiomyopathy predominate, with arteriosclerosis of intramural coronary arteries. Similar cardiac lesions are occasionally seen in wild apes. Vascular changes in heart and kidneys and aortic dissections in gorillas and bonobos suggest that hypertension may be involved in pathogenesis. Chronic kidney disease is common in elderly humans and some aging apes and is linked with cardiovascular disease in orangutans. Neoplasms common to aging humans and apes include uterine leiomyomas in chimpanzees, but other tumors of elderly humans, such as breast, prostate, lung, and colorectal cancers, are uncommon in apes. Among the apes, chimpanzees have been best studied in laboratory settings, and more comparative research is needed into the pathology of geriatric zoo-housed and wild apes. Increasing longevity of humans and apes makes understanding aging processes and diseases imperative for optimizing quality of life in all the ape species.
Collapse
Affiliation(s)
- L J Lowenstine
- Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA Mountain Gorilla Veterinary Project-Gorilla Doctors, Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - R McManamon
- Zoo and Exotic Animal Pathology Service, Infectious Diseases Laboratory, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - K A Terio
- Zoological Pathology Program, University of Illinois College of Veterinary Medicine, Maywood, IL, USA
| |
Collapse
|
37
|
Baburski AZ, Sokanovic SJ, Janjic MM, Stojkov-Mimic NJ, Bjelic MM, Andric SA, Kostic TS. Melatonin replacement restores the circadian behavior in adult rat Leydig cells after pinealectomy. Mol Cell Endocrinol 2015; 413:26-35. [PMID: 26116827 DOI: 10.1016/j.mce.2015.05.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 12/13/2022]
Abstract
Melatonin actions on oscillators in reproductive organs are poorly understood. Here we analyzed melatonin effects on rhythmic expression of clock and steroidogenesis-related genes in adult rat Leydig cells (LCs). The effect of melatonin was tested both in vivo using pinealectomized and melatonin-substituted rats and in vitro on isolated LCs. Data revealed 24-h-rhythmic expression of clock genes (Bmal1, Per1,2,3, Rev-erba,b, Rorb), steroidogenic genes (Star, Cyp11a1, Cyp17a1), and genes of steroidogenic regulators (positive-Nur77, negative-Arr19). Pinealectomy increased 24-h-oscillations of serum testosterone and LC's cAMP levels, expression of Insl3, Per1, Star/StAR, Hsd3b1/2, Nur77, decreased Arr19 and canceled Per2 oscillatory expression pattern. At hypothalamic-pituitary level, pinealectomy increased mesor of Gnrh, Lhb and rhythm robustness of Mntr1a expression. All parameters disturbed were restored by melatonin-replacement. In vitro studies did not confirm direct melatonin effects on neither clock nor steroidogenic genes. Accordingly, melatonin influence 24-h-rhythmic LC-function likely through hypothalamic-pituitary axis and consequently cAMP-signaling in LCs.
Collapse
Affiliation(s)
- Aleksandar Z Baburski
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Srdjan J Sokanovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Marija M Janjic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Natasa J Stojkov-Mimic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Maja M Bjelic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Silvana A Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana S Kostic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|
38
|
Krysiak R, Gilowski W, Okopień B. The effect of testosterone on cardiometabolic risk factors in atorvastatin-treated men with late-onset hypogonadism. Pharmacol Rep 2015; 68:196-200. [PMID: 26721373 DOI: 10.1016/j.pharep.2015.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/29/2015] [Accepted: 08/12/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND By reducing LDL cholesterol levels, statins may decrease androgen production. This study was aimed at investigating whether testosterone treatment has an impact on cardiometabolic risk factors in statin-treated men with late-onset hypogonadism (LOH). METHODS The study included 31 men with LOH who had been treated for at least 6 months with atorvastatin (20-40mg daily). On the basis of patient preference, atorvastatin-treated patients were divided into two matched groups of patients: receiving intramuscular testosterone enanthate (100mg weekly, n=16) and not treated with this hormone (n=15). Plasma lipids, glucose homeostasis markers, as well as plasma levels of androgens, uric acid, high-sensitivity C-reactive protein (hsCRP), homocysteine, and fibrinogen were assessed before and after 4 months of therapy. RESULTS Compared with the control age-, weight, and lipid-matched statin-naïve subjects with LOH (n=12), atorvastatin-treated patients were characterized by decreased levels of testosterone, hsCRP, and homocysteine. In patients not receiving testosterone therapy, plasma lipids, glucose homeostasis markers, as well as plasma levels of the investigated risk factors remained at the similar levels throughout the whole period of atorvastatin treatment. In atorvastatin-naïve patients, testosterone increased its plasma levels and decreased HDL cholesterol. Apart from an increase in testosterone levels, if administered to atorvastatin-treated subjects with LOH, testosterone reduced plasma levels of LDL cholesterol, uric acid, hsCRP, homocysteine, and fibrinogen, as well as improved insulin sensitivity. CONCLUSIONS Our study may suggest the clinical benefits associated with combination therapy with a statin and testosterone in elderly men with LOH.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland.
| | - Wojciech Gilowski
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland; Cardiology Department, Chrzanow District Hospital, Chrzanów, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
39
|
The effect of testosterone on cardiovascular risk factors in men with type 2 diabetes and late-onset hypogonadism treated with metformin or glimepiride. Pharmacol Rep 2015; 68:75-9. [PMID: 26721356 DOI: 10.1016/j.pharep.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Men with type 2 diabetes are often characterized by abnormal plasma testosterone levels. This study was aimed at investigating whether testosterone treatment has an impact on cardiovascular risk factors in patients with type 2 diabetes and late-onset hypogonadism (LOH), chronically treated with hypoglycemic agents. METHODS This study included 51 men with type 2 diabetes, 26 of whom had already been treated with metformin and 25 with glimepiride for at least 6 months. On the basis of patient preference, 15 men receiving metformin and 12 receiving glimepiride were treated with intramuscular testosterone enanthate (100mg weekly) for 12 weeks. Plasma lipids, glucose homeostasis markers, as well as plasma levels of androgens, uric acid, high-sensitivity C-reactive protein (hsCRP), homocysteine and fibrinogen were determined before and at the end of the study. RESULTS With the exception of insulin sensitivity, plasma hsCRP and homocysteine, there were no differences between patients treated with metformin and glimepiride. Testosterone enanthate administered to both groups of patients increased plasma testosterone, reduced plasma hsCRP and improved insulin sensitivity. Testosterone-metformin combination therapy reduced also circulating levels of uric acid, homocysteine and fibrinogen. These effects, stronger in patients treated with metformin than glimepiride, correlated with the impact of testosterone on insulin sensitivity. CONCLUSIONS Our results suggest that testosterone may bring more clinical benefits to metformin- than sulfonylurea-treated men with diabetes and LOH.
Collapse
|
40
|
Celec P, Ostatníková D, Hodosy J. On the effects of testosterone on brain behavioral functions. Front Neurosci 2015; 9:12. [PMID: 25741229 PMCID: PMC4330791 DOI: 10.3389/fnins.2015.00012] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023] Open
Abstract
Testosterone influences the brain via organizational and activational effects. Numerous relevant studies on rodents and a few on humans focusing on specific behavioral and cognitive parameters have been published. The results are, unfortunately, controversial and puzzling. Dosing, timing, even the application route seem to considerably affect the outcomes. In addition, the methods used for the assessment of psychometric parameters are a bit less than ideal regarding their validity and reproducibility. Metabolism of testosterone contributes to the complexity of its actions. Reduction to dihydrotestosterone by 5-alpha reductase increases the androgen activity; conversion to estradiol by aromatase converts the androgen to estrogen activity. Recently, the non-genomic effects of testosterone on behavior bypassing the nuclear receptors have attracted the interest of researchers. This review tries to summarize the current understanding of the complexity of the effects of testosterone on brain with special focus on their role in the known sex differences.
Collapse
Affiliation(s)
- Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University Bratislava, Slovakia ; Center for Molecular Medicine, Slovak Academy of Sciences Bratislava, Slovakia ; Institute of Pathophysiology, Faculty of Medicine, Comenius University Bratislava, Slovakia ; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University Bratislava, Slovakia
| | - Daniela Ostatníková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University Bratislava, Slovakia ; Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University Bratislava, Slovakia ; Center for Molecular Medicine, Slovak Academy of Sciences Bratislava, Slovakia ; Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Slovakia
| |
Collapse
|
41
|
Cornelius C, Graziano A, Calabrese EJ, Calabrese V. Hormesis and vitagenes in aging and longevity: mitochondrial control and hormonal regulation. Horm Mol Biol Clin Investig 2015; 16:73-89. [PMID: 25436749 DOI: 10.1515/hmbci-2013-0051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/16/2013] [Indexed: 12/21/2022]
Abstract
Abstract Average life span has increased because of medical and environmental factors, but maximal life span remains unchanged. Understanding the mechanisms of aging will help to reduce age-related morbidity and facilitate healthy aging. Unlike female menopause, which is accompanied by an abrupt and permanent cessation of ovarian function (both folliculogenesis and estradiol production), male aging does not result in either cessation of testosterone production or infertility. Although the circulating serum testosterone concentration does decline with aging, in most men this decrease is small, resulting in levels that are generally within the normal range. Age-related hypogonadism has been referred to as andropause or late-onset hypogonadism (LOH), with LOH considered to be the most suitable term for this condition. Hormone therapy (HT) trials have caused both apprehension and confusion about the overall risks and benefits associated with HT treatment. During aging, a gradual decline in the potency of the heat shock response occurs, and this may prevent the repair of protein damage. Thus, the interest in developing pharmacological agents capable of inducing stress responses is growing within the broad frame of hormesis, which underlie strategies for optimal patient treatment of numerous diseases. Vitagenes encode for heat shock proteins, thioredoxin, and sirtuin protein systems. Nutritional antioxidants have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. Here, we focus on possible signaling mechanisms involved in the activation of vitagenes resulting in enhanced defense against bioenergetic defects leading to degeneration and cell death with consequent impact on longevity processes.
Collapse
|
42
|
Vatti SK, Madanieh R, Madanieh A, Kosmas CE, Vittorio TJ. Cardiovascular Benefits of Testosterone Replacement Therapy in the Andropausal Male. Health (London) 2015. [DOI: 10.4236/health.2015.79135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Calabrese V, Scapagnini G, Davinelli S, Koverech G, Koverech A, De Pasquale C, Salinaro AT, Scuto M, Calabrese EJ, Genazzani AR. Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. J Cell Commun Signal 2014; 8:369-84. [PMID: 25381162 PMCID: PMC4390801 DOI: 10.1007/s12079-014-0253-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/21/2014] [Indexed: 12/25/2022] Open
Abstract
Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones, such as cortisol and thyroid hormones which remain stable and hormones with anabolic effects (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Deficiencies in multiple anabolic hormones have been shown to predict health status and longevity in older persons.Unlike female menopause, which is accompanied by an abrupt and permanent cessation of ovarian function (both folliculogenesis and estradiol production), male aging does not result in either cessation of testosterone production nor infertility. Although the circulating serum testosterone concentration does decline with aging, in most men this decrease is small, resulting in levels that are generally within the normal range. Hormone therapy (HT) trials have caused both apprehension and confusion about the overall risks and benefits associated with HT treatment. Stress-response hormesis from a molecular genetic perspective corresponds to the induction by stressors of an adaptive, defensive response, particularly through alteration of gene expression. Increased longevity can be associated with greater resistance to a range of stressors. During aging, a gradual decline in potency of the heat shock response occur and this may prevent repair of protein damage. Conversely, thermal stress or pharmacological agents capable of inducing stress responses, by promoting increased expression of heat-shock proteins, confer protection against denaturation of proteins and restoration of proteome function. If induction of stress resistance increases life span and hormesis induces stress resistance, hormesis most likely result in increased life span. Hormesis describes an adaptive response to continuous cellular stresses, representing a phenomenon where exposure to a mild stressor confers resistance to subsequent, otherwise harmful, conditions of increased stress. This biphasic dose-response relationship, displaying low-dose stimulation and a high-dose inhibition, as adaptive response to detrimental lifestyle factors determines the extent of protection from progression to metabolic diseases such as diabetes and more in general to hormonal dysregulation and age-related pathologies. Integrated responses exist to detect and control diverse forms of stress. This is accomplished by a complex network of the so-called longevity assurance processes, which are composed of several genes termed vitagenes. Vitagenes encode for heat shock proteins (Hsps), thioredoxin and sirtuin protein systems. Nutritional antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways under control of Vitagene protein network. Here we focus on possible signaling mechanisms involved in the activation of vitagenes resulting in enhanced defense against functional defects leading to degeneration and cell death with consequent impact on longevity processes.
Collapse
Affiliation(s)
- V Calabrese
- Department of Biomedical Sciences, University of Catania, Via Andrea Doria, 95100, Catania, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sokanovic SJ, Janjic MM, Stojkov NJ, Baburski AZ, Bjelic MM, Andric SA, Kostic TS. Age related changes of cAMP and MAPK signaling in Leydig cells of Wistar rats. Exp Gerontol 2014; 58:19-29. [PMID: 25019473 DOI: 10.1016/j.exger.2014.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/14/2022]
Abstract
Here, we chronologically analyzed age-associated changes of cAMP- and MAPK-signaling in Leydig cells (LCs) in relation with decreased testosterone (T) production. In Wistar rats, decreased serum T observed in 12 to 24-month-old rats was not related to decreased serum LH concentration but to reduced luteinizing hormone receptor (Lhr/LHR) and time-coordinated reduction of steroidogenic gene expression (decreased Cyp11a1, Cyp17a1 in 12-month-old rats followed by decreased Star/StAR, Hsd3b/HSD3B, Hsd17b4, and increased Cyp19a1 later in life). The predecessors of age-related changes noted in LCs from 6 to 12-month-old rats were increased level of soluble adenylate cyclase (Adcy/AC) 10, increased JNK phosphorylation but suppressed P38 MAPK. At approximately the same time changed mRNA abundance for transcription factors important for steroidogenesis was detected (increased Nur77 and decreased Sf1, Dax1). Aging caused biphasic expression pattern of ERK1/2 and Nur77: increased in 12-month but decreased in LCs from 24-month-old rats. Further, decreased basal cAMP level observed from 12 to 24th month coincidence with increased expression of cAMP-specific phosphodiesterase (Pde)4a, Pde4b and regulatory subunit of protein kinase A (Prkar/PKAR). Exposing of senescent LCs to permeable cAMP-analog improved transcription of Sf1, Nur77, Star, Cyp11a1,Cyp17a1, but without effect on aging pattern of Dax1, Pde4a/b, Prkar2a, Lhr and MAPK genes. Collectively, results indicated that age-related LC dysfunction is accompanied with changes in MAPK and cAMP signaling and coordinated reduction in the expression of many of the genes that participate in T synthesis. The predecessors of aged-related changes are increased ratio of pJNK/JNK, AC10 and decreased P38 level in LCs from 6-month-old rats.
Collapse
Affiliation(s)
- S J Sokanovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - M M Janjic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - N J Stojkov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - A Z Baburski
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - M M Bjelic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - S A Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - T S Kostic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|
45
|
Abstract
OBJECTIVE The past decade has seen a surge in referrals of older men for consideration of testosterone therapy for late-onset hypogonadism (LOH) to treat symptoms such as fatigue, sexual dysfunction and decreased vitality. Prescription sales of testosterone have accordingly increased by 20-fold over the same period, due mainly to marketing campaign as well as to the failure of clinicians to distinguish organic hypogonadism from LOH. This review seeks to provide a counter-rationale for testosterone therapy in LOH. METHODS A retrospective review of English-language epidemiologic studies, clinical trials and their relevant cited studies related to testosterone and older men was carried out. RESULTS Shortcomings of population studies on LOH include use of multiple numeric definitions and non-standard testosterone assays, and measurement of testosterone at a single time point. In contrast to higher estimates of prevalence based solely on numeric values, the syndromic prevalence of LOH is only 2%. Although attrition of testicular Leydig cells and slowing of gonadotropin-releasing hormone neurons both contribute to LOH, obesity and other comorbidities strongly influence testosterone levels, suggesting that testosterone is a biomarker of health. Testosterone therapy in LOH has consistently resulted in improvements in muscle mass and strength, although data regarding effects on physical function and improvements in fall and fracture rates remain unknown. Eythrocytosis is the most common adverse effect of testosterone therapy in older men, while long-term risks in the prostate and cardiovascular system remain unclear. CONCLUSION Considering the paucity of data on clinically meaningful outcomes, the number of uncertain risks, and the fact that modifiable risk factors adversely influence testosterone levels, healthy lifestyle and treatment of comorbidities might attenuate age-related declines in testosterone levels.
Collapse
Affiliation(s)
- Shehzad Basaria
- Section on Men's Health, Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
Basaria S. Need for standardising adverse event reporting in testosterone trials. ACTA ACUST UNITED AC 2013; 19:32-3. [DOI: 10.1136/eb-2013-101402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|