1
|
Kanda T, Srivastava R, Yadav S, Singh N, Prajapati R, Singh PK, Yadav S, Atri N. Pretilachlor-induced physiological, biochemical and morphological changes in Indian paddy field agroecosystem inhabited Anabaena doliolum. ENVIRONMENTAL RESEARCH 2023; 238:117201. [PMID: 37775005 DOI: 10.1016/j.envres.2023.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Pretilachlor is a systemic, pre-emergence herbicide applied in the paddy fields to kill narrow and broadleaf weeds. The present study evaluates the toxicity of pretilachlor on the non-target diazotrophic free-living cyanobacterium Anabaena doliolum, commonly found in the paddy fields of eastern Uttar Pradesh (India) and used as a biofertilizer. A.doliolum was subjected to several doses (0, 2, 5, 7, 10, 20 and 40 μg/ml) of pretilachlor and its effects were examined in terms of alterations in cellular morphology, ultrastructure, physiology, and biochemical attributes. The treatment of pretilachlor decreased the growth, total pigment content and photosynthetic efficiency of the test organism in a dose-dependent manner. The decline in growth was observed on 20th day at 2, 5, 7, 10, 20 and 40 μg/ml of pretilachlor concentration by 4, 9, 26, 47, 71 and 92%, respectively. Furthermore, Chlorophyll a and phycocyanin levels were noticeably declined. As a result, the photosynthetic performance also registered a similar decline as measured by chlorophyll fluorescence. However, carotenoid content increased by 13%, 41% and 53% at 5, 10 and 20 μg/ml on 5th day reflecting its protective property. A marked increase in fluorescence intensity and malondialdehyde content by 2.65 and 2.45 folds at 10 and 20 μg/ml on 7th day was registered. The enzymatic antioxidants (SOD and CAT) and a concurrent increase in glutathione reductase activity were registered (1.75 and 2.11-fold at 20 and 40 μg/ml on 5th day), indicating pretilachlor mediated ROS generation. Moreover, ultrastructural studies done by SEM and TEM revealed plasma membrane and thylakoid membrane damage and fragmentation. These findings have contributed to the broader comprehension of the stress responses triggered by pretilachlor in cyanobacteria. Moreover, they can aid in the evaluation of the detrimental impact of pretilachlor on A. doliolum, given their crucial function as a nitrogen contributor in paddy fields.
Collapse
Affiliation(s)
- Tripti Kanda
- Department of Botany, MMV, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Rupanshee Srivastava
- Department of Botany, MMV, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Sadhana Yadav
- Department of Botany, MMV, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Nidhi Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Rajesh Prajapati
- Department of Botany, Government College of Art's and Commerce, Beohari, Shahdol, M.P, 48774, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pacchunga University College Campus, Aizawl, 796001, Mizoram, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Prayagraj, U.P., 211002, India.
| | - Neelam Atri
- Department of Botany, MMV, Banaras Hindu University, Varanasi, U.P., 221005, India.
| |
Collapse
|
2
|
Wu ZX, Xu NW, Yang M, Li XL, Han JL, Lin XH, Yang Q, Lv GH, Wang J. Responses of photosynthesis, antioxidant enzymes, and related gene expression to nicosulfuron stress in sweet maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37248-37265. [PMID: 35032265 DOI: 10.1007/s11356-022-18641-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Weed control in maize (Zea mays L.) crops is usually undertaken using the postemergence herbicide nicosulfuron. The toxicity of nicosulfuron on maize, especially sweet maize, has been widely reported. In order to examine the effect of nicosulfuron on seedling photosynthetic characteristics, chlorophyll fluorescence, reactive oxygen species production, antioxidant enzyme activities, and gene expressions on sweet maize, nicosulfuron-tolerant "HK310" and nicosulfuron-sensitive "HK320" were studied. All experiment samples were subjected to a water or 80 mg kg-1 of nicosulfuron treatment when sweet maize seedlings grow to the stage of four leaves. After treatment with nicosulfuron, results for HK301 were significantly higher than those for HK320 for net photosynthetic rate, transpiration rate, stomatal conductance, leaf maximum photochemical efficiency of PSII, photochemical quenching of chlorophyll fluorescence, and the electron transport rate. These results were contrary to nonphotochemical quenching and intercellular CO2 concentration. As exposure time increased, associated effects also increased. Both O2·- and H2O2 detoxification is modulated by antioxidant enzymes. Compared to HK301, SOD, POD, and CAT activities of HK320 were significantly reduced as exposure time increase. Compared to HK320, the gene expression for the majority of SOD genes, except for SOD2, increased due to inducement by nicosulfuron, and it significantly upregulated the gene expression of CAT in HK301. Results from this study indicate that plants can improve photosynthesis, scavenging capabilities of ROS, and protective mechanisms to alleviate phytotoxic effect of nicosulfuron. Future research is needed to further elucidate the important role antioxidant systems and gene regulation play in herbicide detoxification in sweet maize.
Collapse
Affiliation(s)
- Zhen-Xing Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Ning-Wei Xu
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Min Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Xiang-Ling Li
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Jin-Ling Han
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Xiao-Hu Lin
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Qing Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Gui-Hua Lv
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China.
| | - Jian Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China.
| |
Collapse
|
3
|
Hamdan HZ, Houri AF. CO 2 sequestration by propagation of the fast-growing Azolla spp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16912-16924. [PMID: 34657254 PMCID: PMC8520330 DOI: 10.1007/s11356-021-16986-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Azolla is a group of aquatic floating plants that can achieve very high growth rates compared to other aquatic macrophytes, with a doubling time of 2-5 days under optimal growing conditions. The ability of Azolla to grow at such rapid rates allows for the opportunity of utilizing it as a method to sequester a significant amount of atmospheric CO2 in the form of biomass, which can be locked away to completely remove the carbon from the active carbon cycle, or which can be used in various applications such as animal feeds, biofertilizers, and biofuel production, which in turn will contribute to reduction in the fossil CO2 emissions. In this desktop study, the potential use of Azolla for mitigating the annual increase in the atmospheric CO2 levels was addressed, which were estimated at 18.9 billion tons of CO2 per year. A theoretical setup of 1-ha ponds was assessed to estimate the total Azolla growing area required for counterbalancing the annual atmospheric CO2 increase. Each 1-ha pond was found capable of capturing 21,266 kg of CO2 (C) per year. The calculated required total area to mitigate the total annual increase was estimated to be 1,018,023 km2 (equivalent to around a fifth of the Amazon forest area). Sensitivity analysis, which was based on the variations in the productivity of Azolla due to growing conditions, indicated that the required area would range between 763,518 and 1,527,036 km2. This study provides a novel natural method for CO2 sequestration that has lower environmental impacts compared to conventional sequestration technologies as an alternative green approach for mitigating the effects of fossil fuels.
Collapse
Affiliation(s)
- Hamdan Z Hamdan
- School of Arts and Sciences, Natural Science Department, Lebanese American University, Chouran, Beirut, 1102 2801, Lebanon
| | - Ahmad F Houri
- School of Arts and Sciences, Natural Science Department, Lebanese American University, Chouran, Beirut, 1102 2801, Lebanon.
| |
Collapse
|
4
|
Dolui D, Hasanuzzaman M, Saha I, Ghosh A, Adak MK. Amelioration of sodium and arsenic toxicity in Salvinia natans L. with 2,4-D priming through physiological responses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9232-9247. [PMID: 34495473 DOI: 10.1007/s11356-021-16246-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Sodium (Na) and arsenic (As) toxicity were monitored by hyperaccumulation of metals in Salvinia natans L. with 2,4-dichlorophenoxyacetic acid (2,4-D) induction. Salvinia was recorded with significant bioaccumulation of those metals with de-folding of cellular attributes in sustenance under toxic environment. 2,4-D priming has revised the growth components like net assimilation rate and relative water content to register initial plants' survival against Na and As. Proline biosynthesis supported in the maintenance of osmotic adjustment and plants sustained better activity through subdued electrolytic leakage. Oxidative stress due to both Na and As exposure is responsible for induction under significant moderation of lipid peroxidation and protein carbonization by 2,4-D application was evident to release the stress from metal and metalloids. Reactive oxygen species (ROS) like superoxide and hydrogen peroxide accumulation were monitored with activity of NADP(H)-oxidase. However, it was downregulated by 2,4-D to check the oxidative damages. Superoxide dismutase and peroxidases were significantly moderated to reduce the oxidative degradation for both metals with 2,4-D induction. Glutathione metabolism and recycling of ascorbate with monodehydroascorbate activity were other features to maintain the redox homeostasis for metal toxicity. At the molecular level, polymorphic variations of concern genes in redox cascades demarked significantly for those two metals and established the biomarker for those metals, respectively. As a whole, the biocompatibility of auxin herbicide in Salvinia may raise the possibility for auxin metabolism and thereby, the bioaccumulation to Na and As vis-à-vis tolerance for ecological safety is established.
Collapse
Affiliation(s)
- Debabrata Dolui
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
| | - Indraneel Saha
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India
| | - Arijit Ghosh
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India
| | - Malay Kumar Adak
- Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 74 1235, Nadia, W.B., India.
| |
Collapse
|
5
|
Acar A. In vivo toxicological assessment of diquat dibromide: cytotoxic, genotoxic, and biochemical approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47550-47561. [PMID: 33893917 DOI: 10.1007/s11356-021-13936-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Diquat dibromide is a comprehensive herbicide commonly used in the cultivation of cotton, soybeans, and other crops to combat unwanted weeds. In this study, the half-maximal effective concentration (EC50) value of diquat dibromide was determined 60 mg/L in the Allium root growth inhibition test. ½ × EC50 (30 mg/L), EC50 (60 mg/L), and 2 × EC50 (120 mg/L) concentrations of diquat dibromide were applied to Allium cepa L. bulbs for 72 h to investigate the dose-dependent toxic effects. To determine the toxic effects cytogenetic, biochemical and physiological parameters were used. Physiological effects were investigated by determination of the percentage of rooting, relative injury rate, root length, and weight gain. Genetic effects were evaluated by the frequency of chromosomal abnormalities (CAs), micronucleus (MN) formation, mitotic index (MI) rate, and comet assay. Biochemical parameters were evaluated with antioxidant enzyme activities and lipid peroxidation by determining malondialdehyde (MDA) level, superoxide dismutase (SOD) activity, catalase (CAT) activity, and glutathione (GSH) level. Also, chlorophyll pigment contents (a, b, and total) in green leaves were calculated to elucidate the effect of diquat dibromide on plants and the biosphere. The findings show that increasing doses of diquat dibromide caused a decrease in all physiological parameters and MI ratio, promoting MN and CAs and tail DNA formation in genetic parameters. It was determined by the increases in MDA level, SOD, and CAT activities and decreases in GSH levels that diquat dibromide administration caused oxidative stress depending on the dose. Also, chlorophyll pigment levels (a, b, and total) measured in leaf tissues decreased with the application dose. Considering that the toxic effects caused by diquat dibromide and that organisms other than unwanted plants will be exposed during the application, its use should be abandoned and biocontrol methods should be used instead. In cases where use is compulsory, doses that will not harm the environment and organisms should be determined and used.
Collapse
Affiliation(s)
- Ali Acar
- Vocational School of Health Services, Department of Medical Services and Techniques, Giresun University, Giresun, Turkey.
| |
Collapse
|
6
|
Feng Y, Zhong X, Yao Y, Shi Z, Li F, Wang H, Lv X, Du W, Zhu M, Yang H, Meng D. Photosynthetic and physiological responses to acetochlor in paired near-isogenic lines of waxy maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19298-19309. [PMID: 33394398 DOI: 10.1007/s11356-020-12043-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Acetochlor is always used in maize (Zea mays L.) fields as a common pre-emergence herbicide. In this field study, we investigated the effects of acetochlor on the photosynthetic characteristics, chlorophyll fluorescence parameters, and antioxidant enzyme activities in acetochlor-resistant (BWC95) and acetochlor-sensitive (BWC12) near-isogenic lines. We sprayed acetochlor after sowing, using water treatment as the control. After spraying acetochlor, the net photosynthetic rate, stomatal conductance, transpiration rate, and the function of chloroplasts were significantly lower in BWC12 than BWC95, whereas the intercellular CO2 concentrations and stomatal limitation values were higher. In addition to nonphotochemical quenching, chlorophyll fluorescence measurements obtained using leaves showed that the maximum photochemical efficiency of photosystem II (PSII), actual photochemical efficiency of PSII, photochemical quenching of chlorophyll fluorescence, and electron transport rate were higher in BWC95 than BWC12 after acetochlor treatment. H2O2 and O2˙- levels were higher in BWC12 than BWC95, which resulted in severe membrane lipid peroxidation due to sustained oxidative stress. Thus, the malondialdehyde content increased significantly with the exposure time in BWC12, and the antioxidant enzyme activities were lower in BWC12 than BWC95. The results show that acetochlor resistance is directly related to a high photosynthetic rate and a protective antioxidant enzyme system.
Collapse
Affiliation(s)
- Ying Feng
- Special Corn Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Xuemei Zhong
- Special Corn Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Yuhan Yao
- Special Corn Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Zhensheng Shi
- Special Corn Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Fenghai Li
- Special Corn Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hongwei Wang
- Special Corn Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Xiangling Lv
- Special Corn Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Wanli Du
- Special Corn Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Min Zhu
- Special Corn Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hu Yang
- Special Corn Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Dexuan Meng
- Special Corn Institute, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| |
Collapse
|
7
|
Fu S, Xue S, Chen J, Shang S, Xiao H, Zang Y, Tang X. Effects of Different Short-Term UV-B Radiation Intensities on Metabolic Characteristics of Porphyra haitanensis. Int J Mol Sci 2021; 22:ijms22042180. [PMID: 33671697 PMCID: PMC7927003 DOI: 10.3390/ijms22042180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/03/2022] Open
Abstract
The effects of ultraviolet (UV) radiation, particularly UV-B on algae, have become an important issue as human-caused depletion of the protecting ozone layer has been reported. In this study, the effects of different short-term UV-B radiation on the growth, physiology, and metabolism of Porphyra haitanensis were examined. The growth of P. haitanensis decreased, and the bleaching phenomenon occurred in the thalli. The contents of total amino acids, soluble sugar, total protein, and mycosporine-like amino acids (MAAs) increased under different UV-B radiation intensities. The metabolic profiles of P. haitanensis differed between the control and UV-B radiation-treated groups. Most of the differential metabolites in P. haitanensis were significantly upregulated under UV-B exposure. Short-term enhanced UV-B irradiation significantly affected amino acid metabolism, carbohydrate metabolism, glutathione metabolism, and phenylpropane biosynthesis. The contents of phenylalanine, tyrosine, threonine, and serine were increased, suggesting that amino acid metabolism can promote the synthesis of UV-absorbing substances (such as phenols and MAAs) by providing precursor substances. The contents of sucrose, D-glucose-6-phosphate, and beta-D-fructose-6-phosphate were increased, suggesting that carbohydrate metabolism contributes to maintain energy supply for metabolic activity in response to UV-B exposure. Meanwhile, dehydroascorbic acid (DHA) was also significantly upregulated, denoting effective activation of the antioxidant system. To some extent, these results provide metabolic insights into the adaptive response mechanism of P. haitanensis to short-term enhanced UV-B radiation.
Collapse
Affiliation(s)
- Shimei Fu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
| | - Shuai Shang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China;
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266000, China
- Correspondence: (Y.Z.); (X.T.)
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Correspondence: (Y.Z.); (X.T.)
| |
Collapse
|
8
|
Zhang R, Huang G, Wang L, Zhou Q, Huang X. Effects of elevated ultraviolet-B radiation on root growth and chemical signaling molecules in plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:683-690. [PMID: 30658304 DOI: 10.1016/j.ecoenv.2019.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/26/2018] [Accepted: 01/09/2019] [Indexed: 05/13/2023]
Abstract
Ozone layer depletion leads to elevated ultraviolet-B (UV-B) radiation, which affects plant growth; however, little is known about the relationship between root growth and signaling molecules in roots. Therefore, in this work, simulated UV-B radiation was used to study the effects of elevated UV-B radiation on root growth of soybean seedlings and changes in the content of signaling molecules in roots. The results showed that compared with the control, the 2.63 kJ m-2 d-1 and 6.17 kJ m-2 d-1 elevated UV-B radiation treatments inhibited root growth, and root growth parameters (total root length, root surface area, root volume, average diameter, root tip number, and root dry weight) all decreased. For root signaling molecules, the content of nitric oxide, reactive oxygen species, abscisic acid, salicylic acid, and jasmonic acid increased, and the content of auxin, cytokinin, and gibberellin decreased. The above indices changed more significantly under the 6.17 kJ m-2 d-1 treatment. After withdrawal of the exposure, the above indices could be restored to a certain extent. These data indicated that UV-B radiation interfered with root growth by affecting the content of signaling molecules in roots, and the degree of the effects was related to the intensity of UV-B radiation. The results from this study provide a theoretical basis for studying the preliminary mechanism of elevated UV-B radiation on root growth and possible pathways that can mitigate UV-B radiation damage for root growth. ONE SENTENCE SUMMARY: The effects of elevated UV-B on root growth of soybean seedlings were regulated by signaling molecules, and the degree of the effects was related to the intensity of UV-B radiation.
Collapse
Affiliation(s)
- Rutao Zhang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Guangrong Huang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
9
|
Gallé Á, Czékus Z, Bela K, Horváth E, Ördög A, Csiszár J, Poór P. Plant Glutathione Transferases and Light. FRONTIERS IN PLANT SCIENCE 2019; 9:1944. [PMID: 30687349 PMCID: PMC6333738 DOI: 10.3389/fpls.2018.01944] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/13/2018] [Indexed: 05/09/2023]
Abstract
The activity and expression of glutathione transferases (GSTs) depend on several less-known endogenous and well-described exogenous factors, such as the developmental stage, presence, and intensity of different stressors, as well as on the absence or presence and quality of light, which to date have received less attention. In this review, we focus on discussing the role of circadian rhythm, light quality, and intensity in the regulation of plant GSTs. Recent studies demonstrate that diurnal regulation can be recognized in GST activity and gene expression in several plant species. In addition, the content of one of their co-substrates, reduced glutathione (GSH), also shows diurnal changes. Darkness, low light or shade mostly reduces GST activity, while high or excess light significantly elevates both the activity and expression of GSTs and GSH levels. Besides the light-regulated induction and dark inactivation of GSTs, these enzymes can also participate in the signal transduction of visible and UV light. For example, red light may alleviate the harmful effects of pathogens and abiotic stressors by increasing GST activity and expression, as well as GSH content in leaves of different plant species. Based on this knowledge, further research on plants (crops and weeds) or organs and temporal regulation of GST activity and gene expression is necessary for understanding the complex regulation of plant GSTs under various light conditions in order to increase the yield and stress tolerance of plants in the changing environment.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Edit Horváth
- Biological Research CentreInstitute of Plant Biology, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Rathore N, Thakur D, Chawla A. Seasonal variations coupled with elevation gradient drives significant changes in eco-physiological and biogeochemical traits of a high altitude evergreen broadleaf shrub, Rhododendron anthopogon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:708-719. [PMID: 30150110 DOI: 10.1016/j.plaphy.2018.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Higher elevations and, early as well as late phase of growing season are expected to be more stressful for plants in high altitudes. The present study was carried out on Rhododendron anthopogon D. Don, an evergreen shrub of Himalaya to understand variation in eco-physiological and biogeochemical traits due to combined effect of elevation gradient and growing season. We conducted our study at Rohtang, India (32°22'04″ N 77°15'17″ E) and undertook random sampling of leaves at four elevations (3200 m, 3600 m, 4000 m and 4250 m), and three time periods (late June, early August and late September) during growing season. We assessed 12 eco-physiological and biogeochemical variables and analysed results through ANOVA and multivariate analysis. It was found that leaf relative water content, nitrogen percentage (N%), carbon/nitrogen ratio (C/N ratio), total chlorophyll, malondialdehyde equivalents and proline content varied along two gradients (factors) with their interaction being statistically significant. Variance partitioning analysis of studied traits revealed that both factors contribute significantly, with 'season' component ranging between 55.75 % and 94.03 % for most of the parameters, whereas, 'elevation' component contributed more for leaf area, N% and C/N ratio (48.08 %-75.03 %). Our results suggest that eco-physiology of R. anthopogon is significantly influenced by interaction of seasonal variations coupled with elevation gradient. The study highlights the importance of examining both seasonal and elevational gradients in understanding plant adaptation strategies. Overall, our findings revealed that plasticity in eco-physiological and biogeochemical traits underline the wide distribution of R. anthopogon in the high altitudes.
Collapse
Affiliation(s)
- Nikita Rathore
- High Altitude Biology Division, Institute of Himalayan Bioresource Technology (CSIR), Palampur, H.P, 176061, India; Academy of Scientific and Innovative Research, Institute of Himalayan Bioresource Technology (CSIR), Palampur, H.P, 176061, India
| | - Dinesh Thakur
- High Altitude Biology Division, Institute of Himalayan Bioresource Technology (CSIR), Palampur, H.P, 176061, India
| | - Amit Chawla
- High Altitude Biology Division, Institute of Himalayan Bioresource Technology (CSIR), Palampur, H.P, 176061, India; Academy of Scientific and Innovative Research, Institute of Himalayan Bioresource Technology (CSIR), Palampur, H.P, 176061, India.
| |
Collapse
|
11
|
Wang J, Zhong X, Zhu K, Lv J, Lv X, Li F, Shi Z. Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19012-19027. [PMID: 29721793 DOI: 10.1007/s11356-018-2105-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/23/2018] [Indexed: 05/18/2023]
Abstract
Nicosulfuron is a post-emergence herbicide used for weed control in maize fields (Zea mays L.). Here, the pair of nearly isogenic inbred lines SN509-R (nicosulfuron resistant) and SN509-S (nicosulfuron sensitive) was used to study the effect of nicosulfuron on growth, oxidative stress, and the activity and gene expression of antioxidant enzymes in waxy maize seedlings. Nicosulfuron treatment was applied at the five-leaf stage and water treatment was used as control. After nicosulfuron treatment, the death of SN509-S might be associated with increased oxidative stress. Compared with SN509-R, higher O2·- and H2O2 accumulations were observed in SN509-S, which can severely damage lipids and proteins, thus reducing membrane stability. The effects were exacerbated with extended exposure time. Both O2·- and H2O2 detoxification is regulated by enzymes. After nicosulfuron treatment, superoxide dismutase (SOD), catalase, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione-S-transferase (GST) of SN509-S were significantly lower than those of SN509-R. Compared to SN509-R, ascorbate content (AA), glutathione (GSH) content, GSH to glutathione disulfide ratios, and AA to dehydroascorbate ratios significantly declined with increasing exposure time in SN509-S. Compared to SN509-S, nicosulfuron treatment increased the transcript levels of most of the APX genes except for APX1, and in contrast to Gst1, upregulated the transcription of sod9, MDHAR, DHAR, and GR genes in SN509-R. These results suggest that on a transcription level and in accordance with their responses, detoxifying enzymes play a vital role in the O2·- and H2O2 detoxification of maize seedlings under nicosulfuron exposure.
Collapse
Affiliation(s)
- Jian Wang
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Xuemei Zhong
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Kangning Zhu
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Jingbo Lv
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Xiangling Lv
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Fenghai Li
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Zhensheng Shi
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| |
Collapse
|
12
|
Chen F, Schnick S, Schröder P. Concentration effects of the UV filter oxybenzone in Cyperus alternifolius: assessment of tolerance by stress-related response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16080-16090. [PMID: 29594902 DOI: 10.1007/s11356-018-1839-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Phytoremediation has been proposed to reduce the load of the sunscreen oxybenzone (OBZ) in the aquatic environment. Despite the proven removal efficiency of this compound, little is known about its influence, particularly oxidative stress on plants. In this study, a short-term incubation of macrophytic Cyperus alternifolius was performed to prove the plant's ability to withstand the stress. Detached shoots were immersed in medium spiked with different concentrations of OBZ (50, 100, and 500 μM) for 2, 4, and 7 days, respectively. Increased formation of O2- and H2O2 in Cyperus treated with OBZ was characterized by intense colorization following histochemical staining. Alterations of enzyme activities involved in the antioxidative defense system indicate an adaptive response of C. alternifolius to this xenobiotic stress. Quantification of lipid peroxidation reveals that no significant membrane damage occurred during incubation with OBZ. Overall, 50 μM OBZ (tenfold higher than the amount frequently detected in the environment) exhibited low toxic effects. Accordingly, this pilot study provides information on the potential use of Cyperus to remove emerging sunscreen contaminants from water bodies.
Collapse
Affiliation(s)
- Feiran Chen
- Helmholtz Zentrum München, GmbH, German Research Center for Environmental Health, Research Unit Microbiome Analysis, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Sandrine Schnick
- Helmholtz Zentrum München, GmbH, German Research Center for Environmental Health, Research Unit Microbiome Analysis, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Humboldt University, Berlin, Germany
| | - Peter Schröder
- Helmholtz Zentrum München, GmbH, German Research Center for Environmental Health, Research Unit Microbiome Analysis, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.
| |
Collapse
|
13
|
Zhang X, Ding X, Ji Y, Wang S, Chen Y, Luo J, Shen Y, Peng L. Measurement of metabolite variations and analysis of related gene expression in Chinese liquorice (Glycyrrhiza uralensis) plants under UV-B irradiation. Sci Rep 2018; 8:6144. [PMID: 29670187 PMCID: PMC5906665 DOI: 10.1038/s41598-018-24284-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Plants respond to UV-B irradiation (280–315 nm wavelength) via elaborate metabolic regulatory mechanisms that help them adapt to this stress. To investigate the metabolic response of the medicinal herb Chinese liquorice (Glycyrrhiza uralensis) to UV-B irradiation, we performed liquid chromatography tandem mass spectrometry (LC-MS/MS)-based metabolomic analysis, combined with analysis of differentially expressed genes in the leaves of plants exposed to UV-B irradiation at various time points. Fifty-four metabolites, primarily amino acids and flavonoids, exhibited changes in levels after the UV-B treatment. The amino acid metabolism was altered by UV-B irradiation: the Asp family pathway was activated and closely correlated to Glu. Some amino acids appeared to be converted into antioxidants such as γ-aminobutyric acid and glutathione. Hierarchical clustering analysis revealed that various flavonoids with characteristic groups were induced by UV-B. In particular, the levels of some ortho-dihydroxylated B-ring flavonoids, which might function as scavengers of reactive oxygen species, increased in response to UV-B treatment. In general, unigenes encoding key enzymes involved in amino acid metabolism and flavonoid biosynthesis were upregulated by UV-B irradiation. These findings lay the foundation for further analysis of the mechanism underlying the response of G. uralensis to UV-B irradiation.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoli Ding
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia, 750021, China.,School of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Yaxi Ji
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China. .,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
| | - Li Peng
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia, 750021, China. .,School of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China.
| |
Collapse
|
14
|
Wang J, Zhong X, Li F, Shi Z. Effects of nicosulfuron on growth, oxidative damage, and the ascorbate-glutathione pathway in paired nearly isogenic lines of waxy maize (Zea mays L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:108-117. [PMID: 29482726 DOI: 10.1016/j.pestbp.2018.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Nicosulfuron is a postemergence herbicide used for weed control in maize fields (Zea mays L.). We used the pair of nearly isogenic inbred lines, SN509-R (nicosulfuron resistant) and SN509-S (nicosulfuron sensitive), to study the effect of nicosulfuron on growth, oxidative stress, and the ascorbate-glutathione (AA-GSH) cycle in waxy maize seedlings. Nicosulfuron treatment was applied when the fourth leaves were fully developed and the obtained effects were compared to water treatment as control. After nicosulfuron treatment, compared to SN509-R, the death of SN509-S might be associated with increased oxidative stress, since higher O2- and H2O2 accumulations were observed in SN509-S. This in turn might have caused severe damage to lipids and proteins, thus reducing membrane stability. These effects were exacerbated with increasing exposure time. After nicosulfuron treatment, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and guaiacol peroxidase of SN509-S were significantly lower than those of SN509-R. Compared to SN509-R, dehydroascorbate content, glutathione (GSH) content, and GSH to glutathione disulphide ratios significantly declined with increasing exposure time in SN509-S. Our results suggest that the rapid degradation of nicosulfuron in SN509-R results in only a small and transient increase in reactive oxygen species (ROS). In contrast, in SN509-S, reduced nicosulfuron degradation leads to increase ROS, while at the same time, the AA-GSH pathway is not activated.
Collapse
Affiliation(s)
- Jian Wang
- Department of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Xuemei Zhong
- Department of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Fenghai Li
- Department of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Zhensheng Shi
- Department of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| |
Collapse
|