1
|
Gao D, Tao H, Hou Z, Chen G, Wu J, Liang H. Positive effects of composite material immobilized enzymes in 2,4,6-trichlorophenol degradation on soil properties and plant growth. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:139. [PMID: 40146306 DOI: 10.1007/s10653-025-02479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/23/2025] [Indexed: 03/28/2025]
Abstract
2,4,6-Trichlorophenol (2,4,6-TCP) is recognized as a bio-toxic compound which is widely present in water and soil, and immobilized enzymes technology is widely used to degrade 2,4,6-TCP efficiently. However, previous studies have primarily focused on the degradation capability of immobilized enzymes towards 2,4,6-TCP, while the impacts on soil after degradation remain largely unexplored. In this study, sodium alginate/hydroxyapatite/chitosan microspheres immobilized with enzymes were used for 2,4,6-TCP degradation, and the impacts of degradation on soil properties and plant growth were explored. The results indicated that sodium alginate/hydroxyapatite/chitosan microsphere-immobilized enzymes achieved a removal rate of 94.72% for 160 mg L-1 2,4,6-TCP over 24 h and 73.17% for 160 mg kg-1 2,4,6-TCP contaminated soil over 72 h. Soil dehydrogenase and catalase activities were enhanced during degradation. The inhibitory effects of 2,4,6-TCP on wheat root and leaf elongation were mitigated by immobilized enzymes that degrade 2,4,6-TCP. Nutrients, such as fast-acting phosphorus and fast-acting potassium, were increased by immobilized enzymes that release nutrient elements. The changes of wheat growth observed in the soil after 2,4,6-TCP degradation by immobilized enzymes were driven by nutrients and degradation. These insights may facilitate the advancement of future applications of immobilized enzyme degradation technologies, contributing to sustainable soil management and ecological restoration.
Collapse
Affiliation(s)
- Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Huayu Tao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zelin Hou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Guanyu Chen
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jing Wu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
2
|
Ma T, Ma L, Wei R, Xu L, Ma Y, Chen Z, Dang J, Ma S, Li S. Physiology, Biochemistry, and Transcriptomics Jointly Reveal the Phytotoxicity Mechanism of Acetochlor on Pisum sativum L. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2005-2019. [PMID: 38988284 DOI: 10.1002/etc.5936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
Acetochlor, as a commonly used pre-emergent herbicide, can be toxic to crops and affect production if used improperly. However, the toxic mechanism of acetochlor on plants is not fully understood. The present study used a combination of transcriptomic analysis and physiological measurements to investigate the effects of short-term (15-day) exposure to different concentrations of acetochlor (1, 10, 20 mg/kg) on the morphology, physiology, and transcriptional levels of pea seedlings, aiming to elucidate the toxic response and resistance mechanisms in pea seedlings under herbicide stress. The results showed that the toxicity of acetochlor to pea seedlings was dose-dependent, manifested as dwarfing and stem base browning with increasing concentrations, especially at 10 mg/kg and above. Analysis of the antioxidant system showed that from the 1 mg/kg treatment, malondialdehyde, superoxide dismutase, peroxidase, and glutathione peroxidase in peas increased with increasing concentrations of acetochlor, indicating oxidative damage. Analysis of the glutathione (GSH) metabolism system showed that under 10 mg/kg treatment, the GSH content of pea plants significantly increased, and GSH transferase activity and gene expression were significantly induced, indicating a detoxification response in plants. Transcriptomic analysis showed that after acetochlor treatment, differentially expressed genes in peas were significantly enriched in the phenylpropane metabolic pathway, and the levels of key metabolites (flavonoids and lignin) were increased. In addition, we found that acetochlor-induced dwarfing of pea seedlings may be related to gibberellin signal transduction. Environ Toxicol Chem 2024;43:2005-2019. © 2024 SETAC.
Collapse
Affiliation(s)
- Tingfeng Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ruonan Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ling Xu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Yantong Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Zhen Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Junhong Dang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Shaoying Ma
- Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
- Agronomy College, Gansu Agricultural University, Lanzhou, People's Republic of China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
3
|
Song S, Huang T, Xu Y, Ling Z, Gou L, Mao X, Zhao Y, Chen K, Liu Y, Wei Z, Wang J, Gao H, Ma J. Tracking and optimizing toxic chemical exposure pathways through food trade: A case study in SCCPs contaminated seafood in China. PNAS NEXUS 2024; 3:pgae205. [PMID: 38846777 PMCID: PMC11154648 DOI: 10.1093/pnasnexus/pgae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
Food safety is related to human health and sustainable development. International food trade poses food safety risks through the collateral transport of toxic chemicals that are detrimental to human health. Domestic interprovincial trade has similar effects within countries but has not been comprehensively investigated previously. Here, we assessed the effects of interprovincial trade on food safety and human dietary exposure to short-chain chlorinated paraffins (SCCPs), a group of emerging persistent toxic chemicals, in seafood across China by synthesizing data from field observation and various models. Our findings indicate that there is a higher level of SCCPs exposure risk in coastal provinces compared to inland provinces. Approximately, 70.3% of human exposure to SCCPs through seafood consumption in China was embodied in the interprovincial seafood trade in 2021. Specifically, the domestic trade led to a remarkable increase in SCCPs exposure in the coastal provinces in South China, attributable to low SCCPs pollution in these provinces and imported seafood from those provinces with high SCCPs pollution. In contrast, human exposure to SCCPs decreased in those coastal provinces in East China due to importing seafood from those provinces with low SCCPs concentrations. The interprovincial seafood trade routes were optimized by linear programming to minimize human exposure to SCCPs considering both shipping cost and health risk constraints. The optimized trade routes reduced the national per capita SCCPs exposure through seafood consumption by over 12%. This study highlights the importance of interprovincial food trade in the risk assessment of toxic chemicals.
Collapse
Affiliation(s)
- Shijie Song
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuting Xu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zaili Ling
- College of Agricultural and Forestry Economics & Management, Lanzhou University of Finance and Economics, Lanzhou 730101, P. R. China
| | - Ling Gou
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoxuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kaijie Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, P. R. China
| | - Yao Liu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zijian Wei
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiaxin Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
4
|
Fan C, Li J, Dai S, Xuan X, Xu D, Wen Y. Plasma Membrane (PM) H +-ATPase Mediates Rhizosphere Acidification and Regulates Herbicide Imazethapyr Toxicity in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38623691 DOI: 10.1021/acs.jafc.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The plasma membrane (PM) H+-ATPase is crucial for a plant defense system. However, there is currently no consensus on whether the PM H+-ATPase plays a role in alleviating the toxic effects of herbicides on nontarget plants. We found that under the herbicide imazethapyr (IM) exposure, PM H+-ATPase activity in wheat roots increased by approximately 69.53%, leading to rhizosphere acidification. When PM H+-ATPase activity is inhibited, the toxicity of IM significantly increases: When exposed to IM alone, the total Fe content of wheat roots decreased by 29.07%, the relative Fe2+ content increased by 27.75%, and the ROS content increased by 27.74%. When the PM H+-ATPase activity was inhibited, the corresponding data under IM exposure were 37.36%, 215%, and 57.68%, respectively. This work delves into the role of PM H+-ATPase in mediating the detoxification mechanism in plants exposed to herbicides, offering new insights into enhancing crop resistance against herbicides.
Collapse
Affiliation(s)
- Chenyang Fan
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyuan Dai
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuan Xuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Lu B, Meng R, Wang Y, Xiong W, Ma Y, Gao P, Ren J, Zhang L, Zhao Z, Fan G, Wen Y, Yuan X. Distinctive physiological and molecular responses of foxtail millet and maize to nicosulfuron. FRONTIERS IN PLANT SCIENCE 2024; 14:1308584. [PMID: 38293619 PMCID: PMC10824897 DOI: 10.3389/fpls.2023.1308584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Introduction Nicosulfuron is the leading acetolactate synthase inhibitor herbicide product, and widely used to control gramineous weeds. Here, we investigated the metabolic process of nicosulfuron into foxtail millet and maize, in order to clarify the mechanism of the difference in sensitivity of foxtail millet and maize to nicosulfuron from the perspective of physiological metabolism and provide a theoretical basis for the breeding of nicosulfuron-resistant foxtail millet varieties. Methods We treated foxtail millet (Zhangzagu 10, Jingu 21) and maize (Nongda 108, Ditian 8) with various doses of nicosulfuron in both pot and field experiments. The malonaldehyde (MDA) content, target enzymes, detoxification enzymes, and antioxidant enzymes, as well as related gene expression levels in the leaf tissues of foxtail millet and maize were measured, and the yield was determined after maturity. Results The results showed that the recommended dose of nicosulfuron caused Zhangzagu 10 and Jingu 21 to fail to harvest; the yield of the sensitive maize variety (Ditian 8) decreased by 37.09%, whereas that of the resistant maize variety (Nongda 108) did not decrease. Nicosulfuron stress increased the CYP450 enzyme activity, MDA content, and antioxidant enzyme activity of foxtail millet and maize, reduced the acetolactate synthase (ALS) activity and ALS gene expression of foxtail millet and Ditian 8, and reduced the glutathione S-transferase (GST) activity and GST gene expression of foxtail millet. In conclusion, target enzymes, detoxification enzymes, and antioxidant enzymes were involved in the detoxification metabolism of nicosulfuron in plants. ALS and GST are the main factors responsible for the metabolic differences among foxtail millet, sensitive maize varieties, and resistant maize varieties. Discussion These findings offer valuable insights for exploring the target resistance (TSR) and non-target resistance (NTSR) mechanisms in foxtail millet under herbicide stress and provides theoretical basis for future research of develop foxtail millet germplasm with diverse herbicide resistance traits.
Collapse
Affiliation(s)
- Boyu Lu
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Ru Meng
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yiru Wang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Wei Xiong
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yuchao Ma
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Peng Gao
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Jianhong Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Liguang Zhang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Zhihai Zhao
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Guangyu Fan
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Yinyuan Wen
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Xiangyang Yuan
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Ju C, Jiang F, Gao Y, Chen T, Cao J, Lv J, Zhao Y, Zheng Y, Guo W, Huang J. Effects of Fungicides and Nontarget Pesticides on Accumulation of the Mycotoxin Deoxynivlenol in Wheat. TOXICS 2023; 11:768. [PMID: 37755778 PMCID: PMC10535342 DOI: 10.3390/toxics11090768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Deoxynivalenol (DON) is an important virulence factor of the Fusarium head blight of wheat and threatens the health of humans. The effect of fungicides on DON production after stressing wheat to produce H2O2 and the effect of nontarget pesticides on DON accumulation are largely unknown. Five pesticides were selected to explore the effect of pesticide-induced oxidative stress on DON production in vitro and in vivo. Epoxiconazole and hexaconazole significantly induced an increase in H2O2 in vitro, and H2O2 further stimulated the production of DON and the expression of the Tri5 gene. Imidacloprid, isoproturon, and mesosulfuron-methyl had no direct effect in vitro. All pesticides activated the activities of superoxide dismutase, catalase, and peroxidase in wheat and caused the excessive accumulation of H2O2. However, excessive H2O2 did not stimulate the accumulation of DON. Imidacloprid indirectly stimulated the production of DON in vivo, which may be due to its impact on the secondary metabolism of wheat. In brief, pesticide-induced H2O2 in vitro is an important factor in stimulating DON production, but the stressed physiological H2O2 in wheat is not sufficient to stimulate DON production. The bioaccumulation results indicated that imidacloprid and epoxiconazole increase the risk of DON contamination, especially under field spraying conditions.
Collapse
Affiliation(s)
- Chao Ju
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.J.); (F.J.); (Y.G.); (T.C.); (J.C.); (J.L.); (Y.Z.); (Y.Z.)
| | - Fan Jiang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.J.); (F.J.); (Y.G.); (T.C.); (J.C.); (J.L.); (Y.Z.); (Y.Z.)
| | - Yuan Gao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.J.); (F.J.); (Y.G.); (T.C.); (J.C.); (J.L.); (Y.Z.); (Y.Z.)
| | - Tongwu Chen
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.J.); (F.J.); (Y.G.); (T.C.); (J.C.); (J.L.); (Y.Z.); (Y.Z.)
| | - Jiakuo Cao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.J.); (F.J.); (Y.G.); (T.C.); (J.C.); (J.L.); (Y.Z.); (Y.Z.)
| | - Junbo Lv
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.J.); (F.J.); (Y.G.); (T.C.); (J.C.); (J.L.); (Y.Z.); (Y.Z.)
| | - Yanxiang Zhao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.J.); (F.J.); (Y.G.); (T.C.); (J.C.); (J.L.); (Y.Z.); (Y.Z.)
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.J.); (F.J.); (Y.G.); (T.C.); (J.C.); (J.L.); (Y.Z.); (Y.Z.)
| | - Wei Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinguang Huang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.J.); (F.J.); (Y.G.); (T.C.); (J.C.); (J.L.); (Y.Z.); (Y.Z.)
| |
Collapse
|
7
|
Kumar V, Khan A, Srivastava A, Saxena G. Toxicity assessment of metribuzin and its amelioration through plant growth regulators in Vigna radiata (L.) R. Wilczek. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33307-33321. [PMID: 36478549 DOI: 10.1007/s11356-022-24534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The present experiment was conducted to evaluate the metribuzin-induced stress response in Vigna radiata and to explore the ameliorative role of exogenous application of plant growth regulators (PGRs) against metribuzin toxicity by assessing important biochemical and yield parameters. Prior to the field experiment, dose standardization experiments were performed, and EC50 was calculated for metribuzin. On day 21, field grown V. radiata plants were treated with graded concentrations of metribuzin (0-1000 mg [Formula: see text]). Plants treated with 600 mg [Formula: see text] (EC50) and 1000 mg [Formula: see text] (highest dose) of metribuzin were co-treated individually and simultaneously with gibberellic acid-3 (GA), indole-3 acetic acid (IAA), and salicylic acid (SA). After 7 days of treatment, leaf tissues were analyzed for biochemical parameters, whereas those related to yield were recorded during harvest. The result of this study indicated that metribuzin treatment to V. radiata resulted in increase in lipid peroxidation and reduce chlorophyll and carotenoid contents as well as yield parameters. However, metribuzin-treated plants induced proline accumulation and activity of antioxidant enzymes. Exogenous application of GA, IAA, and SA significantly reduced lipid peroxidation and increased contents of photosynthetic pigments, proline, and antioxidant enzymes thereby increasing yield parameters. It was observed that during metribuzin stress, SA exhibited a better ameliorative response out of the three exogenously applied PGRs, while the combined use of all PGRs exhibited much improved ameliorative response on biochemical and yield parameters of plants.
Collapse
Affiliation(s)
- Vaibhav Kumar
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Adiba Khan
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| | - Gauri Saxena
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India.
| |
Collapse
|
8
|
García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: a Review. THE BOTANICAL REVIEW 2021; 87:421-466. [PMID: 0 DOI: 10.1007/s12229-020-09231-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 05/25/2023]
|
9
|
Chen ZJ, Qiao YX, Zhang N, Liu J, Yang H. Insight into metabolism pathways of pesticide fomesafen in rice: Reducing cropping and environmental risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117128. [PMID: 33862343 DOI: 10.1016/j.envpol.2021.117128] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Fomesafen (FSA) is widely used in soybean fields for weed control. However, the persisting characteristics of FSA in the agricultural soil or water may become a hidden danger causing environmental pollution and phytotoxicity to succession crops. In this study, the growth and physiological responses of rice to FSA were investigated. It was found that the growth of rice seedlings was obviously inhibited by FSA exposure especially at over 0.1 mg L-1. To gain an insight into the molecular mechanisms for the potential ecotoxicology, four libraries of rice roots and shoots exposed to FSA were created and subjected to the global RNA-sequencing (RNA-Seq) combined with HRLC-Q-TOF-MS/MS analytical technologies to comprehensively characterize the biochemical processes and catalytic reactions involved in FSA metabolism in rice. Compared with those without FSA, 499 and 450 up-regulated genes in roots and shoots with FSA were detected. Many of them were closely correlated with the tolerance to environmental stress, detoxification of xenobiotics and molecular metabolism process including cytochrome P450, glutathione S-transferases and acetyltransferase. A total of eight metabolites and fourteen conjugates in the reactive pathways of hydrolysis, substitution, reduction, methylation, glycosylation, acetylation, and malonylation were characterized by HRLC-Q-TOF-MS/MS. The relationship between the metabolized derivatives of FSA and enhanced expression the corresponding enzymatic regulators was established. This study will help understand the mechanisms and pathways of FSA metabolism and inspire the further research on FSA degradation in the paddy crops and environmental or health risks.
Collapse
Affiliation(s)
- Zhao Jie Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Xin Qiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Zhang Y, Jiang D, Yang C, Deng S, Lv X, Chen R, Jiang Z. The oxidative stress caused by atrazine in root exudation of Pennisetum americanum (L.) K. Schum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111943. [PMID: 33493720 DOI: 10.1016/j.ecoenv.2021.111943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Pearl millet (Pennisetum americanum (L.) K. Schum) has been proven as a potential remediation plant of the pollution caused by atrazine. Plants used in remediation can release root exudates to communicate with rhizosphere microorganisms and accelerate the removal of pollutants in soil. However, the response of pearl millet root exudates under atrazine stress has remained unclear. In this study, hydroponic experiments were conducted at Northeast Agricultural University, Harbin, China, to investigate the oxidative stress response and the changes in composition of root exudates in pearl millet plants that were exposed to 19.4 mgL-1 of atrazine, compared to the untreated control. The experiment was established as six treatments with exposure to no atrazine for 2, 4 and 6 days (CK-2, CK-4, CK-6) and 19.4 mgL-1 atrazine for 2, 4 and 6 days (AT-2, AT-4, AT-6), respectively. The results suggest that the growth of the seedlings changed slightly when exposed to atrazine for 2 days. The content of thiobarbituric acid reactive substances exposed to atrazine for 6 days increased 26% compared with the treatment that was exposed for 2 days. Moreover, the reactive oxygen species in test plant obviously increased when exposed to atrazine for 6 days. In addition, the activity of superoxide dismutase increased from 30.82 ug-1 to 37.33 ug-1 fresh weight after 6 days of exposure to atrazine. The results of a nontargeted metabolomic analysis suggest that carbohydrate metabolism, fatty acid metabolism and amino acid metabolism in pearl millet were obviously affected by the oxidative stress caused by atrazine. The contents of sphinganine and methylimidazole acetaldehyde in CK-6 increased by 5.14 times and 2.05 times, respectively, compared with those of CK-2. Furthermore, the contents of (S)-methylmalonic acid semialdehyde and 1-pyrroline-2-carboxylic acid decreased by 0.56 times and 0.5 times, respectively, compared with the AT-6. These results strongly suggest that the changes observed in the composition of root exudates in pearl millet seedlings can be attributed to the oxidative stress caused by atrazine.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Duo Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Chao Yang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Shijie Deng
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyu Lv
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ruifeng Chen
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
11
|
Chen ZJ, Lv Y, Zhai XY, Yang H. Comprehensive analyses of degradative enzymes associated with mesotrione-degraded process in rice for declining environmental risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143618. [PMID: 33248774 DOI: 10.1016/j.scitotenv.2020.143618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Mesotrione (MTR) is a highly effective pesticide widely used for weeding in farmland. Overload of MTR in agricultural soils may result in environmental problems. To evaluate the potential contamination of MTR in environments, a better understanding of the MTR degradation process and mechanisms in crops is required. This study investigated the impact of MTR on growth and toxicological responses in rice (Oryza sativa). The growth of rice tissues was significantly compromised with increasing MTR concentrations. RNA-sequencing combined with HRLC-Q-TOF-MS/MS analysis identified many transcriptional components responsible for MTR degradation. Four libraries composed of root and shoot tissues exposed to MTR were RNA-sequenced in biological triplicate. Compared to -MTR, treatment with environmentally realistic MTR concentration upregulated 1995 genes in roots and 326 genes in shoots. Gene enrichment revealed many MTR-degradative enzymes functioning in resistance to environmental stress and molecular metabolism of xenobiotics. Specifically, many differentially expressed genes are critical enzymes like cytochrome P450, glycosyltransferases, methyltransferase, glutathione S-transferases and acetyltransferase involved in the process. To evidence MTR degradative metabolisms, HRLC-Q-TOF-MS/MS was used to characterize eight metabolites and five conjugates in the pathways involving hydrolysis, reduction, glycosylation, methylation or acetylation. The precise association between the specific MTR-degraded products and enhanced activities of its corresponding enzymes was established. This study advanced our understanding of the detailed MTR degradative mechanisms and pathways, which may help engineer genotypes to facilitate MTR degradation in the paddy crop.
Collapse
Affiliation(s)
- Zhao Jie Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Lv
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Yan Zhai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Teófilo TMDS, Mendes KF, Fernandes BCC, Oliveira FSD, Silva TS, Takeshita V, Souza MDF, Tornisielo VL, Silva DV. Phytoextraction of diuron, hexazinone, and sulfometuron-methyl from the soil by green manure species. CHEMOSPHERE 2020; 256:127059. [PMID: 32447109 DOI: 10.1016/j.chemosphere.2020.127059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The herbicides diuron, hexazinone, and sulfometuron-methyl present a potential risk of environmental contamination and are widely used for weed control in sugarcane cultivation. Our objectives were to measure the tolerance of Canavalia ensiformes (L.) DC., Stilizobium aterrimum L., Raphanus sativus L., Crotalaria spectabilis Röth, Lupinus albus L., and Pennisetum glaucum (L.) R. Br. To the herbicides diuron, hexazinone, and sulfometuron-methyl to assess the capacity of these species to extract and accumulate the herbicides in their tissues. Before sowing the green manure species, the soils were individually contaminated with the three 14C-radiolabeled herbicides. 14C-diuron and 14C-sulfometuron-methyl showed higher values remaining in the soil (>90%) for all species of green manure compared to hexazinone (<80%). The green manure species analyzed showed greater potential to remedy soils contaminated with hexazinone than the other herbicides. C. ensiformes showed high phytoextraction of hexazinone when compared to the other species, removing 11.2% of the pollutant from the soil, followed by L. albus (8.6%), S. aterrimum (7.3%), R. sativus (4.8%), C. spectabilis (2.5%), and P. glaucum (1.1%). The results indicate that the phytoextraction of diuron, hexazinone and sulfometuron-methyl is dependent on the species of green manure and can be an important tool for the decontamination of areas polluted by these herbicides.
Collapse
Affiliation(s)
- Taliane Maria da Silva Teófilo
- Universidade Federal Rural Do Semi-Árido, Centro de Ciências Vegetais, Departamento de Ciências Agronômicas e Florestais, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900, Mossoró, RN, Brazil.
| | | | - Bruno Caio Chaves Fernandes
- Universidade Federal Rural Do Semi-Árido, Centro de Ciências Vegetais, Departamento de Ciências Agronômicas e Florestais, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900, Mossoró, RN, Brazil
| | - Fernando Sarmento de Oliveira
- Universidade Federal Rural Do Semi-Árido, Centro de Ciências Vegetais, Departamento de Ciências Agronômicas e Florestais, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900, Mossoró, RN, Brazil
| | - Tatiane Severo Silva
- Universidade Federal Rural Do Semi-Árido, Centro de Ciências Vegetais, Departamento de Ciências Agronômicas e Florestais, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900, Mossoró, RN, Brazil
| | - Vanessa Takeshita
- Centro de Energia Nuclear Na Agricultura, Piracicaba, São Paulo, Brazil
| | - Matheus de Freitas Souza
- Universidade Federal Rural Do Semi-Árido, Centro de Ciências Vegetais, Departamento de Ciências Agronômicas e Florestais, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900, Mossoró, RN, Brazil
| | | | - Daniel Valadão Silva
- Universidade Federal Rural Do Semi-Árido, Centro de Ciências Vegetais, Departamento de Ciências Agronômicas e Florestais, Av. Francisco Mota, 572, Costa e Silva, CEP 59625-900, Mossoró, RN, Brazil
| |
Collapse
|
13
|
Younas S, Rizvi H, Ali S, Abbas F. Irrigation of Zea mays with UASB-treated textile wastewater; effect on early irrigation of Zea mays with UASB-treated textile wastewater; effect on early growth and physiology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15305-15324. [PMID: 32077022 DOI: 10.1007/s11356-020-07948-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
In this study, mature seeds of Zea mays (Malka 16) were irrigated with untreated and UASB-treated wastewater with combination of 50% textile and 50% sewage at hydraulic retention times (HRTs) of 0, 5, 10, and 15 h. Four other treatments diluted with distilled water (DW) were also evaluated. Eight-week analysis of irrigation revealed very small differences in the results of plant biomass and growth parameters of control and those irrigated with 15 h (HRT) treatments. The values of both types of water were observed as chlorophyll a and b contents, 5.9, 3.4, vs 5.5, 3.1 mg g-1, total chlorophyll 9.4 vs 8.8 mg g-1, carotenoids 9.5 vs 8.7 mg g-1, spad values 61.4 vs 56.3, net photosynthetic rate (A) 15.6 vs 14.5 μmol m-2 S-1, transpiration rate (E) 3.98 vs 3.8 μmol m-2 S-1, stomatal conductance 5.9 vs 5.8 μmol m-2 S-1, water use efficiency 10.3 vs 9.7 mmol Cmm-1 H2O, electrolyte leakage 115 vs 98% and total soluble proteins 385 vs 354 in leaves and 260 vs 231 g-1 FW in roots. While this stress enhanced H2O2 92 vs 115 and 195 vs 224 Units g-1, MDA 6.8 vs 9.1 and 5.9 vs 8.3 Units g-1, activities of enzymatic antioxidants SOD 25 vs 63 and 54 vs 63 Units g-1, POD 1170 vs 1310 and 570 vs 650 Units g-1, CAT 570 vs 820 and 880 vs 1040 Units g-1, and APX 235 vs 278 and 134 vs 187 Units g-1 in leaves and roots, respectively. Heavy metals (Cd, Cr, Cu, and Zn) in such plants were mostly within or about permissible limits of NEQS. The results obtained were more close to that of control. This practice may lead to clean environment and its reuse shall also reduce the stress on fresh water. Early researches transpire a little work done on the reuse of UASB-treated textile wastewater with co substrate, for irrigation purpose.
Collapse
Affiliation(s)
- Sana Younas
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Hina Rizvi
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University (CMU), Taichung, 40402, Taiwan
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, Faisalabad, 38000, Pakistan
| |
Collapse
|
14
|
Protective Responses Induced by Chiral 3-Dichloroacetyl Oxazolidine Safeners in Maize ( Zea mays L.) and the Detoxification Mechanism. Molecules 2019; 24:molecules24173060. [PMID: 31443550 PMCID: PMC6749458 DOI: 10.3390/molecules24173060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/16/2023] Open
Abstract
Herbicide safeners selectively protect crops from herbicide injury while maintaining the herbicidal effect on the target weed. To some extent, the detoxification of herbicides is related to the effect of herbicide safeners on the level and activity of herbicide target enzymes. In this work, the expression of the detoxifying enzyme glutathione S-transferase (GST) and antioxidant enzyme activities in maize seedlings were studied in the presence of three potential herbicide safeners: 3-dichloroacetyl oxazolidine and its two optical isomers. Further, the protective effect of chiral herbicide safeners on detoxifying chlorsulfuron in maize was evaluated. All safeners increased the expression levels of herbicide detoxifying enzymes, including GST, catalase (CAT), and peroxidase (POD) to reduce sulfonylurea herbicide phytotoxicity in maize seedlings. Our results indicate that the R-isomer of 3-(dichloroacetyl)-2,2,5-trimethyl-1,3-oxazolidine can induce glutathione (GSH) production, GST activity, and the ability of GST to react with the substrate 1-chloro-2,4-dinitrobenzene (CDNB) in maize, meaning that the R-isomer can protect maize from damage by chlorsulfuron. Information about antioxidative enzyme activity was obtained to determine the role of chiral safeners in overcoming the oxidative stress in maize attributed to herbicides. The interaction of safeners and active target sites of acetolactate synthase (ALS) was demonstrated by molecular docking modeling, which indicated that both isomers could form a good interaction with ALS. Our findings suggest that the detoxification mechanism of chiral safeners might involve the induction of the activity of herbicide detoxifying enzymes as well as the completion of the target active site between the safener and chlorsulfuron.
Collapse
|
15
|
Mardani H, Maninang J, Appiah KS, Oikawa Y, Azizi M, Fujii Y. Evaluation of Biological Response of Lettuce ( Lactuca sativa L.) and Weeds to Safranal Allelochemical of Saffron ( Crocus sativus) by Using Static Exposure Method. Molecules 2019; 24:E1788. [PMID: 31072064 PMCID: PMC6539543 DOI: 10.3390/molecules24091788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Safranal, the main volatile chemical of Saffron (Crocus sativus) was studied to estimate its allelopathic effects on the photosynthetic pigment chlorophyll, leaf electrolyte leakage, fresh weight, catalase (CAT), and peroxidase (POX) activity of the test plant Lettuce (Lactuca sativa). In this study, the effective concentration (EC50) of safranal on CAT was estimated to be 6.12 µg/cm3. CAT activity was inhibited in a dose-dependent manner by the increase in the safranal concentration while POX activity was increased. Moreover, Safranal caused significant physiological changes in chlorophyll content, leaf electrolyte leakage, and fresh weight of several weed species with Lolium multiflorum being the most sensitive. Furthermore, 5 µM Safranal showed significant inhibitory activity against dicotyledonous in comparison to the monocotyledons under greenhouse conditions. The inhibition of the CAT by safranal was similar to those of uncompetitive inhibitors, and therefore the decline in carbon fixation by plants might be the mechanism behind the inhibitory activity of safranal.
Collapse
Affiliation(s)
- Hossein Mardani
- Department of International Environmental and Agricultural Sciences Tokyo University of Agriculture and Technology, Fuchu Campus, 2N405, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - John Maninang
- Center for Global Communication Strategies (CGCS) College of Arts and Sciences,The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Kwame Sarpong Appiah
- Department of International Environmental and Agricultural Sciences Tokyo University of Agriculture and Technology, Fuchu Campus, 2N405, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Yosei Oikawa
- Department of International Environmental and Agricultural Sciences Tokyo University of Agriculture and Technology, Fuchu Campus, 2N405, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Majid Azizi
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran.
| | - Yoshiharu Fujii
- Center for Global Communication Strategies (CGCS) College of Arts and Sciences,The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
16
|
Caverzan A, Piasecki C, Chavarria G, Stewart CN, Vargas L. Defenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides. Int J Mol Sci 2019; 20:ijms20051086. [PMID: 30832379 PMCID: PMC6429093 DOI: 10.3390/ijms20051086] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/25/2019] [Indexed: 01/20/2023] Open
Abstract
The antioxidant defense system acts to maintain the equilibrium between the production of reactive oxygen species (ROS) and the elimination of toxic levels of ROS in plants. Overproduction and accumulation of ROS results in metabolic disorders and can lead to the oxidative destruction of the cell. Several stress factors cause ROS overproduction and trigger oxidative stress in crops and weeds. Recently, the involvement of the antioxidant system in weed interference and herbicide treatment in crops and weeds has been the subject of investigation. In this review, we address ROS production and plant mechanisms of defense, alterations in the antioxidant system at transcriptional and enzymatic levels in crops induced by weed interference, and herbicide exposure in crops and weeds. We also describe the mechanisms of action in herbicides that lead to ROS generation in target plants. Lastly, we discuss the relations between antioxidant systems and weed biology and evolution, as well as the interactive effects of herbicide treatment on these factors.
Collapse
Affiliation(s)
- Andréia Caverzan
- Faculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo (UPF), Passo Fundo 99052-900, Brazil.
| | - Cristiano Piasecki
- Department of Crop Protection, Federal University of Pelotas, Pelotas 96160-000, Brazil.
| | - Geraldo Chavarria
- Faculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo (UPF), Passo Fundo 99052-900, Brazil.
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996-4561, USA.
| | - Leandro Vargas
- Department of Weed Science, Brazilian Agricultural Research Corporation (EMBRAPA), Passo Fundo 99050-970, Brazil.
| |
Collapse
|
17
|
Panfili I, Bartucca ML, Del Buono D. The treatment of duckweed with a plant biostimulant or a safener improves the plant capacity to clean water polluted by terbuthylazine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:832-840. [PMID: 30064109 DOI: 10.1016/j.scitotenv.2018.07.356] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Water pollution is becoming alarming since thousands contaminants are dispersed in the aquatic environments, and agricultural practices, for the massive use of pesticides, are contributing to exacerbating this problem. In this context, a research aimed at investigating the ability of duckweed (Lemna minor), a free-floating aquatic species widespread throughout the world, to remediate water polluted with five different concentrations of a herbicide - terbuthylazine (TBA) - was carried out. In addition, duckweed was treated with a plant biostimulant and a safener with the aim of increasing the plant's capacity to tolerate and remove the TBA from the water. The results evidenced that the herbicide affected the duckweed already at the lower concentrations, reducing its capacity to proliferate and the area of its fronds. On the contrary, when the TBA treatments were performed in combination with the biostimulant or the safener the average area of the fronds was affected of lesser extents, compared to the plants treated with the herbicide only. Antioxidant enzymes, namely ascorbate peroxidases (APX) and catalases (CAT), were investigated and it was found that the biostimulated and safened duckweed showed increased activities of these enzymes, compared to the plants treated with TBA only. At last, some phytofiltration experiments were planned. The biostimulated and safened duckweed removed more TBA from polluted water than the plants treated with the herbicide alone. In conclusion, this research showed that duckweed is suitable for cleaning water polluted with TBA and this potential can be successfully improved by treating the species with a biostimulant or a safener.
Collapse
Affiliation(s)
- Ivan Panfili
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Maria Luce Bartucca
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Daniele Del Buono
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno, 06121 Perugia, Italy.
| |
Collapse
|
18
|
A novel approach for simultaneous determination of E/Z-fluoxastrobins in vegetables and fruits by UHPLC-DAD. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Wang C, Zhang Q. Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:218-224. [PMID: 27951421 DOI: 10.1016/j.ecoenv.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
The role of exogenous salicylic acid (SA) in protecting wheat plants (Triticum aestivum) from contamination by the insecticide chlorpyrifos was investigated in this study. The wheat plants were grown in soils with different concentrations (5, 10, 20, and 40mgkg-1) of chlorpyrifos. When the third leaf emerged, the wheat leaves were sprayed with 1, 2, 4, 8, and 16mgL-1 of SA once a day for 6 days. The results showed that wheat exposed to higher concentrations of chlorpyrifos (≥20mgkg-1) caused declines in growth and chlorophyll content and altered the activities of a series of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Interestingly, treatments with different concentrations of SA mitigated the stress generated by chlorpyrifos and improved the measured parameters to varying degrees. Furthermore, a reverse transcription and quantitative PCR experiment revealed that the activities of SOD and CAT can be regulated by their target gene in wheat when treated with SA. We also found that SA is able to block the accumulation of chlorpyrifos in wheat. However, the effect of SA was related to its concentration. In this study, the application of 2mgL-1 of SA had the greatest ameliorating effect on chlorpyrifos toxicity in wheat plants.
Collapse
Affiliation(s)
- Caixia Wang
- College of Agronomy and Plant Protection, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingming Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
20
|
Skiba E, Kobyłecka J, Wolf WM. Influence of 2,4-D and MCPA herbicides on uptake and translocation of heavy metals in wheat (Triticum aestivum L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:882-890. [PMID: 27836479 DOI: 10.1016/j.envpol.2016.10.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 05/22/2023]
Abstract
The aim of the study was to estimate the influence of the 2,4-dichlorophenoxy acetic acid and 2-methyl-4-chlorophenoxyacetic acid on the uptake and translocation of Cd, Co, Ni, Cu, Zn, Pb and Mn by wheat (Triticum aestivum L.). Two farmland soils typical for the central Polish rural environment were used. Studies involved soil analyses, contents of bioavailable, exchangeable and total forms for all investigated metals. Atomic absorption spectrometry was used to determine the concentration of the elements. The best correlation between the herbicide rate and the metal concentration was visibly for the underground part of plants. Analysis of variance proved that herbicide treatment of wheat frequently influences the metal transfer from soil and their concentration in roots and shoots. In particular, higher herbicide rates prompted the significant increase of all metals concentration in roots. Additionally, transfer coefficients depended on the type of soil and the herbicide rate applied. Uptake of metals may be also influenced by the formation of sparingly water-soluble metal-herbicide complexes. Its intensity would then depend on the solubility of particular chemical entity with the low solvable Pb, Cu and Cd complexes being the least mobile.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| | - Joanna Kobyłecka
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|