1
|
Zhao Q, Guo Q, Luo L, Yan K. Tungsten Accumulation in Hot Spring Sediments Resulting from Preferred Sorption of Aqueous Polytungstates to Goethite. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312629. [PMID: 34886354 PMCID: PMC8656809 DOI: 10.3390/ijerph182312629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022]
Abstract
Geothermal waters usually have elevated tungsten concentrations, making geothermal systems important sources of tungsten in the environment. To study the transport of tungsten in hot springs to hot spring sediment, which is one of the key processes for the release of geothermally derived tungsten to the surface environment, geochemical investigations of the hot springs and their corresponding sediments in Rehai (a representative hydrothermal area in southwestern China) and systematic laboratory experiments of tungstate and polytungstate adsorption onto typical iron-bearing minerals in hot spring sediments (i.e., pyrite and goethite) were conducted. The results demonstrate that considerable tungsten concentrations (i.e., not much less than 10 µg/L), formation of polytungstates under acidic conditions, and enrichment of iron oxide minerals represented by goethite are the prerequisites for extreme enrichment of tungsten in hot spring sediments (e.g., 991 µg/g in the ZZQ spring outflow channel). The absence of any of these conditions would weaken the immobilization of aqueous tungsten and result in higher mobility of tungsten in the hot springs and its further transport downstream, possibly polluting the other natural waters in and around Rehai that serve as local drinking water sources. This study provides an insight for identifying the key geochemical processes controlling the transport and fate of undesirable elements (in this case, tungsten) in geothermal systems.
Collapse
|
2
|
Chou H, Grant MP, Bolt AM, Guilbert C, Plourde D, Mwale F, Mann KK. Tungsten Increases Sex-Specific Osteoclast Differentiation in Murine Bone. Toxicol Sci 2021; 179:135-146. [PMID: 33146397 PMCID: PMC7797767 DOI: 10.1093/toxsci/kfaa165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tungsten is a naturally occurring metal that is increasingly used in industry and medical devices, and is labeled as an emerging environmental contaminant. Like many metals, tungsten accumulates in bone. Our previous data indicate that tungsten decreases differentiation of osteoblasts, bone-forming cells. Herein, we explored the impact of tungsten on osteoclast differentiation, which function in bone resorption. We observed significantly elevated osteoclast numbers in the trabecular bone of femurs following oral exposure to tungsten in male, but not female mice. In order to explore the mechanism(s) by which tungsten increases osteoclast number, we utilized in vitro murine primary and cell line pre-osteoclast models. Although tungsten did not alter the adhesion of osteoclasts to the extracellular matrix protein, vitronectin, we did observe that tungsten enhanced RANKL-induced differentiation into tartrate-resistant acid phosphatase (TRAP)-positive mononucleated osteoclasts. Importantly, tungsten alone had no effect on differentiation or on the number of multinucleated TRAP-positive osteoclasts. Enhanced RANKL-induced differentiation correlated with increased gene expression of differentiated osteoclast markers Nfatc1, Acp5, and Ctsk. Although tungsten did not alter the RANK surface receptor expression, it did modulate its downstream signaling. Co-exposure of tungsten and RANKL resulted in sustained positive p38 signaling. These findings demonstrate that tungsten enhances sex-specific osteoclast differentiation, and together with previous findings of decreased osteoblastogenesis, implicate tungsten as a modulator of bone homeostasis.
Collapse
Affiliation(s)
- Hsiang Chou
- Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Michael P Grant
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Alicia M Bolt
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque 87131, New Mexico
| | - Cynthia Guilbert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Dany Plourde
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Fackson Mwale
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Experimental Surgery, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Koren K Mann
- Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| |
Collapse
|
3
|
Xu Y, Li X, Zeng X, Cao J, Jiang W. Application of blockchain technology in food safety control:current trends and future prospects. Crit Rev Food Sci Nutr 2020; 62:2800-2819. [PMID: 33307729 DOI: 10.1080/10408398.2020.1858752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Blockchain technology is a distributed ledger technology and is expected to face some difficulties and challenges in various industries due to its transparency, decentralization, tamper-proof nature, and encryption security. Food safety has been paid increasing attention in recent years with economic development. Based on a systematic literature critical analysis, the causes of food safety problems and the state-of-the-art blockchain technology overview, including the definition of blockchain, development history, classification, structure, characteristics, and main applications, the feasibility and application prospects of blockchain technology in plant food safety, animal food safety, and processed food safety were proposed in this review. Finally, the challenges of the blockchain technology itself and the difficulties in the application of food safety were analyzed. This study contributes to the extant literature in the field of food safety by discovering the excellent potential of blockchain technology and its implications for food safety control. Our results indicated that blockchain is a promising technology toward a food safety control, with many ongoing initiatives in food products, but many food-related issues, barriers, and challenges still exist. Nevertheless, it is expected to provide a feasible solution for controlling food safety risks.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| | - Xiangquan Zeng
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| |
Collapse
|
4
|
The Sealing Step in Aluminum Anodizing: A Focus on Sustainable Strategies for Enhancing Both Energy Efficiency and Corrosion Resistance. COATINGS 2020. [DOI: 10.3390/coatings10030226] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Increasing demands for environmental accountability and energy efficiency in industrial practice necessitates significant modification(s) of existing technologies and development of new ones to meet the stringent sustainability demands of the future. Generally, development of required new technologies and appropriate modifications of existing ones need to be premised on in-depth appreciation of existing technologies, their limitations, and desired ideal products or processes. In the light of these, published literature mostly in the past 30 years on the sealing process; the second highest energy consuming step in aluminum anodization and a step with significant environmental impacts has been critical reviewed in this systematic review. Emphasis have been placed on the need to reduce both the energy input in the anodization process and environmental implications. The implications of the nano-porous structure of the anodic oxide on mass transport and chemical reactivity of relevant species during the sealing process is highlighted with a focus on exploiting these peculiarities, in improving the quality of sealed products. In addition, perspective is provided on plausible approaches and important factors to be considered in developing sealing procedures that can minimize the energy input and environmental impact of the sealing step, and ensure a more sustainable aluminum anodization process/industry.
Collapse
|
5
|
Kanstrup N, Chriél M, Dietz R, Søndergaard J, Balsby TJS, Sonne C. Lead and Other Trace Elements in Danish Birds of Prey. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:359-367. [PMID: 31214747 PMCID: PMC6731194 DOI: 10.1007/s00244-019-00646-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/12/2019] [Indexed: 05/06/2023]
Abstract
Lead is a widely used and toxic heavy metal that poses a serious hazard to wildlife species and their ecosystems. Lead is used for production of hunting ammunition. Via gunshot or rifle projectiles, it spreads in ecosystems and may end up in predators and scavengers feeding on wounded or dead animals shot with lead-based ammunition. To assess to what degree Danish raptors are subject to lead contamination, we measured the content of lead in liver tissue from Danish birds of prey (n = 137). Additionally, the study included values for 54 other trace elements. In our analysis, emphasis was put on interpretation of lead levels. Levels of cadmium, mercury and selenium were also discussed, while data for the remaining elements were provided for reference purposes. Bismuth was included to assess if lead originated from bismuth gunshot used as an alternative to lead shot. Concentrations of lead, cadmium, mercury and selenium were generally below the levels in similar studies of birds of prey in other northern European countries and none exceeded known and generally accepted threshold values for adverse health effects. As for lead, this is possibly related to the phase out of lead shot for hunting since 1986. The study confirms results from other studies showing that bismuth shot contains traces of lead that is deposited with bismuth in the target animal.
Collapse
Affiliation(s)
- Niels Kanstrup
- Department of Bioscience, Aarhus University, Grenåvej 12, 8410 Rønde, Denmark
| | - Mariann Chriél
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Rune Dietz
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jens Søndergaard
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | - Christian Sonne
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
6
|
Influence of Increasing Tungsten Concentrations and Soil Characteristics on Plant Uptake: Greenhouse Experiments with Zea mays. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9193998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tungsten is largely used in high-tech and military industries. Soils are increasingly enriched in this element, and its transfer in the food chain is an issue of great interest. This study evaluated the influence of soil characteristics on tungsten uptake by Zea mays grown on three soils, spiked with increasing tungsten concentrations. The soils, classified as Histosol, Vertisol, and Fluvisol, are characteristic of the Mediterranean area. The uptake of the element by Zea mays was strictly dependent on the soil characteristics. As the pH of soils increases, tungsten concentrations in the roots and shoots of the plants increased. Also, humic substances showed a great influence on tungsten uptake, which decreased with increasing organic matter of soils. Tungsten uptake by Zea mays can be described by a Freundlich-like equation. This soil-to-plant transfer model may be useful in promoting environmental regulations on the hazards of this element in the environment.
Collapse
|
7
|
Thomas VG. Chemical compositional standards for non-lead hunting ammunition and fishing weights. AMBIO 2019; 48:1072-1078. [PMID: 30547429 PMCID: PMC6675850 DOI: 10.1007/s13280-018-1124-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 05/02/2023]
Abstract
The chemical composition of non-lead, non-toxic, gunshot used for hunting waterfowl is regulated only in Canada and the USA. No nation regulates the composition of non-lead fishing weights, rifle bullets, and gunshot used for upland game hunting. Compositional criteria for these non-lead products are proposed here, based on established experimental toxicity protocols. Because of the demonstrated acute toxicity of ingested zinc shot to birds, fishing weights and gunshot should never be made of this pure metal. Nickel should be avoided as an incidental component of gunshot because of potential carcinogenicity concerns about such embedded shot in birds and other animals. These compositional criteria could be adopted by all nations undertaking the transition to non-lead fishing weights and hunting ammunition. The listed criteria would facilitate production and international trade in non-lead products, and promote easier enforcement and user compliance with non-lead standards.
Collapse
Affiliation(s)
- Vernon G Thomas
- Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
8
|
Kanstrup N, Balsby TJS. Ingested shot in mallards (Anas platyrhynchos) after the regulation of lead shot for hunting in Denmark. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1278-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Sallman B, Rakshit S, Lefèvre G. Influence of phosphate on tungstate sorption on hematite: A macroscopic and spectroscopic evaluation of the mechanism. CHEMOSPHERE 2018; 213:596-601. [PMID: 30290330 DOI: 10.1016/j.chemosphere.2018.09.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The environmental fate of the tungstate (VI) oxyanion [ e.g. mono tungstate and several polytungstate, generally expressed by W (VI)] is largely controlled by sorption on soil minerals, especially on iron oxide minerals. Molecular scale evaluation of W (VI) retention on iron oxides in the presence of competing oxyanions is scarce in literature. Here we report surface interaction mechanisms of W (VI) on hematite in the presence of phosphate (P) using macroscopic and in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic experiments. Batch sorption experiments were conducted using 2 g L-1 hematite and 100 μM W (VI) and P, in single ion system and in binary mixtures as a function of pH (4-11). In situ ATR-FTIR spectroscopic evaluation of P and W (VI) sorption on hematite was also carried out. The results from macroscopic experiments indicated that W (VI) sorption on hematite was not affected by P when W (VI) was added first. The influence of P on W (VI) sorption was noticed when W (VI) & P were added simultaneously or P was added first. The in situ ATR-FTIR spectroscopic data corroborated these findings. In addition, the spectroscopic data revealed that in the presence of P, the surface complexation mode of W (VI) differed as noted from either the absence of WO antisymmetric infrared (IR) band or the WOW stretching band. This study provides useful information on molecular level understanding of W (VI) surface complexation on hematite in the presence of competing ions such as P.
Collapse
Affiliation(s)
- Bryan Sallman
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN 37209-1561, USA
| | - Sudipta Rakshit
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN 37209-1561, USA.
| | - Grégory Lefèvre
- Institut de Recherche de Chimie Paris, CNRS-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
10
|
Bostick BC, Sun J, Landis JD, Clausen JL. Tungsten Speciation and Solubility in Munitions-Impacted Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1045-1053. [PMID: 29307178 DOI: 10.1021/acs.est.7b05406] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Considerable questions persist regarding tungsten geochemistry in natural systems, including which forms of tungsten are found in soils and how adsorption regulates dissolved tungsten concentrations. In this study, we examine tungsten speciation and solubility in a series of soils at firing ranges in which tungsten rounds were used. The metallic, mineral, and adsorbed forms of tungsten were characterized using X-ray absorption spectroscopy and X-ray microprobe, and desorption isotherms for tungsten in these soils were used to characterize its solid-solution partitioning behavior. Data revealed the complete and rapid oxidation of tungsten metal to hexavalent tungsten(VI) and the prevalence of adsorbed polymeric tungstates in the soils rather than discrete mineral phases. These polymeric complexes were only weakly retained in the soils, and porewaters in equilibrium with contaminated soils had 850 mg L-1 tungsten, considerably in excess of predicted solubility. We attribute the high solubility and limited adsorption of tungsten to the formation of polyoxometalates such as W12SiO404-, an α-Keggin cluster, in soil solutions. Although more research is needed to confirm which of such polyoxometalates are present in soils, their formation may not only increase the solubility of tungsten but also facilitate its transport and influence its toxicity.
Collapse
Affiliation(s)
- Benjamín C Bostick
- Lamont-Doherty Earth Observatory, Columbia University , Palisades, New York 10964, United States
| | - Jing Sun
- School of Earth Sciences, University of Western Australia , 35 Stirling Highway, Perth, West Australia 6009, Australia
| | - Joshua D Landis
- Department of Earth Sciences, Dartmouth College , Hanover, New Hampshire 03755, United States
| | - Jay L Clausen
- Research and Development Center, Cold Regions Research and Engineering Laboratory , 72 Lyme Road, Hanover, New Hampshire 03755, United States
| |
Collapse
|
11
|
Rakshit S, Sallman B, Davantés A, Lefèvre G. Tungstate (VI) sorption on hematite: An in situ ATR-FTIR probe on the mechanism. CHEMOSPHERE 2017; 168:685-691. [PMID: 27836284 DOI: 10.1016/j.chemosphere.2016.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 08/16/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Owing to the suspected toxicity and carcinogenicity of tungstate (VI) oxyanions [i.e. mono tungstate and several polytungstate, generally represented by W (VI)], the environmental fate of W (VI) has been widely studied. Sorption is regarded as a major mechanism by which W (VI) species are retained in the solid/water interface. Iron (hydr)oxides have been considered important environmental sinks for W (VI) species. Here we report sorption mechanisms of W (VI) on a common iron oxide mineral-hematite under environmentally relevant solution properties using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic probes. Initial W (VI) loadings varied from 10 to 200 μM at fixed pH values ranged from 4.6 to 8.1. For pH envelop (pHs = 4.6, 5.0, 5.5, 6.0, 6.5, 7.5, and 8.1) experiments, fixed W (VI) concentrations (i.e. 10 & 200 μM) were used to understand the effects of pH. The results indicated that at acidic pH values (pH < 6.0) the sorbed polytungstate surface species are prominent at 200 μM initial W (VI) conc. The pH envelop experiments revealed that sorbed polytungstates can be present even at lower initial W (VI) conc. (i.e. 10 μM) at pH values <5.5. Overall, our in situ ATR-FTIR experiments indicated that W (VI) forms inner-sphere type bonds on hematite surface and the strength of the interaction increases with decreasing pH. In addition, initial W (VI) concentration affected the sorption mechanisms of W (VI) on hematite. Our study will aid the molecular level understanding of W (VI) retention on iron oxide surfaces.
Collapse
Affiliation(s)
- Sudipta Rakshit
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN 37209-1561, USA.
| | - Bryan Sallman
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN 37209-1561, USA
| | - Athénais Davantés
- PSL Research University, Chimie Paris Tech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Grégory Lefèvre
- PSL Research University, Chimie Paris Tech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| |
Collapse
|
12
|
Guan DX, Williams PN, Xu HC, Li G, Luo J, Ma LQ. High-resolution measurement and mapping of tungstate in waters, soils and sediments using the low-disturbance DGT sampling technique. JOURNAL OF HAZARDOUS MATERIALS 2016; 316:69-76. [PMID: 27209520 DOI: 10.1016/j.jhazmat.2016.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 06/05/2023]
Abstract
Increasing tungsten (W) use for industrial and military applications has resulted in greater W discharge into natural waters, soils and sediments. Risk modeling of W transport and fate in the environment relies on measurement of the release/mobilization flux of W in the bulk media and the interfaces between matrix compartments. Diffusive gradients in thin-films (DGT) is a promising passive sampling technique to acquire such information. DGT devices equipped with the newly developed high-resolution binding gels (precipitated zirconia, PZ, or ferrihydrite, PF, gels) or classic/conventional ferrihydrite slurry gel were comprehensively assessed for measuring W in waters. (Ferrihydrite)DGT can measure W at various ionic strengths (0.001-0.5molL(-1) NaNO3) and pH (4-8), while (PZ)DGT can operate across slightly wider environmental conditions. The three DGT configurations gave comparable results for soil W measurement, showing that typically W resupply is relatively poorly sustained. 1D and 2D high-resolution W profiling across sediment-water and hotspot-bulk media interfaces from Lake Taihu were obtained using (PZ)DGT coupled with laser ablation ICP-MS measurement, and the apparent diffusion fluxes across the interfaces were calculated using a numerical model.
Collapse
Affiliation(s)
- Dong-Xing Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Paul N Williams
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Hua-Cheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Gang Li
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Elemental tungsten, tungsten–nickel alloys and shotgun ammunition: resolving issues of their relative toxicity. EUR J WILDLIFE RES 2015. [DOI: 10.1007/s10344-015-0979-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Adamakis IDS, Panteris E, Eleftheriou EP. Tungsten Toxicity in Plants. PLANTS (BASEL, SWITZERLAND) 2012; 1:82-99. [PMID: 27137642 PMCID: PMC4844263 DOI: 10.3390/plants1020082] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 11/17/2022]
Abstract
Tungsten (W) is a rare heavy metal, widely used in a range of industrial, military and household applications due to its unique physical properties. These activities inevitably have accounted for local W accumulation at high concentrations, raising concerns about its effects for living organisms. In plants, W has primarily been used as an inhibitor of the molybdoenzymes, since it antagonizes molybdenum (Mo) for the Mo-cofactor (MoCo) of these enzymes. However, recent advances indicate that, beyond Mo-enzyme inhibition, W has toxic attributes similar with those of other heavy metals. These include hindering of seedling growth, reduction of root and shoot biomass, ultrastructural malformations of cell components, aberration of cell cycle, disruption of the cytoskeleton and deregulation of gene expression related with programmed cell death (PCD). In this article, the recent available information on W toxicity in plants and plant cells is reviewed, and the knowledge gaps and the most pertinent research directions are outlined.
Collapse
Affiliation(s)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
| | - Eleftherios P Eleftheriou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
| |
Collapse
|
15
|
Moxnes JF, Jensen TL, Smestad E, Unneberg E, Dullum O. Lead Free Ammunition without Toxic Propellant Gases. PROPELLANTS EXPLOSIVES PYROTECHNICS 2012. [DOI: 10.1002/prep.201200021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Kennedy AJ, Johnson DR, Seiter JM, Lindsay JH, Boyd RE, Bednar AJ, Allison PG. Tungsten toxicity, bioaccumulation, and compartmentalization into organisms representing two trophic levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9646-52. [PMID: 22873780 DOI: 10.1021/es300606x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Metallic tungsten has civil and military applications and was considered a green alternative to lead. Recent reports of contamination in drinking water and soil have raised scrutiny and suspended some applications. This investigation employed the cabbage Brassica oleracae and snail Otala lactea as models to determine the toxicological implications of sodium tungstate and an aged tungsten powder-spiked soil containing monomeric and polymeric tungstates. Aged soil bioassays indicated cabbage growth was impaired at 436 mg of W/kg, while snail survival was not impacted up to 3793 mg of W/kg. In a dermal exposure, sodium tungstate was more toxic to the snail, with a lethal median concentration of 859 mg of W/kg. While the snail significantly bioaccumulated tungsten, predominately in the hepatopancreas, cabbage leaves bioaccumulated much higher concentrations. Synchrotron-based mapping indicated the highest levels of W were in the veins of cabbage leaves. Our results suggest snails consuming contaminated cabbage accumulated higher tungsten concentrations relative to the concentrations directly bioaccumulated from soil, indicating the importance of robust trophic transfer investigations. Finally, synchrotron mapping provided evidence of tungsten in the inner layer of the snail shell, suggesting potential use of snail shells as a biomonitoring tool for metal contamination.
Collapse
Affiliation(s)
- Alan J Kennedy
- US Army Engineer Research and Development Center, Vicksburg, Mississippi 39180, United States.
| | | | | | | | | | | | | |
Collapse
|
17
|
Verma R, Xu X, Jaiswal MK, Olsen C, Mears D, Caretti G, Galdzicki Z. In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components. Toxicol Appl Pharmacol 2011; 253:178-87. [DOI: 10.1016/j.taap.2011.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 01/04/2023]
|
18
|
Strigul N. Does speciation matter for tungsten ecotoxicology? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:S0147-6513(10)00092-8. [PMID: 20965092 DOI: 10.1016/j.ecoenv.2010.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 03/16/2010] [Accepted: 05/01/2010] [Indexed: 05/27/2023]
Abstract
Tungsten is a widely used transition metal that has not been thoroughly investigated with regards to its ecotoxicological effects. Tungsten anions polymerize in environmental systems as well as under physiological conditions in living organisms. These polymerization/condensation reactions result in the development of several types of stable polyoxoanions. Certain chemical properties (in particular redox and acidic properties) differentiate these polyanions from monotungstates. However, our current state of knowledge on tungsten toxicology, biological and environmental effects is based entirely on experiments where monotungstates were used and assumed by the authors to be the form of tungsten that was present and that produced the observed effect. Recent discoveries indicate that tungsten speciation may be important to ecotoxicology. New results obtained by different research groups demonstrate that polytungstates develop and persist in environmental systems, and that polyoxotungstates are much more toxic than monotungstates. This paper reviews the available toxicological information from the standpoint of tungsten speciation and identifies knowledge gaps and pertinent future research directions.
Collapse
|