1
|
Li YS, Ren Q, Zhang J, Liang YC, Han YL, Zhang QY. Impact of Pulmonary Ventilation Dysfunction on Prognosis of Patients with Coronary Artery Disease: A Single-Center, Observational Study. Rev Cardiovasc Med 2024; 25:197. [PMID: 39076341 PMCID: PMC11270079 DOI: 10.31083/j.rcm2506197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 07/31/2024] Open
Abstract
Background Patients with coronary artery disease (CAD) often experience pulmonary ventilation dysfunction following their initial event. However, there is insufficient research exploring the relationship between this dysfunction and CAD prognosis. Methods To address this gap, a retrospective observational study was conducted involving 3800 CAD patients without prior pulmonary ventilation disease who underwent cardiopulmonary exercise testing (CPET) during hospitalization between November 2015 and September 2021. The primary endpoint was a composite of major adverse cardiovascular events (MACE), such as death, myocardial infarction (MI), repeat revascularization, and stroke. Propensity score matching (PSM) was used to minimize selection bias between the two groups, with a subgroup analysis stratified by smoking status. Results The results showed that patients were divided into normal (n = 2159) and abnormal (n = 1641) groups based on their pulmonary ventilation function detected by CPET, with 1469 smokers and 2331 non-smokers. The median follow-up duration was 1237 (25-75% interquartile range 695-1596) days. The primary endpoint occurred in 390 patients (10.26%). 1472 patients in each of the two groups were enrolled in the current analysis after PSM, respectively. However, pulmonary function was not associated with MACE before (hazard ratio (HR) 1.20, 95% confidence interval (95% CI) 0.99-1.47; Log-rank p = 0.069) or after PSM (HR 1.07, 95% CI 0.86-1.34; Log-rank p = 0.545) among the entire population. Nonetheless, pulmonary ventilation dysfunction was significantly associated with an increased risk of MACE in smoking patients (HR 1.65, 95% CI 1.25-2.18; p < 0.001) but not in non-smoking patients (HR 0.81, 95% CI 0.60-1.09; p = 0.159). In addition, there was a significant interaction between current smoking status and pulmonary ventilation dysfunction on MACE (p for interaction < 0.001). Conclusions Pulmonary ventilation dysfunction identified through CPET was independently associated with long-term poor prognosis in smoking patients with CAD but not in the overall population.
Collapse
Affiliation(s)
- Yu-Shan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology, The General Hospital of Northern Theater Command, 110016 Shenyang, Liaoning, China
- Postgraduate Training Base of The General Hospital of Northern Theater Command, Jinzhou Medical University, 110016 Shenyang, Liaoning, China
| | - Qiang Ren
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology, The General Hospital of Northern Theater Command, 110016 Shenyang, Liaoning, China
- Department of Cardiology, Beifang Hospital of China Medical University, 110016 Shenyang, Liaoning, China
| | - Jian Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology, The General Hospital of Northern Theater Command, 110016 Shenyang, Liaoning, China
| | - Yan-Chun Liang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology, The General Hospital of Northern Theater Command, 110016 Shenyang, Liaoning, China
| | - Ya-Ling Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology, The General Hospital of Northern Theater Command, 110016 Shenyang, Liaoning, China
| | - Quan-Yu Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology, The General Hospital of Northern Theater Command, 110016 Shenyang, Liaoning, China
| |
Collapse
|
2
|
Mulugeta A, Lumsden AL, Madakkatel I, Stacey D, Lee SH, Mäenpää J, Oehler MK, Hyppönen E. Phenome-wide association study of ovarian cancer identifies common comorbidities and reveals shared genetics with complex diseases and biomarkers. Cancer Med 2024; 13:e7051. [PMID: 38457211 PMCID: PMC10923028 DOI: 10.1002/cam4.7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is commonly diagnosed among older women who have comorbidities. This hypothesis-free phenome-wide association study (PheWAS) aimed to identify comorbidities associated with OC, as well as traits that share a genetic architecture with OC. METHODS We used data from 181,203 white British female UK Biobank participants and analysed OC and OC subtype-specific genetic risk scores (OC-GRS) for an association with 889 diseases and 43 other traits. We conducted PheWAS and colocalization analyses for individual variants to identify evidence for shared genetic architecture. RESULTS The OC-GRS was associated with 10 diseases, and the clear cell OC-GRS was associated with five diseases at the FDR threshold (p = 5.6 × 10-4 ). Mendelian randomizaiton analysis (MR) provided robust evidence for the association of OC with higher risk of "secondary malignant neoplasm of digestive systems" (OR 1.64, 95% CI 1.33, 2.02), "ascites" (1.48, 95% CI 1.17, 1.86), "chronic airway obstruction" (1.17, 95% CI 1.07, 1.29), and "abnormal findings on examination of the lung" (1.51, 95% CI 1.22, 1.87). Analyses of lung spirometry measures provided further support for compromised respiratory function. PheWAS on individual OC variants identified five genetic variants associated with other diseases, and seven variants associated with biomarkers (all, p ≤ 4.5 × 10-8 ). Colocalization analysis identified rs4449583 (from TERT locus) as the shared causal variant for OC and seborrheic keratosis. CONCLUSIONS OC is associated with digestive and respiratory comorbidities. Several variants affecting OC risk were associated with other diseases and biomarkers, with this study identifying a novel genetic locus shared between OC and skin conditions.
Collapse
Affiliation(s)
- Anwar Mulugeta
- Australian Centre for Precision Health, Unit of Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- Department of Pharmacology and Clinical Pharmacy, College of Health ScienceAddis Ababa UniversityAddis AbabaEthiopia
| | - Amanda L. Lumsden
- Australian Centre for Precision Health, Unit of Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - Iqbal Madakkatel
- Australian Centre for Precision Health, Unit of Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - David Stacey
- Australian Centre for Precision Health, Unit of Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| | - S. Hong Lee
- Australian Centre for Precision Health, Unit of Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
- UniSA Allied Health & Human PerformanceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Johanna Mäenpää
- Faculty of Medicine and Medical TechnologyTampere UniversityTampereFinland
- Cancer Centre, Tampere University and University HospitalTampereFinland
| | - Martin K. Oehler
- Department of Gynaecological OncologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
- Adelaide Medical School, Robinson Research Institute, University of AdelaideAdelaideSouth AustraliaAustralia
| | - Elina Hyppönen
- Australian Centre for Precision Health, Unit of Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- South Australian Health and Medical Research InstituteAdelaideSouth AustraliaAustralia
| |
Collapse
|
3
|
Khouja JN, Sanderson E, Wootton RE, Taylor AE, Church BA, Richmond RC, Munafò MR. Estimating the health impact of nicotine exposure by dissecting the effects of nicotine versus non-nicotine constituents of tobacco smoke: A multivariable Mendelian randomisation study. PLoS Genet 2024; 20:e1011157. [PMID: 38335242 PMCID: PMC10883537 DOI: 10.1371/journal.pgen.1011157] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The detrimental health effects of smoking are well-known, but the impact of regular nicotine use without exposure to the other constituents of tobacco is less clear. Given the increasing daily use of alternative nicotine delivery systems, such as e-cigarettes, it is increasingly important to understand and separate the effects of nicotine use from the impact of tobacco smoke exposure. Using a multivariable Mendelian randomisation framework, we explored the direct effects of nicotine compared with the non-nicotine constituents of tobacco smoke on health outcomes (lung cancer, chronic obstructive pulmonary disease [COPD], forced expiratory volume in one second [FEV-1], forced vital capacity [FVC], coronary heart disease [CHD], and heart rate [HR]). We used Genome-Wide Association Study (GWAS) summary statistics from Buchwald and colleagues, the GWAS and Sequencing Consortium of Alcohol and Nicotine, the International Lung Cancer Consortium, and UK Biobank. Increased nicotine metabolism increased the risk of COPD, lung cancer, and lung function in the univariable analysis. However, when accounting for smoking heaviness in the multivariable analysis, we found that increased nicotine metabolite ratio (indicative of decreased nicotine exposure per cigarette smoked) decreases heart rate (b = -0.30, 95% CI -0.50 to -0.10) and lung function (b = -33.33, 95% CI -41.76 to -24.90). There was no clear evidence of an effect on the remaining outcomes. The results suggest that these smoking-related outcomes are not due to nicotine exposure but are caused by the other components of tobacco smoke; however, there are multiple potential sources of bias, and the results should be triangulated using evidence from a range of methodologies.
Collapse
Affiliation(s)
- Jasmine N. Khouja
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Eleanor Sanderson
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Robyn E. Wootton
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Nic Waals Institute, Lovisenberg diakonale sykehus, Oslo, Norway
| | - Amy E. Taylor
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Billy A. Church
- School of Psychology and Vision Sciences, University of Leicester, United Kingdom
| | - Rebecca C. Richmond
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Marcus R. Munafò
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- NIHR Bristol Biomedical Research Centre, Bristol, United Kingdom
| |
Collapse
|
4
|
Giratallah H, Chenoweth MJ, Pouget JG, El-Boraie A, Alsaafin A, Lerman C, Knight J, Tyndale RF. CYP2A6 associates with respiratory disease risk and younger age of diagnosis: a phenome-wide association Mendelian Randomization study. Hum Mol Genet 2024; 33:198-210. [PMID: 37802914 PMCID: PMC10772040 DOI: 10.1093/hmg/ddad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
CYP2A6, a genetically variable enzyme, inactivates nicotine, activates carcinogens, and metabolizes many pharmaceuticals. Variation in CYP2A6 influences smoking behaviors and tobacco-related disease risk. This phenome-wide association study examined associations between a reconstructed version of our weighted genetic risk score (wGRS) for CYP2A6 activity with diseases in the UK Biobank (N = 395 887). Causal effects of phenotypic CYP2A6 activity (measured as the nicotine metabolite ratio: 3'-hydroxycotinine/cotinine) on the phenome-wide significant (PWS) signals were then estimated in two-sample Mendelian Randomization using the wGRS as the instrument. Time-to-diagnosis age was compared between faster versus slower CYP2A6 metabolizers for the PWS signals in survival analyses. In the total sample, six PWS signals were identified: two lung cancers and four obstructive respiratory diseases PheCodes, where faster CYP2A6 activity was associated with greater disease risk (Ps < 1 × 10-6). A significant CYP2A6-by-smoking status interaction was found (Psinteraction < 0.05); in current smokers, the same six PWS signals were found as identified in the total group, whereas no PWS signals were found in former or never smokers. In the total sample and current smokers, CYP2A6 activity causal estimates on the six PWS signals were significant in Mendelian Randomization (Ps < 5 × 10-5). Additionally, faster CYP2A6 metabolizer status was associated with younger age of disease diagnosis for the six PWS signals (Ps < 5 × 10-4, in current smokers). These findings support a role for faster CYP2A6 activity as a causal risk factor for lung cancers and obstructive respiratory diseases among current smokers, and a younger onset of these diseases. This research utilized the UK Biobank Resource.
Collapse
Affiliation(s)
- Haidy Giratallah
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Meghan J Chenoweth
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ahmed El-Boraie
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Alaa Alsaafin
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Caryn Lerman
- Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA 90033, United States
| | - Jo Knight
- Department of Psychiatry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Data Science Institute, Lancaster University Medical School, Lancaster LA1 4YE, United Kingdom
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 250 College St, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Liu Z, Pan H, Liu B, Li L, Yang H, Shen T. Environmental and occupational risk factors for COPD and its prevalence among miners worldwide: a Mendelian randomization and meta-analysis study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97545-97561. [PMID: 37592069 DOI: 10.1007/s11356-023-29269-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death after cardiovascular disease and stroke, and its incidence is associated with genetic, environmental, and occupational factors. Miner is high-risk population for COPD, but the global prevalence of COPD in this group is inaccurate. In this study, the environmental and occupational risk factors for COPD were explored comprehensively with a two-sample Mendelian randomization study by combining genome-wide association data from two large global sample sizes of publicly available databases, UK Biobank (n = 503,317) and FinnGen (n = 193,638), as well as the prevalence of COPD among miners was investigated with meta-analysis followed a random-effects model including seven studies (16,033 miners in total). This study found that asthma, smoking, shift work, and workplace dust exposure may increase an individual's risk of COPD. The pooled prevalence of COPD among miners globally was 12% (95% CI: 8%, 18%), with higher prevalence of COPD among ex-smokers and dust-exposed individuals, and was significantly influenced by the method of diagnosis. Our findings suggest that there is currently a lack of practical criteria for diagnosing COPD in the physical examination and screening of miners. The actual prevalence of COPD may be underestimated due to the healthy worker effect and the phenomenon of job switching, and appropriate policies should be favored in the future to reduce the risk of COPD in miner.
Collapse
Affiliation(s)
- Zikai Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Haihong Pan
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Bin Liu
- Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Lanlan Li
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hongxu Yang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
6
|
Mulugeta A, Suppiah V, Hyppönen E. Schizophrenia and co-morbidity risk: Evidence from a data driven phenomewide association study. J Psychiatr Res 2023; 162:1-10. [PMID: 37060872 DOI: 10.1016/j.jpsychires.2023.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Schizophrenia is a chronic debilitating psychiatric disorder with significant morbidity and mortality. In this study, we used information from 337,484 UK Biobank participants and performed PheWAS using schizophrenia genetic risk score on 1135 disease outcomes. Signals that passed the false discovery rate threshold were further analyzed for evidence on the causality of the association. We extended the analysis to 30 serum, four urine, and six neuroimaging biomarkers to identify biomarkers that could be affected by schizophrenia. Schizophrenia GRS was associated with 54 (39 distinct) disease outcomes including schizophrenia in the PheWAS analysis. Of these, a causal association were found with 10 distinct diseases in the MR analysis. Schizophrenia causally linked with higher odds of anxiety (OR = 1.41, 95%CI 1.12 to 1.21), bipolar disorder (OR = 1.52, 95%CI 1.36 to 1.70), major depressive disorder (OR = 1.12, 95%CI 1.08 to 1.16) and suicidal ideation (OR = 1.30, 95%CI 1.19 to 1.42). Lower odds were found for several diseases including type 1 diabetes, coronary atherosclerosis and some musculoskeletal disorders. In analyses using biomarkers, schizophrenia was associated with lower serum 25(OH)D, gamma glutamyltransferase, cystatin C, serum creatinine. However, we did not find association with any of the brain imaging markers. Our analyses confirmed the co-existence of schizophrenia with other mental health disorders but did not otherwise suggest strong effects on disease risk. Biomarker analyses reflected associations which could be explained by unhealthy lifestyles, suggesting patients with schizophrenia may benefit from screening for and managing broader health aspects.
Collapse
Affiliation(s)
- Anwar Mulugeta
- Australian Centre for Precision Health, University of South Australia, Adelaide, Australia; Department of Pharmacology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Vijayaprakash Suppiah
- Australian Centre for Precision Health, University of South Australia, Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| | - Elina Hyppönen
- Australian Centre for Precision Health, University of South Australia, Adelaide, Australia; Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, London, UK; South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
7
|
A hypothesis-driven study to comprehensively investigate the association between genetic polymorphisms in EPHX2 gene and cardiovascular diseases: Findings from the UK Biobank. Gene X 2022; 822:146340. [PMID: 35183688 DOI: 10.1016/j.gene.2022.146340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Epoxyeicosatrienoic acids (EETs) are protective factors against cardiovascular diseases (CVDs) because of their vasodilatory, cholesterol-lowering, and anti-inflammatory effects. Soluble epoxide hydrolase (sEH), encoded by the EPHX2 gene, degrades EETs into less biologically active metabolites. EPHX2 is highly polymorphic, and genetic polymorphisms in EPHX2 have been linked to various types of CVDs, such as coronary heart disease, essential hypertension, and atrial fibrillation recurrence. METHODS Based on a priori hypothesis that EPHX2 genetic polymorphisms play an important role in the pathogenesis of CVDs, we comprehensively investigated the associations between 210 genetic polymorphisms in the EPHX2 gene and an array of 118 diseases in the circulatory system using a large sample from the UK Biobank (N = 307,516). The diseases in electronic health records were mapped to the phecode system, which was more representative of independent phenotypes. Survival analyses were employed to examine the effects of EPHX2 variants on CVD incidence, and a phenome-wide association study was conducted to study the impact of EPHX2 polymorphisms on 62 traits, including blood pressure, blood lipid levels, and inflammatory indicators. RESULTS A novel association between the intronic variant rs116932590 and the phenotype "aneurysm and dissection of heart" was identified. In addition, the rs149467044 and rs200286838 variants showed nominal evidence of association with arterial aneurysm and cerebrovascular disease, respectively. Furthermore, the variant rs751141, which was linked with a lower hydrolase activity of sEH, was significantly associated with metabolic traits, including blood levels of triglycerides, creatinine, and urate. CONCLUSIONS Multiple novel associations observed in the present study highlight the important role of EPHX2 genetic variation in the pathogenesis of CVDs.
Collapse
|
8
|
Zhou A, Selvanayagam JB, Hyppönen E. Non-linear Mendelian randomization analyses support a role for vitamin D deficiency in cardiovascular disease risk. Eur Heart J 2022; 43:1731-1739. [PMID: 34891159 DOI: 10.1093/eurheartj/ehab809] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Low vitamin D status is associated with a higher risk for cardiovascular diseases (CVDs). Although most existing linear Mendelian randomization (MR) studies reported a null effect of vitamin D on CVD risk, a non-linear effect cannot be excluded. Our aim was to apply the non-linear MR design to investigate the association of serum 25-hydroxyvitamin D [25(OH)D] concentration with CVD risk. METHODS AND RESULTS The non-linear MR analysis was conducted in the UK Biobank with 44 519 CVD cases and 251 269 controls. Blood pressure (BP) and cardiac-imaging-derived phenotypes were included as secondary outcomes. Serum 25(OH)D concentration was instrumented using 35 confirmed genome-wide significant variants.We also estimated the potential reduction in CVD incidence attributable to correction of low vitamin D status. There was a L-shaped association between genetically predicted serum 25(OH)D and CVD risk (Pnon-linear = 0.007), where CVD risk initially decreased steeply with increasing concentrations and levelled off at around 50 nmol/L. A similar association was seen for systolic (Pnon-linear = 0.03) and diastolic (Pnon-linear = 0.07) BP. No evidence of association was seen for cardiac-imaging phenotypes (P = 0.05 for all). Correction of serum 25(OH)D level below 50 nmol/L was predicted to result in a 4.4% reduction in CVD incidence (95% confidence interval: 1.8- 7.3%). CONCLUSION Vitamin D deficiency can increase the risk of CVD. Burden of CVD could be reduced by population-wide correction of low vitamin D status.
Collapse
Affiliation(s)
- Ang Zhou
- Australian Center for Precision Health, University of South Australia Cancer Research Institute, GPO Box 2471, Adelaide, SA 5001, Australia
- South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Joseph B Selvanayagam
- South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, Adelaide, SA 5042, Australia
| | - Elina Hyppönen
- Australian Center for Precision Health, University of South Australia Cancer Research Institute, GPO Box 2471, Adelaide, SA 5001, Australia
- South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK
| |
Collapse
|
9
|
Flatby HM, Rasheed H, Ravi A, Thomas LF, Liyanarachi KV, Afset JE, DeWan AT, Brumpton BM, Hveem K, Åsvold BO, Simonsen GS, Furberg AS, Damås JK, Solligård E, Rogne T. Risk of lower respiratory tract infections: a genome-wide association study with Mendelian randomization analysis in three independent European populations. Clin Microbiol Infect 2022; 28:732.e1-732.e7. [PMID: 34763054 DOI: 10.1016/j.cmi.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Lower respiratory tract infections (LRTIs) are a leading cause of morbidity and mortality worldwide. Few studies have previously investigated genetic susceptibility and potential risk factors for LRTI. METHODS We used data from the UK Biobank, Trøndelag Health Study (HUNT), and FinnGen to conduct a genome-wide association study (GWAS). Cases were subjects hospitalized with LRTI, and controls were subjects with no such hospitalization. We conducted stratification and interaction analyses to evaluate whether the genetic effect of LRTI differed by sex or smoking. Mendelian randomization (MR) analyses were conducted to identify the unconfounded relationship between cardiometabolic risk factors and LRTI. RESULTS A total of 25 320 cases and 575 294 controls were included. The 15q25.1 locus reached genome-wide significance in the meta-analysis (rs10519203: OR 0.94, p 3.87e-11). The protective effect of effect allele of rs10519203 was present among smokers (OR 0.90, 95%CI 0.87-0.92, p 1.38e-15) but not among never-smokers (OR 1.01, 95%CI 0.97-1.06, p 5.20e-01). In MR analyses, we found that increasing body mass index (OR 1.31, 95%CI 1.24-1.40, p 3.78e-18), lifetime smoking (OR 2.83, 95%CI 2.34-3.42, p 6.56e-27), and systolic blood pressure robustly increased the risk of LRTIs (OR 1.11, 95%CI 1.02-1.22, p 1.48e-02). CONCLUSION A region in 15q25.1 was strongly associated with LRTI susceptibility. Reduction in the prevalence of smoking, overweight, obesity, and hypertension may reduce the disease burden of LRTIs.
Collapse
Affiliation(s)
- Helene M Flatby
- Gemini Centre for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Anaesthesia and Intensive Care, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Humaira Rasheed
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anuradha Ravi
- Gemini Centre for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Anaesthesia and Intensive Care, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Laurent F Thomas
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; BioCore-Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Laboratory Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kristin V Liyanarachi
- Gemini Centre for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Infectious Diseases, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan E Afset
- Gemini Centre for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Laboratory Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Andrew T DeWan
- Department of Chronic Disease Epidemiology and Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA; Gemini Centre for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ben M Brumpton
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
| | - Kristian Hveem
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Research, Innovation, and Education, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjørn O Åsvold
- Department of Endocrinology, Clinic of Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway; K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gunnar S Simonsen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; Research Group for Host-Microbe Interaction, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Anne-Sofie Furberg
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; Faculty of Health and Social Sciences, Molde University College, Molde, Norway
| | - Jan K Damås
- Gemini Centre for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Infectious Diseases, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Erik Solligård
- Gemini Centre for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Anaesthesia and Intensive Care, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tormod Rogne
- Gemini Centre for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Chronic Disease Epidemiology and Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA; Clinic of Anaesthesia and Intensive Care, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
10
|
Markozannes G, Kanellopoulou A, Dimopoulou O, Kosmidis D, Zhang X, Wang L, Theodoratou E, Gill D, Burgess S, Tsilidis KK. Systematic review of Mendelian randomization studies on risk of cancer. BMC Med 2022; 20:41. [PMID: 35105367 PMCID: PMC8809022 DOI: 10.1186/s12916-022-02246-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We aimed to map and describe the current state of Mendelian randomization (MR) literature on cancer risk and to identify associations supported by robust evidence. METHODS We searched PubMed and Scopus up to 06/10/2020 for MR studies investigating the association of any genetically predicted risk factor with cancer risk. We categorized the reported associations based on a priori designed levels of evidence supporting a causal association into four categories, namely robust, probable, suggestive, and insufficient, based on the significance and concordance of the main MR analysis results and at least one of the MR-Egger, weighed median, MRPRESSO, and multivariable MR analyses. Associations not presenting any of the aforementioned sensitivity analyses were not graded. RESULTS We included 190 publications reporting on 4667 MR analyses. Most analyses (3200; 68.6%) were not accompanied by any of the assessed sensitivity analyses. Of the 1467 evaluable analyses, 87 (5.9%) were supported by robust, 275 (18.7%) by probable, and 89 (6.1%) by suggestive evidence. The most prominent robust associations were observed for anthropometric indices with risk of breast, kidney, and endometrial cancers; circulating telomere length with risk of kidney, lung, osteosarcoma, skin, thyroid, and hematological cancers; sex steroid hormones and risk of breast and endometrial cancer; and lipids with risk of breast, endometrial, and ovarian cancer. CONCLUSIONS Despite the large amount of research on genetically predicted risk factors for cancer risk, limited associations are supported by robust evidence for causality. Most associations did not present a MR sensitivity analysis and were thus non-evaluable. Future research should focus on more thorough assessment of sensitivity MR analyses and on more transparent reporting.
Collapse
Affiliation(s)
- Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Afroditi Kanellopoulou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Dimitrios Kosmidis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Xiaomeng Zhang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
11
|
Ritz BR, Kusters CDJ. The Promise of Mendelian Randomization in Parkinson's Disease: Has the Smoke Cleared Yet for Smoking and Parkinson's Disease Risk? JOURNAL OF PARKINSON'S DISEASE 2022; 12:807-812. [PMID: 35213390 PMCID: PMC10564582 DOI: 10.3233/jpd-223188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This commentary discusses the strengths and limitations of utilizing the Mendelian randomization (MR) approach in Parkinson's disease (PD) studies. Epidemiologists proposed to employ MR when genetic instruments are available that represent reliable proxies for modifiable lifelong exposures which elude easy measurement in studies of late onset diseases like PD. Here, we are using smoking as an example. The great promise of the MR approach is its resilience to confounding and reverse causation. Nevertheless, the approach has some drawbacks such as being liable to selection- and survival-bias, it makes some strong assumptions about the genetic instruments employed, and requires very large sample sizes. When interpreted carefully and put into the context of other studies that take both genetics and the environment into consideration, MR studies help us to not only ask interesting questions but also can support causal inference and provide novel insights.
Collapse
Affiliation(s)
- Beate R. Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Environmental Health, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Cynthia DJ Kusters
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
12
|
Li S, Jia Z, Zhang Z, Li Y, Yan M, Yu T. Association Study of Genetic Variants in Calcium Signaling-Related Genes With Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:642141. [PMID: 34912794 PMCID: PMC8666440 DOI: 10.3389/fcell.2021.642141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Calcium ions (Ca2+) play an essential role in excitation-contraction coupling in the heart. The association between cardiovascular diseases (CVDs) and genetic polymorphisms in key regulators of Ca2+ homeostasis is well established but still inadequately understood. Methods: The associations of 11,274 genetic variants located in nine calcium signaling-related genes with 118 diseases of the circulatory system were explored using a large sample from the United Kingdom Biobank (N = 308,366). The clinical outcomes in electronic health records were mapped to the phecode system. Survival analyses were employed to study the role of variants in CVDs incidence and mortality. Phenome-wide association studies (PheWAS) were performed to investigate the effect of variants on cardiovascular risk factors. Results: The reported association between rs1801253 in β1-adrenergic receptor (ADRB1) and hypertension was successfully replicated, and we additionally found the blood pressure-lowering G allele of this variant was associated with a delayed onset of hypertension and a decreased level of apolipoprotein A. The association of rs4484922 in calsequestrin 2 (CASQ2) with atrial fibrillation/flutter was identified, and this variant also displayed nominal evidence of association with QRS duration and carotid intima-medial thickness. Moreover, our results indicated suggestive associations of rs79613429 in ryanodine receptor 2 (RYR2) with precordial pain. Conclusion: Multiple novel associations established in our study highlight genetic testing as a useful method for CVDs diagnosis and prevention.
Collapse
Affiliation(s)
- Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | | | | | | | | | | |
Collapse
|
13
|
Peat G, Thomas MJ. Osteoarthritis year in review 2020: epidemiology & therapy. Osteoarthritis Cartilage 2021; 29:180-189. [PMID: 33242603 DOI: 10.1016/j.joca.2020.10.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/29/2020] [Indexed: 02/02/2023]
Abstract
This personal choice of research themes and highlights from within the past year (1 May 2019 to 14 April 2020) spans descriptive, analytical-observational, and intervention studies. Descriptive estimates of the burden of osteoarthritis continue to underscore its position as a leading cause of disability worldwide, but whose burden is often felt greatest among disadvantaged and marginalised communities. Many of the major drivers of that burden are known but epidemiological studies continue the important work of elaborating on their timing, dose, specificity, and reversibility and placing them within an appropriate multi-level framework. A similar process of elaboration is seen also in studies (re-)estimating the relative benefits and risks of existing interventions, in some cases helping to identify low-value care, unwarranted variation, and initiating processes of deprescribing and decommissioning. Such research need not engender therapeutic nihilism. Our review closes by highlighting some emerging evidence on the efficacy and safety of novel therapeutic interventions and with a selective roll-call of methodological and meta-research in OA illustrating the continued commitment to improving research quality.
Collapse
Affiliation(s)
- G Peat
- Primary Care Centre Versus Arthritis, School of Medicine, Faculty of Medicine & Health Sciences, Keele University, Keele, UK.
| | - M J Thomas
- Primary Care Centre Versus Arthritis, School of Medicine, Faculty of Medicine & Health Sciences, Keele University, Keele, UK; Haywood Academic Rheumatology Centre, Midlands Partnership NHS Foundation Trust, Haywood Hospital, Staffordshire, UK
| |
Collapse
|
14
|
Gill D. Leverage of genetic variants proxying smoking intensity to explore the broad health consequences of smoking. EClinicalMedicine 2020; 26:100498. [PMID: 33089119 PMCID: PMC7564517 DOI: 10.1016/j.eclinm.2020.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
- Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Centre for Pharmacology and Therapeutics, Department of Medicine, Hammersmith Campus, Imperial College London, London, United Kingdom
- Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, United Kingdom
- Clinical Pharmacology and Therapeutics Section, Institute of Medical and Biomedical Education and Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
- Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
- Correspondence to: Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.
| |
Collapse
|