1
|
Yadav A, Verma K, Singh K, Tyagi S, Kori L, Bharti PK. Analysis of diagnostic biomarkers for malaria: Prospects on rapid diagnostic test (RDT) development. Microb Pathog 2024; 196:106978. [PMID: 39321969 DOI: 10.1016/j.micpath.2024.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/20/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Accurate malaria diagnosis remains a formidable challenge in remote regions of malaria-endemic areas globally. Existing diagnostic methods predominantly rely on microscopy and rapid diagnostic tests (RDTs). While RDTs offer advantages such as rapid results and reduced dependence on highly skilled technicians compared to microscopy, persistent challenges emphasize the critical need to identify novel diagnostic biomarkers to further enhance RDT based malaria diagnosis. This comprehensive review presents a range of promising diagnostic targets. These targets could be useful in developing more robust, accurate, and effective diagnostic tools. Such tools are crucial for the detection of the Plasmodium falciparum (P.falcipaum) malaria parasite. The potential biomarkers discussed here significantly address the challenges posed by HRP2 gene deletion in P.falciparum. Researchers, RDT manufacturers, industrial and other stakeholders involved in malaria diagnosis can harness the crucial information described in this article, to drive the development of advanced RDTs as viable alternatives. By diversifying the available tools for diagnosis, we can attempt to enhance our ability to knock out malaria effectively and contribute to better health outcomes for people residing in malaria-endemic regions. This review serves as a valuable resource for advancing research and development in the field of malaria diagnostics, ultimately aiding to the global fight against this devastating ancient disease.
Collapse
Affiliation(s)
- Ankit Yadav
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus Sector-19, Ghaziabad, U.P, India
| | - Kanika Verma
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Kuldeep Singh
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Suchi Tyagi
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Lokesh Kori
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Praveen Kumar Bharti
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus Sector-19, Ghaziabad, U.P, India.
| |
Collapse
|
2
|
Yadem AC, Armstrong JN, Sarimollaoglu M, Kiki Massa C, Ndifo JM, Menyaev YA, Mbe A, Richards K, Wade M, Zeng Y, Chen R, Zhou Q, Meten E, Ntone R, Tchuedji YLGN, Ullah S, Galanzha EI, Eteki L, Gonsu HK, Biris A, Suen JY, Boum Y, Zharov VP, Parikh S. Noninvasive in vivo photoacoustic detection of malaria with Cytophone in Cameroon. Nat Commun 2024; 15:9228. [PMID: 39455558 PMCID: PMC11511992 DOI: 10.1038/s41467-024-53243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Current malaria diagnostics are invasive, lack sensitivity, and rapid tests are plagued by deletions in target antigens. Here we introduce the Cytophone, an innovative photoacoustic flow cytometer platform with high-pulse-rate lasers and a focused ultrasound transducer array to noninvasively detect and identify malaria-infected red blood cells (iRBCs) using specific wave shapes, widths, and time delays generated from the absorbance of laser energy by hemozoin, a universal biomarker of malaria infection. In a population of Cameroonian adults with uncomplicated malaria, we assess our device for safety in a cross-sectional cohort (n = 10) and conduct a performance assessment in a longitudinal cohort (n = 20) followed for 30 ± 7 days after clearance of parasitemia. Longitudinal cytophone measurements are compared to point-of-care and molecular assays (n = 94). Cytophone is safe with 90% sensitivity, 69% specificity, and a receiver-operator-curve-area-under-the-curve (ROC-AUC) of 0.84, as compared to microscopy. ROC-AUCs of Cytophone, microscopy, and RDT compared to quantitative PCR are not statistically different from one another. The ability to noninvasively detect iRBCs in the bloodstream is a major advancement which offers the potential to rapidly identify both the large asymptomatic reservoir of infection, as well as diagnose symptomatic cases without the need for a blood sample.
Collapse
Affiliation(s)
| | | | - Mustafa Sarimollaoglu
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | | | | | - Yulian A Menyaev
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Anastasie Mbe
- Epicentre, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | | | - Martina Wade
- Yale School of Public Health, New Haven, CT, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Ruimin Chen
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Elvis Meten
- Epicentre, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | | | | | - Safi Ullah
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
| | - Ekaterina I Galanzha
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | | | | | - Alexandru Biris
- Department of Applied Science & Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock (UALR), Little Rock, AR, USA
| | - James Y Suen
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Applied Science & Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock (UALR), Little Rock, AR, USA
| | - Yap Boum
- Epicentre, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | - Vladimir P Zharov
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA.
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA.
| | - Sunil Parikh
- Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
3
|
Dong L, Xu Q, Shen L, Cao R, Deng X, Chen J, Jiang H, Guan M. EasyNAT Malaria: a simple, rapid method to detect Plasmodium species using cross-priming amplification technology. Microbiol Spectr 2024; 12:e0058324. [PMID: 38869308 PMCID: PMC11302059 DOI: 10.1128/spectrum.00583-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Malaria infection remains a serious threat to human health worldwide. Rapid and accurate detection technology is crucial for preventing malaria transmission and minimizing damage. We aimed to establish and validate a new rapid molecular detection method for malaria, called EasyNAT Malaria Assay, targeting Plasmodium vivax, Plasmodium falciparum, Plasmodium ovale, and Plasmodium malariae. The analytical performance of EasyNAT Malaria Assay was determined using positive materials. We identified 42 clinical samples as malaria positive and 95 negative samples. Each sample was examined by four methods: light microscopy, rapid diagnostic test, EasyNAT Malaria Assay, and digital PCR. Diagnostic accuracy and clinical performance were evaluated. The limit of detection (LOD)95% of EasyNAT Malaria was consistently 40 parasites/mL. It specifically amplified Plasmodium and performed with reliable repeatability and reproducibility. In 137 clinical samples, EasyNAT Malaria detected four more positive samples than microscopic examination and two more positive samples than rapid diagnostic test (RDT). One clinical sample was positive only under digital PCR. However, no significant differences statistically in sensitivity or specificity were observed. Compared with microscopy, the total, positive, and negative concordance rates of EasyNAT were 97.08%, 100%, and 95.79%, respectively. Enhanced diagnostic accuracy of EasyNAT Malaria in patients who had taken anti-malarial medication before their clinical appointment was observed. The EasyNAT Malaria Assay has good detection efficiency for clinical samples, presents a promising molecular detection tool in clinical practice, and is particularly suitable for rapid screening of high-risk populations in the emergency room. IMPORTANCE This study established and validated EasyNAT Malaria Assay as a promising molecular detection tool for malaria screening of high-risk populations in clinical practice. This novel isothermal amplification method may effectively facilitate the rapid diagnosis of malaria and prevent its transmission.
Collapse
Affiliation(s)
- Liu Dong
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianqian Xu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Linjie Shen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruoshui Cao
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuan Deng
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Kua KP, Lee SWH, Chongmelaxme B. The impact of home-based management of malaria on clinical outcomes in sub-Saharan African populations: a systematic review and meta-analysis. Trop Med Health 2024; 52:7. [PMID: 38191459 PMCID: PMC10773121 DOI: 10.1186/s41182-023-00572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Malaria remains a significant cause of morbidity and mortality globally and continues to disproportionately afflict the African population. We aimed to evaluate the effect of home management of malaria intervention on health outcomes. METHODS In our systematic review and meta-analysis, six databases (Pubmed, Cochrane CENTRAL, EMBASE, CAB Abstracts and Global Health, CINAHL Complete, and BIOSIS) were searched for studies of home management of malaria from inception until November 15, 2023. We included before-after studies, observational studies, and randomised controlled trials of home management intervention delivered in community settings. The primary outcomes were malaria mortality and all-cause mortality. The risk of bias in individual observational studies was assessed using the ROBINS-I tool, whilst randomised controlled trials were judged using a revised Cochrane risk of bias tool and cluster-randomised controlled trials were evaluated using an adapted Cochrane risk of bias tool for cluster-randomised trials. We computed risk ratios with accompanying 95% confidence intervals for health-related outcomes reported in the studies and subsequently pooled the results by using a random-effects model (DerSimonian-Laird method). RESULTS We identified 1203 citations through database and hand searches, from which 56 articles from 47 studies encompassing 234,002 participants were included in the systematic review. All studies were conducted in people living in sub-Saharan Africa and were rated to have a low or moderate risk of bias. Pooled analyses showed that mortality rates due to malaria (RR = 0.40, 95% CI = 0.29-0.54, P = 0.00001, I2 = 0%) and all-cause mortality rates (RR = 0.62, 95% CI = 0.53-0.72, P = 0.00001, I2 = 0%) were significantly lower among participants receiving home management intervention compared to the control group. However, in children under 5 years of age, there was no significant difference in mortality rates before and after implementation of home management of malaria. In terms of secondary outcomes, home management of malaria was associated with a reduction in the risk of febrile episodes (RR = 1.27, 95% CI = 1.09-1.47, P = 0.002, I2 = 97%) and higher effective rates of antimalarial treatments (RR = 2.72, 95% CI = 1.90-3.88, P < 0.00001, I2 = 96%) compared to standard care. Home malaria management combined with intermittent preventive treatment showed a significantly lower incidence risk of malaria than home management intervention that exclusively provided treatment to individuals with febrile illness suggestive of malaria. The risks for adverse events were found to be similar for home management intervention using different antimalarial drugs. Cost-effectiveness findings depicted that home malaria management merited special preferential scale-up. CONCLUSIONS Home management of malaria intervention was associated with significant reductions in malaria mortality and all-cause mortality. The intervention could help decrease health and economic burden attributable to malaria. Further clinical studies are warranted to enable more meaningful interpretations with regard to wide-scale implementation of the intervention, settings of differing transmission intensity, and new antimalarial drugs.
Collapse
Affiliation(s)
- Kok Pim Kua
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, 94305, USA
- MIT Alumni Association, Massachusetts Institute of Technology, Cambridge, MA, 02139-4822, USA
- Pharmacy Unit, Puchong Health Clinic, Petaling District Health Office, Ministry of Health Malaysia, 47100, Puchong, Selangor, Malaysia
- A.S. Watson Group, Watson's Personal Care Stores, 55188, Kuala Lumpur, Malaysia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
- Asian Center for Evidence Synthesis in Population, Implementation, and Clinical Outcomes (PICO), Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
- Gerontechnology Laboratory, Global Asia in the 21st Century (GA21) Platform, Monash University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
- Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Lakeside CampusSelangor, Malaysia
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bunchai Chongmelaxme
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Calderaro A, Piccolo G, Chezzi C. The Laboratory Diagnosis of Malaria: A Focus on the Diagnostic Assays in Non-Endemic Areas. Int J Mol Sci 2024; 25:695. [PMID: 38255768 PMCID: PMC10815132 DOI: 10.3390/ijms25020695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Even if malaria is rare in Europe, it is a medical emergency and programs for its control should ensure both an early diagnosis and a prompt treatment within 24-48 h from the onset of the symptoms. The increasing number of imported malaria cases as well as the risk of the reintroduction of autochthonous cases encouraged laboratories in non-endemic countries to adopt diagnostic methods/algorithms. Microscopy remains the gold standard, but with limitations. Rapid diagnostic tests have greatly expanded the ability to diagnose malaria for rapid results due to simplicity and low cost, but they lack sensitivity and specificity. PCR-based assays provide more relevant information but need well-trained technicians. As reported in the World Health Organization Global Technical Strategy for Malaria 2016-2030, the development of point-of-care testing is important for the improvement of diagnosis with beneficial consequences for prompt/accurate treatment and for preventing the spread of the disease. Despite their limitations, diagnostic methods contribute to the decline of malaria mortality. Recently, evidence suggested that artificial intelligence could be utilized for assisting pathologists in malaria diagnosis.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (G.P.); (C.C.)
| | | | | |
Collapse
|
6
|
Tripathi H, Bhalerao P, Singh S, Arya H, Alotaibi BS, Rashid S, Hasan MR, Bhatt TK. Malaria therapeutics: are we close enough? Parasit Vectors 2023; 16:130. [PMID: 37060004 PMCID: PMC10103679 DOI: 10.1186/s13071-023-05755-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Malaria is a vector-borne parasitic disease caused by the apicomplexan protozoan parasite Plasmodium. Malaria is a significant health problem and the leading cause of socioeconomic losses in developing countries. WHO approved several antimalarials in the last 2 decades, but the growing resistance against the available drugs has worsened the scenario. Drug resistance and diversity among Plasmodium strains hinder the path of eradicating malaria leading to the use of new technologies and strategies to develop effective vaccines and drugs. A timely and accurate diagnosis is crucial for any disease, including malaria. The available diagnostic methods for malaria include microscopy, RDT, PCR, and non-invasive diagnosis. Recently, there have been several developments in detecting malaria, with improvements leading to achieving an accurate, quick, cost-effective, and non-invasive diagnostic tool for malaria. Several vaccine candidates with new methods and antigens are under investigation and moving forward to be considered for clinical trials. This article concisely reviews basic malaria biology, the parasite's life cycle, approved drugs, vaccine candidates, and available diagnostic approaches. It emphasizes new avenues of therapeutics for malaria.
Collapse
Affiliation(s)
- Himani Tripathi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Preshita Bhalerao
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Sujeet Singh
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia.
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| |
Collapse
|
7
|
Tan AF, Thota P, Sakam SSB, Lew YL, Rajahram GS, William T, Barber BE, Kho S, Anstey NM, Bell D, Grigg MJ. Evaluation of a point-of-care haemozoin assay (Gazelle device) for rapid detection of Plasmodium knowlesi malaria. Sci Rep 2023; 13:4760. [PMID: 36959462 PMCID: PMC10036474 DOI: 10.1038/s41598-023-31839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Plasmodium knowlesi is the major cause of zoonotic malaria in Southeast Asia. Rapid and accurate diagnosis enables effective clinical management. A novel malaria diagnostic tool, Gazelle (Hemex Health, USA) detects haemozoin, a by-product of haem metabolism found in all Plasmodium infections. A pilot phase refined the Gazelle haemozoin identification algorithm, with the algorithm then tested against reference PCR in a larger cohort of patients with P. knowlesi mono-infections and febrile malaria-negative controls. Limit-of-detection analysis was conducted on a subset of P. knowlesi samples serially diluted with non-infected whole blood. The pilot phase of 40 P. knowlesi samples demonstrated 92.5% test sensitivity. P. knowlesi-infected patients (n = 203) and febrile controls (n = 44) were subsequently enrolled. Sensitivity and specificity of the Gazelle against reference PCR were 94.6% (95% CI 90.5-97.3%) and 100% (95% CI 92.0-100%) respectively. Positive and negative predictive values were 100% and 98.8%, respectively. In those tested before antimalarial treatment (n = 143), test sensitivity was 96.5% (95% CI 92.0-98.9%). Sensitivity for samples with ≤ 200 parasites/µL (n = 26) was 84.6% (95% CI 65.1-95.6%), with the lowest parasitaemia detected at 18/µL. Limit-of-detection (n = 20) was 33 parasites/µL (95% CI 16-65%). The Gazelle device has the potential for rapid, sensitive detection of P. knowlesi infections in endemic areas.
Collapse
Affiliation(s)
- Angelica F Tan
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, PO Box 41096, Casuarina, NT, 0810, Australia.
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia.
| | | | - Sitti Saimah Binti Sakam
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Yao Long Lew
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, PO Box 41096, Casuarina, NT, 0810, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Giri S Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Hospital Queen Elizabeth II, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, PO Box 41096, Casuarina, NT, 0810, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, PO Box 41096, Casuarina, NT, 0810, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, PO Box 41096, Casuarina, NT, 0810, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | | | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, PO Box 41096, Casuarina, NT, 0810, Australia.
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
8
|
A review on innovative optical devices for the diagnosis of human soil-transmitted helminthiasis and schistosomiasis: from research and development to commercialization. Parasitology 2023; 150:137-149. [PMID: 36683384 PMCID: PMC10090604 DOI: 10.1017/s0031182022001664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diagnosis of soil-transmitted helminth (STH) and schistosome infections relies largely on conventional microscopy which has limited sensitivity, requires highly trained personnel and is error-prone. Rapid advances in miniaturization of optical systems, sensors and processors have enhanced research and development of digital and automated microscopes suitable for the detection of these diseases in resource-limited settings. While some studies have reported proof-of-principle results, others have evaluated the performance of working prototypes in field settings. The extensive commercialization of these innovative devices has, however, not yet been achieved. This review provides an overview of recent publications (2010–2022) on innovative field applicable optical devices which can be used for the diagnosis of STH and schistosome infections. Using an adapted technology readiness level (TRL) scale taking into account the WHO target product profile (TPP) for these diseases, the developmental stages of the devices were ranked to determine the readiness for practical applications in field settings. From the reviewed 18 articles, 19 innovative optical devices were identified and ranked. Almost all of the devices (85%) were ranked with a TRL score below 8 indicating that, most of the devices are not ready for commercialization and field use. The potential limitations of these innovative devices were discussed. We believe that the outcome of this review can guide the end-to-end development of automated digital microscopes aligned with the WHO TPP for the diagnosis of STH and schistosome infections in resource-limited settings.
Collapse
|
9
|
Baptista V, Silva M, Ferreira GM, Calçada C, Minas G, Veiga MI, Catarino SO. Optical Spectrophotometry as a Promising Method for Quantification and Stage Differentiation of Plasmodium falciparum Parasites. ACS Infect Dis 2023; 9:140-149. [PMID: 36490289 DOI: 10.1021/acsinfecdis.2c00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malaria is one of the most life-threatening infectious diseases worldwide, claiming half a million lives yearly. Prompt and accurate diagnosis is crucial for disease control and elimination. Currently used diagnostic methods require blood sampling and fail to detect low-level infections. At the symptomatic stage of infection, the parasites feed on red blood cells' (RBCs) hemoglobin, forming inert crystals, the hemozoin, in the process. Thus, along with parasite maturation inside the RBCs, the hemoglobin and hemozoin proportion is inversely related, and they generate specific optical spectra, according to their concentration. Herein, to address the issues of finger prick sampling and the lack of sensitivity of the parasitological test, we explored the optical features of Plasmodium falciparum-infected RBCs through absorbance and reflectance spectrophotometric characterization, aiming for their detection. This is the first work fully characterizing the spectrophotometric properties of P. falciparum-infected RBCs by using only 16 specific wavelengths within the visible optical spectra and two different post-processing algorithms. With such an innovative methodology, low-level infections can be detected and quantified, and early- and late-stage development can be clearly distinguished, not only improving the current detection limits but also proving the successful applicability of spectrophotometry for competitive and accurate malaria diagnosis.
Collapse
Affiliation(s)
- Vitória Baptista
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.,LABBELS─Associate Laboratory, 4800-058 Braga/Guimarães, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's─PT Government Associate Laboratory, 4806-909 Guimarães, Braga/, Portugal
| | - Miguel Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's─PT Government Associate Laboratory, 4806-909 Guimarães, Braga/, Portugal
| | - Gabriel M Ferreira
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.,LABBELS─Associate Laboratory, 4800-058 Braga/Guimarães, Portugal
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's─PT Government Associate Laboratory, 4806-909 Guimarães, Braga/, Portugal
| | - Graça Minas
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.,LABBELS─Associate Laboratory, 4800-058 Braga/Guimarães, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's─PT Government Associate Laboratory, 4806-909 Guimarães, Braga/, Portugal
| | - Susana O Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.,LABBELS─Associate Laboratory, 4800-058 Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Giacometti M, Pravettoni T, Barsotti J, Milesi F, Figares CDO, Maspero F, Coppadoro LP, Benevento G, Ciardo M, Alano P, Fiore GB, Bertacco R, Ferrari G. Impedance-Based Rapid Diagnostic Tool for Single Malaria Parasite Detection. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1325-1336. [PMID: 36260568 DOI: 10.1109/tbcas.2022.3215586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper presents a custom, low-cost electronic system specifically designed for rapid and quantitative detection of the malaria parasite in a blood sample. The system exploits the paramagnetic properties of malaria-infected red blood cells (iRBCs) for their magnetophoretic capture on the surface of a silicon chip. A lattice of nickel magnetic micro-concentrators embedded in a silicon substrate concentrates the iRBCs above coplanar gold microelectrodes separated by 3 μm for their detection through an impedance measurement. The sensor is designed for a differential operation to remove the large contribution given by the blood sample. The electronic readout automatically balances the sensor before each experiment and reaches a resolution of 15 ppm in the impedance measurement at 1 MHz allowing a limit of detection of 40 parasite/μl with a capture time of 10 minutes. For better reliability of the results, four sensors are acquired during the same experiment. We demonstrate that the realized platform can also detect a single infected cell in real experimental conditions, measuring human blood infected by Plasmodium falciparum malaria specie.
Collapse
|
11
|
Abstract
The challenges in malaria diagnosis continue to threaten the malaria elimination goal in India and other malaria-endemic countries. A rapid diagnostic test (RDT) kit is widely used in resource-constrained areas where microscopy and molecular methods are not easily deployable. Considering the problems associated with the currently available RDT kit, such as histidine-rich protein 2 gene deletion and prolonged stability of the protein in the blood, it suggests that new potential biomarkers are urgently needed. Hemozoin (Hz) is an important biomarker for malaria diagnosis, which is the by-product of a detoxification mechanism in the malaria parasite. This article highlights the importance of "Hz" for point-of-care malaria diagnosis when India and other countries are moving toward the goal of malaria elimination.
Collapse
Affiliation(s)
- Shrikant Nema
- Senior Research Fellow, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh; Scientist B, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
12
|
MacAulay S, Ellison AR, Kille P, Cable J. Moving towards improved surveillance and earlier diagnosis of aquatic pathogens: From traditional methods to emerging technologies. REVIEWS IN AQUACULTURE 2022; 14:1813-1829. [PMID: 36250037 PMCID: PMC9544729 DOI: 10.1111/raq.12674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/16/2023]
Abstract
Early and accurate diagnosis is key to mitigating the impact of infectious diseases, along with efficient surveillance. This however is particularly challenging in aquatic environments due to hidden biodiversity and physical constraints. Traditional diagnostics, such as visual diagnosis and histopathology, are still widely used, but increasingly technological advances such as portable next generation sequencing (NGS) and artificial intelligence (AI) are being tested for early diagnosis. The most straightforward methodologies, based on visual diagnosis, rely on specialist knowledge and experience but provide a foundation for surveillance. Future computational remote sensing methods, such as AI image diagnosis and drone surveillance, will ultimately reduce labour costs whilst not compromising on sensitivity, but they require capital and infrastructural investment. Molecular techniques have advanced rapidly in the last 30 years, from standard PCR through loop-mediated isothermal amplification (LAMP) to NGS approaches, providing a range of technologies that support the currently popular eDNA diagnosis. There is now vast potential for transformative change driven by developments in human diagnostics. Here we compare current surveillance and diagnostic technologies with those that could be used or developed for use in the aquatic environment, against three gold standard ideals of high sensitivity, specificity, rapid diagnosis, and cost-effectiveness.
Collapse
Affiliation(s)
| | | | - Peter Kille
- School of Biosciences, Cardiff UniversityCardiffUK
| | - Joanne Cable
- School of Biosciences, Cardiff UniversityCardiffUK
| |
Collapse
|
13
|
Field Evaluation of a Hemozoin-Based Malaria Diagnostic Device in Puerto Lempira, Honduras. Diagnostics (Basel) 2022; 12:diagnostics12051206. [PMID: 35626361 PMCID: PMC9140950 DOI: 10.3390/diagnostics12051206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
The diagnosis of malaria in Honduras is based mainly on microscopic observation of the parasite in thick smears or the detection of parasite antigens through rapid diagnostic tests when microscopy is not available. The specific treatment of the disease depends exclusively on the positive result of one of these tests. Given the low sensitivity of conventional methods, new diagnostic approaches are needed. This study evaluates the in-field performance of a device (Gazelle™) based on the detection of hemozoin. This was a double-blind study evaluating symptomatic individuals with suspected malaria in the department of Gracias a Dios, Honduras, using blood samples collected from 2021 to 2022. The diagnostic performance of Gazelle™ was compared with microscopy and nested 18ssr PCR as references. The sensitivity and specificity of Gazelle™ were 59.7% and 98.6%, respectively, while microscopy had a sensitivity of 64.9% and a specificity of 100%. The kappa index between microscopy and Gazelle™ was 0.9216 using microscopy as a reference. Both methods show similar effectiveness and predictive values. No statistical differences were observed between the results of the Gazelle™ compared to light microscopy (p = 0.6831). The turnaround time was shorter for Gazelle™ than for microscopy, but the cost per sample was slightly higher for Gazelle™. Gazelle™ showed more false-negative cases when infections were caused by Plasmodium falciparum compared to P. vivax. Conclusions: The sensitivity and specificity of Gazelle™ are comparable to microscopy. The simplicity and ease of use of the Gazelle™, the ability to run on batteries, and the immediacy of its results make it a valuable tool for malaria detection in the field. However, further development is required to differentiate Plasmodium species, especially in those regions requiring differentiated treatment.
Collapse
|
14
|
Wambani J, Okoth P. Impact of Malaria Diagnostic Technologies on the Disease Burden in the Sub-Saharan Africa. J Trop Med 2022; 2022:7324281. [PMID: 35360189 PMCID: PMC8964171 DOI: 10.1155/2022/7324281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/04/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022] Open
Abstract
Worldwide, transmission of emerging and reemerging malaria infections poses a significant threat to human health in the Sub-Saharan Africa, one that can quickly overwhelm public health resources. While the disease burden of malaria in the Sub-Saharan Africa appears to be on a gradual decline, it is characterized by spatial and temporal variability occasioning a sorry state for the Global South Countries. New evidence on long-term complications of malaria heightens our awareness of its public health impact. Given the likelihood of misdiagnosis, and the unknown levels of malaria transmission across different landscapes, many missed opportunities for prevention occur. Africa's population growth, unplanned urbanization, habitat destruction, and trans-border travel are contributing to a rise in the calamitous epidemiology of malaria. Despite empirical statistics demonstrating a downward trend in the malaria disease burden attributable to the scale-up of multiple control strategies, including new diagnostic technologies, malaria remains a global threat to human health in Sub-Sahara Africa. Malaria is a severe public health threat globally, despite several advancements and innovations in its control. Six species of the genus Plasmodium including Plasmodium malariae, Plasmodium falciparum, Plasmodium cynomolgi, Plasmodium knowlesi, Plasmodium ovale, and Plasmodium vivax are known to infect humans. However, greatest disease burden and fatalities are caused by Plasmodium falciparum. Globally, about 3 billion individuals are at risk of contracting malaria disease every year, with over 400,000 fatalities reported in the Sub-Saharan Africa. World Health Organization (WHO) 2018 malaria report indicated that approximately 405,000 mortalities and 228 million cases were reported worldwide, with Africa carrying the highest disease burden. Over the last decade, there has been a significant decline in malaria deaths and infections, which may be related to the availability of effective diagnostic techniques. However, in certain areas, the rate of decline has slowed or even reversed the gains made so far. Accurate diagnosis, adequate treatment, and management of the disease are critical WHO-set goals of eliminating malaria by 2030. Microscopy, rapid diagnostic tests (RDTs), nucleic acid amplification tests (NAATs), and biosensors are all currently accessible diagnostic methods. These technologies have substantial flaws and triumphs that could stymie or accelerate malaria eradication efforts. The cost, ease, accessibility, and availability of skilled persons all influence the use of these technologies. These variables have a direct and indirect ramification on the entire management portfolio of patients. Despite the overall decline in the malaria disease burden driven partly by new diagnostic technologies, a sobering pattern marked by limited number of studies and spatial as well as temporal heterogeneity remains a concern. This review summarizes the principle, performance, gaps, accomplishments, and applicability of numerous malaria diagnostic techniques and their potential role in reducing the malaria disease burden in Sub-Saharan Africa.
Collapse
Affiliation(s)
- Josephine Wambani
- KEMRI HIV Laboratory, Kenya Medical Research Institute KEMRI, P.O. Box 3-50400, Busia, Kenya
- Department of Medical Laboratory Sciences, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, P.O. Box 190, 50100 Kakamega, Kenya
| | - Patrick Okoth
- Department of Biological Sciences, School of Natural Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, 50100 Kakamega, Kenya
| |
Collapse
|
15
|
Baptista V, Peng WK, Minas G, Veiga MI, Catarino SO. Review of Microdevices for Hemozoin-Based Malaria Detection. BIOSENSORS 2022; 12:bios12020110. [PMID: 35200370 PMCID: PMC8870200 DOI: 10.3390/bios12020110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 05/21/2023]
Abstract
Despite being preventable and treatable, malaria still puts almost half of the world's population at risk. Thus, prompt, accurate and sensitive malaria diagnosis is crucial for disease control and elimination. Optical microscopy and immuno-rapid tests are the standard malaria diagnostic methods in the field. However, these are time-consuming and fail to detect low-level parasitemia. Biosensors and lab-on-a-chip devices, as reported to different applications, usually offer high sensitivity, specificity, and ease of use at the point of care. Thus, these can be explored as an alternative for malaria diagnosis. Alongside malaria infection inside the human red blood cells, parasites consume host hemoglobin generating the hemozoin crystal as a by-product. Hemozoin is produced in all parasite species either in symptomatic and asymptomatic individuals. Furthermore, hemozoin crystals are produced as the parasites invade the red blood cells and their content relates to disease progression. Hemozoin is, therefore, a unique indicator of infection, being used as a malaria biomarker. Herein, the so-far developed biosensors and lab-on-a-chip devices aiming for malaria detection by targeting hemozoin as a biomarker are reviewed and discussed to fulfil all the medical demands for malaria management towards elimination.
Collapse
Affiliation(s)
- Vitória Baptista
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (G.M.); (S.O.C.)
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
- Correspondence:
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Building A1, University Innovation Park, Dongguan 523808, China;
| | - Graça Minas
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (G.M.); (S.O.C.)
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| | - Susana O. Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (G.M.); (S.O.C.)
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| |
Collapse
|
16
|
Baptista V, Costa MS, Calçada C, Silva M, Gil JP, Veiga MI, Catarino SO. The Future in Sensing Technologies for Malaria Surveillance: A Review of Hemozoin-Based Diagnosis. ACS Sens 2021; 6:3898-3911. [PMID: 34735120 DOI: 10.1021/acssensors.1c01750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Early and effective malaria diagnosis is vital to control the disease spread and to prevent the emergence of severe cases and death. Currently, malaria diagnosis relies on optical microscopy and immuno-rapid tests; however, these require a drop of blood, are time-consuming, or are not specific and sensitive enough for reliable detection of low-level parasitaemia. Thus, there is an urge for simpler, prompt, and accurate alternative diagnostic methods. Particularly, hemozoin has been increasingly recognized as an attractive biomarker for malaria detection. As the disease proliferates, parasites digest host hemoglobin, in the process releasing toxic haem that is detoxified into an insoluble crystal, the hemozoin, which accumulates along with infection progression. Given its magnetic, optical, and acoustic unique features, hemozoin has been explored for new label-free diagnostic methods. Thereby, herein, we review the hemozoin-based malaria detection methods and critically discuss their challenges and potential for the development of an ideal diagnostic device.
Collapse
Affiliation(s)
- Vitória Baptista
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Mariana S. Costa
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Miguel Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - José Pedro Gil
- Stockholm Malaria Center, Department of Microbiology and Tumour Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Susana O. Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
17
|
Kara D, Deissler RJ, Al Helo R, Blasinsky K, Grimberg BT, Brown R. An ON-OFF Magneto-Optical Probe of Anisotropic Biofluid Crystals: A β-Hematin Case Study. IEEE TRANSACTIONS ON MAGNETICS 2021; 57:5200211. [PMID: 35813117 PMCID: PMC9268508 DOI: 10.1109/tmag.2021.3096046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have designed, developed and evaluated an innovative portable magneto-optical detector (MOD) in which a light beam with variable polarization passes through a fluid sample immersed in a variable magnetic field. The light intensity is measured downstream along the forward scattering direction. The field is turned on and off through the in-and-out motion of nearby permanent magnets. As a result, for sufficiently magnetically and optically anisotropic samples, the optical absorption is sensitive to changes in the light polarization. Both detection and characterization applications are therefore available. For instance, both the degree of malaria infection can be measured and hemozoin crystalline properties can be studied. We present experimental results for synthetic hemozoin, and describe them in terms of the basic physics and chemistry underlying the correlations of the directions of the external magnetic field and the light beam polarization. We connect this work to a commercialized product for malaria detection and compare it to other magneto-optical instruments and methods. We conduct tests of absorption parameters, the electric polarizability tensor, and we discuss the connection to magnetic and electric dipole moments.
Collapse
Affiliation(s)
- Danielle Kara
- Department of Physics, John Carroll University, University Heights, OH, 44118, USA
| | - Robert J. Deissler
- Department of Physics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rose Al Helo
- Department of Physics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kyle Blasinsky
- Department of Physics, John Carroll University, University Heights, OH, 44118, USA
| | - Brian T. Grimberg
- Center for Global Health & Diseases, Department of Pathology, Case, Western Reserve University, Cleveland, OH 44106, USA
| | - Robert Brown
- Department of Physics, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
18
|
Giacometti M, Milesi F, Coppadoro PL, Rizzo A, Fagiani F, Rinaldi C, Cantoni M, Petti D, Albisetti E, Sampietro M, Ciardo M, Siciliano G, Alano P, Lemen B, Bombe J, Nwaha Toukam MT, Tina PF, Gismondo MR, Corbellino M, Grande R, Fiore GB, Ferrari G, Antinori S, Bertacco R. A Lab-On-chip Tool for Rapid, Quantitative, and Stage-selective Diagnosis of Malaria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004101. [PMID: 34306971 PMCID: PMC8292881 DOI: 10.1002/advs.202004101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/22/2021] [Indexed: 05/21/2023]
Abstract
Malaria remains the most important mosquito-borne infectious disease worldwide, with 229 million new cases and 409.000 deaths in 2019. The infection is caused by a protozoan parasite which attacks red blood cells by feeding on hemoglobin and transforming it into hemozoin. Despite the WHO recommendation of prompt malaria diagnosis, the quality of microscopy-based diagnosis is frequently inadequate while rapid diagnostic tests based on antigens are not quantitative and still affected by non-negligible false negative/positive results. PCR-based methods are highly performant but still not widely used in endemic areas. Here, a diagnostic tool (TMek), based on the paramagnetic properties of hemozoin nanocrystals in infected red blood cells (i-RBCs), is reported on. Exploiting the competition between gravity and magnetic forces, i-RBCs in a whole blood specimen are sorted and electrically detected in a microchip. The amplitude and time evolution of the electrical signal allow for the quantification of i-RBCs (in the range 10-105 i-RBC µL-1) and the distinction of the infection stage. A preliminary validation study on 75 patients with clinical suspect of malaria shows on-field operability, without false negative and a few false positive results. These findings indicate the potential of TMek as a quantitative, stage-selective, rapid test for malaria.
Collapse
Affiliation(s)
- Marco Giacometti
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Francesca Milesi
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Pietro Lorenzo Coppadoro
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Alberto Rizzo
- Specialità di Microbiologia e Virologia Università degli Studi di MilanoMilanoItaly
| | - Federico Fagiani
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Christian Rinaldi
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Matteo Cantoni
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Daniela Petti
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Edoardo Albisetti
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Marco Sampietro
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Mariagrazia Ciardo
- Dipartimento di Malattie InfettiveIstituto Superiore di SanitàViale Regina Elena n.299Roma00161Italy
| | - Giulia Siciliano
- Dipartimento di Malattie InfettiveIstituto Superiore di SanitàViale Regina Elena n.299Roma00161Italy
| | - Pietro Alano
- Dipartimento di Malattie InfettiveIstituto Superiore di SanitàViale Regina Elena n.299Roma00161Italy
| | | | | | | | | | - Maria Rita Gismondo
- UOC Microbiologia ClinicaVirologia e Diagnostica Bioemergenza – Sacco teaching Hospital ASST FBF Saccovia GB GrassiMilano74‐20157Italy
| | - Mario Corbellino
- Department of Biomedical and Clinical Sciences “Luigi Sacco”University of Milanovia GB GrassiMilano74‐20157Italy
| | - Romualdo Grande
- UOC Microbiologia ClinicaVirologia e Diagnostica Bioemergenza – Sacco teaching Hospital ASST FBF Saccovia GB GrassiMilano74‐20157Italy
| | - Gianfranco Beniamino Fiore
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Giorgio Ferrari
- Department of Electronics Information and BioengineeringPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Spinello Antinori
- Department of Biomedical and Clinical Sciences “Luigi Sacco”University of Milanovia GB GrassiMilano74‐20157Italy
| | - Riccardo Bertacco
- Department of PhysicsPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
- CNR‐IFNInstitute for Photonics and NanotechnologiesPiazza Leonardo da Vinci 32Milano20133Italy
| |
Collapse
|
19
|
Field validation of a magneto-optical detection device (Gazelle) for portable point-of-care Plasmodium vivax diagnosis. PLoS One 2021; 16:e0253232. [PMID: 34157032 PMCID: PMC8219132 DOI: 10.1371/journal.pone.0253232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
A major challenge for malaria is the lack of tools for accurate and timely diagnosis in the field which are critical for case management and surveillance. Microscopy along with rapid diagnostic tests are the current mainstay for malaria diagnosis in most endemic regions. However, these methods present several limitations. This study assessed the accuracy of Gazelle, a novel rapid malaria diagnostic device, from samples collected from the Peruvian Amazon between 2019 and 2020. Diagnostic accuracy was compared against microscopy and two rapid diagnostic tests (SD Bioline and BinaxNOW) using 18ssr nested-PCR as reference test. In addition, a real-time PCR assay (PET-PCR) was used for parasite quantification. Out of 217 febrile patients enrolled and tested, 180 specimens (85 P. vivax and 95 negatives) were included in the final analysis. Using nested-PCR as the gold standard, the sensitivity and specificity of Gazelle was 88.2% and 97.9%, respectively. Using a cutoff of 200 parasites/μl, Gazelle’s sensitivity for samples with more than 200 p/uL was 98.67% (95%CI: 92.79% to 99.97%) whereas the sensitivity for samples lower than 200 p/uL (n = 10) was 12.5% (95%CI: 0.32% to 52.65%). Gazelle’s sensitivity and specificity were statistically similar to microscopy (sensitivity = 91.8, specificity = 100%, p = 0.983) and higher than both SD Bioline (sensitivity = 82.4, specificity = 100%, p = 0.016) and BinaxNOW (sensitivity = 71.8%, specificity = 97.9%, p = 0.002). The diagnostic accuracy of Gazelle for malaria detection in P. vivax infections was comparable to light microscopy and superior to both RDTs even in the presence of low parasitemia infections. The performance of Gazelle makes it a valuable tool for malaria diagnosis and active case detection that can be utilized in different malaria-endemic regions.
Collapse
|
20
|
de Melo GC, Netto RLA, Mwangi VI, Salazar YEAR, de Souza Sampaio V, Monteiro WM, de Almeida E Val FF, Rocheleau A, Thota P, Lacerda MVG. Performance of a sensitive haemozoin-based malaria diagnostic test validated for vivax malaria diagnosis in Brazilian Amazon. Malar J 2021; 20:146. [PMID: 33712019 PMCID: PMC7953757 DOI: 10.1186/s12936-021-03688-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/05/2021] [Indexed: 01/20/2023] Open
Abstract
Background Vivax malaria diagnosis remains a challenge in malaria elimination, with current point of care rapid diagnostic tests (RDT) missing many clinically significant infections because of usually lower peripheral parasitaemia. Haemozoin-detecting assays have been suggested as an alternative to immunoassay platforms but to date have not reached successful field deployment. Haemozoin is a paramagnetic crystal by-product of haemoglobin digestion by malaria parasites and is present in the food vacuole of malaria parasite-infected erythrocytes. This study aimed to compare the diagnostic capability of a new haemozoin-detecting platform, the Gazelle™ device with optical microscopy, RDT and PCR in a vivax malaria-endemic region. Methods A comparative, double-blind study evaluating symptomatic malaria patients seeking medical care was conducted at an infectious diseases reference hospital in the western Brazilian Amazon. Optical microscopy, PCR, RDT, and Gazelle™ were used to analyse blood samples. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and Kappa values were calculated. Results Out of 300 patients, 24 test results were excluded from the final analysis due to protocol violation (6) and inconclusive and/or irretrievable results (18). Gazelle™ sensitivity was 96.1 % (91.3–98.3) and 72.1 % (65.0–78.3) when compared to optical microscopy and PCR, respectively whereas it was 83.9 % and 62.8 % for RDTs. The platform presented specificity of 100 % (97.4–100), and 99.0 % (94.8–99.9) when compared to optical microscopy, and PCR, respectively, which was the same for RDTs. Its correct classification rate was 98.2 % when compared to optical microscopy and 82.3 % for PCR; the test’s accuracy when compared to optical microscopy was 98.1 % (96.4–99.7), when compared to RDT was 95.2 % (93.0–97.5), and when compared to PCR was 85.6 % (82.1–89.1). Kappa (95 % CI) values for Gazelle™ were 96.4 (93.2–99.5), 88.2 (82.6–93.8) and 65.3 (57.0–73.6) for optical microscopy, RDT and PCR, respectively. Conclusions The Gazelle™ device was shown to have faster, easier, good sensitivity, specificity, and accuracy when compared to microscopy and was superior to RDT, demonstrating to be an alternative for vivax malaria screening particularly in areas where malaria is concomitant with other febrile infections (including dengue fever, zika, chikungunya, Chagas, yellow fever, babesiosis).
Collapse
Affiliation(s)
- Gisely Cardoso de Melo
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil. .,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil.
| | | | - Victor Irungu Mwangi
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | | | - Vanderson de Souza Sampaio
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil.,Fundação de Vigilância em Saúde (FVS) - Manaus, Manaus, Amazonas, 69093-018, Brazil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Fernando Fonseca de Almeida E Val
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Anne Rocheleau
- Hemex Health, 4640 SW Macadam Avenue, Suite 250 , Portland, Oregon, 97239, USA
| | - Priyaleela Thota
- Hemex Health, 4640 SW Macadam Avenue, Suite 250 , Portland, Oregon, 97239, USA
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil.,Instituto Leônidas & Maria Deane (ILMD) Fiocruz, Manaus, Amazonas, 69057-070, Brazil
| |
Collapse
|
21
|
Ahmad A, Soni P, Kumar L, Singh MP, Verma AK, Sharma A, Das A, Bharti PK. Comparison of polymerase chain reaction, microscopy, and rapid diagnostic test in malaria detection in a high burden state (Odisha) of India. Pathog Glob Health 2021; 115:267-272. [PMID: 33634745 DOI: 10.1080/20477724.2021.1893484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Precise identification of Plasmodium species is critical in malaria control and elimination. Despite several shortcomings, microscopy and rapid diagnostic test (RDT) continue to be the leading diagnostic methods. Polymerase chain reaction (PCR) is the most sensitive method but its dependency on advanced laboratory and skilled workers limits its use. Here, we compared the diagnostic performance of microscopy, RDT, and PCR in clinically suspected patients from a high malaria burden state (Odisha) of India. The diagnostic performance (sensitivity, specificity, positive predictive value, and negative predictive value) of all three methods was compared using microscopy and PCR as the gold standard. PCR identified 323 (76.5 %) positive cases out of 422 samples, whereas microscopy and RDT identified only 272 (64.4 %) and 266 (63.0 %) positive cases, respectively. The sensitivity of RDT and microscopy for detecting malaria and P. falciparum cases was >80% compared to that by PCR. However, the sensitivity in identifying P. vivax (57.0 %) and a mixture of P. falciparum and P. vivax (18.0 %) was poor. We highlight application of PCR in malaria diagnosis and its benefits in reducing the transmission. This emphasizes the need for incorporation of molecular diagnostic approaches for effective elimination strategies.
Collapse
Affiliation(s)
- Amreen Ahmad
- Division of Vector Borne Diseases, ICMR - National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Prahalad Soni
- Division of Vector Borne Diseases, ICMR - National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Lalit Kumar
- Division of Vector Borne Diseases, ICMR - National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Mrignendra Pal Singh
- Department of Parasitology, ICMR - National Institute of Malaria Research Field Unit, Jabalpur, India
| | - Anil Kumar Verma
- Division of Vector Borne Diseases, ICMR - National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Anjana Sharma
- Department of P. G. Studies and Research in Biological Science, Rani Durgavati University, Jabalpur, India
| | - Aparup Das
- Division of Vector Borne Diseases, ICMR - National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Praveen Kumar Bharti
- Division of Vector Borne Diseases, ICMR - National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| |
Collapse
|
22
|
Jain S, Nehra M, Kumar R, Dilbaghi N, Hu T, Kumar S, Kaushik A, Li CZ. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens Bioelectron 2021; 179:113074. [PMID: 33596516 PMCID: PMC7866895 DOI: 10.1016/j.bios.2021.113074] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
On global scale, the current situation of pandemic is symptomatic of increased incidences of contagious diseases caused by pathogens. The faster spread of these diseases, in a moderately short timeframe, is threatening the overall population wellbeing and conceivably the economy. The inadequacy of conventional diagnostic tools in terms of time consuming and complex laboratory-based diagnosis process is a major challenge to medical care. In present era, the development of point-of-care testing (POCT) is in demand for fast detection of infectious diseases along with “on-site” results that are helpful in timely and early action for better treatment. In addition, POCT devices also play a crucial role in preventing the transmission of infectious diseases by offering real-time testing and lab quality microbial diagnosis within minutes. Timely diagnosis and further treatment optimization facilitate the containment of outbreaks of infectious diseases. Presently, efforts are being made to support such POCT by the technological development in the field of internet of medical things (IoMT). The IoMT offers wireless-based operation and connectivity of POCT devices with health expert and medical centre. In this review, the recently developed POC diagnostics integrated or future possibilities of integration with IoMT are discussed with focus on emerging and re-emerging infectious diseases like malaria, dengue fever, influenza A (H1N1), human papilloma virus (HPV), Ebola virus disease (EVD), Zika virus (ZIKV), and coronavirus (COVID-19). The IoMT-assisted POCT systems are capable enough to fill the gap between bioinformatics generation, big rapid analytics, and clinical validation. An optimized IoMT-assisted POCT will be useful in understanding the diseases progression, treatment decision, and evaluation of efficacy of prescribed therapy.
Collapse
Affiliation(s)
- Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India; Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, 160014, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, 160014, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - TonyY Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States.
| | - Chen-Zhong Li
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
23
|
Nema S, Verma AK, Tiwari A, Bharti PK. Digital Health Care Services to Control and Eliminate Malaria in India. Trends Parasitol 2021; 37:96-99. [PMID: 33262008 DOI: 10.1016/j.pt.2020.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/06/2023]
Abstract
In the rural and tribal areas of India, poor healthcare services for malaria are posing a great challenge to malaria control and elimination. Digitisation in malaria healthcare services, including surveillance, diagnosis, and treatment, may be helpful in malaria control and, subsequently, may move towards the elimination goal of India by 2030.
Collapse
Affiliation(s)
- Shrikant Nema
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur 482 003, Madhya Pradesh, India; School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal, 462 023, Madhya Pradesh, India
| | - Anil Kumar Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur 482 003, Madhya Pradesh, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Bhopal, 462 023, Madhya Pradesh, India
| | - Praveen Kumar Bharti
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur 482 003, Madhya Pradesh, India.
| |
Collapse
|
24
|
Gómez-Luque A, Parejo JC, Clavijo-Chamorro MZ, López-Espuela F, Munyaruguru F, Belinchón Lorenzo S, Monroy I, Gómez-Nieto LC. Method for Malaria Diagnosis Based on Extractions of Samples Using Non-Invasive Techniques: An Opportunity for the Nursing Clinical Practice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5551. [PMID: 32752015 PMCID: PMC7432767 DOI: 10.3390/ijerph17155551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022]
Abstract
Malaria has been for millennia one of the best known and most destructive diseases affecting humans. Its high impact has aroused great interest for the development of new effective and reliable diagnostic techniques. Recently it has been recently published that hairs from mammal hosts are able to capture, hold and finally remove foreign DNA sequences of Leishmania parasites. The aim of this study was to check if Plasmodium falciparum (P. falciparum) DNA remains stable in blood samples deposited in Whatman paper after suffering different transport and storage conditions, and to compare the sensitivity of these results with those offered by thick a smear and Rapid Diagnostic Test, and besides to examine whether P. falciparum DNA would be detected and quantified by Real time quantitative PCR (qPCR) from hairs of people with different types of malaria. P. falciparum Histidine Repeat Protein II (pHRP-II) antigen detection and P. falciparum DNA were detected in 18 of 19 dry blood samples adhered to Whatman paper (94.74%), besides, Plasmodium DNA was also detected in seven out of 19 hair samples analyzed (36.84%), remaining stable until analysis for several months under the exposure to different environmental conditions. Although the sensitivity of PCR for the diagnosis of malaria in hair samples is not as high as blood analysis, the study of Plasmodium DNA presence in blood and hair could constitute a complementary tool with numerous advantages in sample collection, transport and storage. We suggest that the method could be also applied to medical, forensic and paleo-parasitological diagnosis, not only for malaria but also for searching many other pathogens in hair samples.
Collapse
Affiliation(s)
- Adela Gómez-Luque
- Department of Nursing, Nursing and Occupational Therapy College, University of Extremadura s/n, 10003 Cáceres, Spain; (A.G.-L.); (M.Z.C.-C.)
| | - Juan Carlos Parejo
- Unidad de Genética, Facultad de Veterinaria, University of Extremadura s/n, 10003 Cáceres, Spain;
| | - Maria Zoraida Clavijo-Chamorro
- Department of Nursing, Nursing and Occupational Therapy College, University of Extremadura s/n, 10003 Cáceres, Spain; (A.G.-L.); (M.Z.C.-C.)
| | - Fidel López-Espuela
- Department of Nursing, Nursing and Occupational Therapy College, University of Extremadura s/n, 10003 Cáceres, Spain; (A.G.-L.); (M.Z.C.-C.)
| | | | - Silvia Belinchón Lorenzo
- Laboratorio LeishmanCeres, Unidad de Parasitología, Facultad de Veterinaria, University of Extremadura s/n, 10003 Cáceres, Spain; (S.B.L.); (I.M.); (L.C.G.-N.)
| | - Isabel Monroy
- Laboratorio LeishmanCeres, Unidad de Parasitología, Facultad de Veterinaria, University of Extremadura s/n, 10003 Cáceres, Spain; (S.B.L.); (I.M.); (L.C.G.-N.)
| | - Luis Carlos Gómez-Nieto
- Laboratorio LeishmanCeres, Unidad de Parasitología, Facultad de Veterinaria, University of Extremadura s/n, 10003 Cáceres, Spain; (S.B.L.); (I.M.); (L.C.G.-N.)
| |
Collapse
|