1
|
Pawłowska B, Biczak R. Drugs in the environment - Impact on plants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104557. [PMID: 39245245 DOI: 10.1016/j.etap.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Medicines, like food, are necessities. Many of the commonly used pharmaceuticals, especially antibiotics and NSAIDs end up in the environment and are detected in it (especially in water) at concentrations in the ng·L-1- μg·L-1 range. Although the concentrations of individual drugs in the environment are low, their high biological activity can cause them to be toxic to the environment. This review analyzes and summarizes the effects of drugs, primarily antibiotics and NSAIDs on photosynthesizing organisms, i.e., algae, aquatic and terrestrial plants. Acute drug toxicity to algae and plants occurs most often at high, often non-existent environmental concentrations, while sublethal effects occur at low drug concentrations. The review also points out the problems associated with ecotoxicological studies and the lack of systemic solutions to better assess the risks associated with the presence of drugs in the environment.
Collapse
Affiliation(s)
- Barbara Pawłowska
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland.
| | - Robert Biczak
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland
| |
Collapse
|
2
|
Vokřál I, Podlipná R, Matoušková P, Skálová L. Anthelmintics in the environment: Their occurrence, fate, and toxicity to non-target organisms. CHEMOSPHERE 2023; 345:140446. [PMID: 37852376 DOI: 10.1016/j.chemosphere.2023.140446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Anthelmintics are drugs used for the treatment and prevention of diseases caused by parasitic worms (helminths). While the importance of anthelmintics in human as well as in veterinary medicine is evident, they represent emerging contaminants of the environment. Human anthelmintics are mainly used in tropical and sub-tropical regions, while veterinary anthelmintics have become frequently-occurring environmental pollutants worldwide due to intensive agri- and aquaculture production. In the environment, anthelmintics are distributed in water and soil in relation to their structure and physicochemical properties. Consequently, they enter various organisms directly (e.g. plants, soil invertebrates, water animals) or indirectly through food-chain. Several anthelmintics elicit toxic effects in non-target species. Although new information has been made available, anthelmintics in ecosystems should be more thoroughly investigated to obtain complex knowledge on their impact in various environments. This review summarizes available information about the occurrence, behavior, and toxic effect of anthelmintics in environment. Several reasons why anthelmintics are dangerous contaminants are highlighted along with options to reduce contamination. Negative effects are also outlined.
Collapse
Affiliation(s)
- Ivan Vokřál
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, Praha 6, CZ-165 02, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| |
Collapse
|
3
|
Navrátilová M, Vokřál I, Krátký J, Matoušková P, Sochová A, Vrábľová D, Szotáková B, Skálová L. Albendazole from ovine excrements in soil and plants under real agricultural conditions: Distribution, persistence, and effects. CHEMOSPHERE 2023; 324:138343. [PMID: 36898439 DOI: 10.1016/j.chemosphere.2023.138343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Albendazole (ABZ), a broad-spectrum anthelmintic drug frequently used in livestock against parasitic worms (helminths), enters the environment mainly via faeces of treated animals left in the pastures or used as dung for field fertilization. To obtain information about the subsequent fate of ABZ, the distribution of ABZ and its metabolites in the soil around faeces along with uptake and effects in plants were monitored under real agricultural conditions. Sheep were treated with a recommended dose of ABZ; faeces were collected and used to fertilize fields with fodder plants. Soil samples (in two depths) and samples of two plants, clover (Trifolium pratense) and alfalfa (Medicago sativa), were collected at distances 0-75 cm from the faeces for 3 months after fertilization. The environmental samples were extracted using QuEChERS and LLE sample preparation procedures. The targeted analysis of ABZ and its metabolites was conducted by using the validated UHPLC-MS method. Two main ABZ metabolites, ABZ-sulfoxide (anthelmintically active) and ABZ-sulfone (inactive), persisted in soil (up to 25 cm from faeces) and in plants for three months when the experiment ended. In plants, ABZ metabolites were detected even 60 cm from the faeces and abiotic stress was observed in the central plants. The considerable distribution and persistence of ABZ metabolites in soil and plants amplify the negative environmental impact of ABZ documented in other studies.
Collapse
Affiliation(s)
- Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Josef Krátký
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Andrea Sochová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Daniela Vrábľová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic.
| |
Collapse
|
4
|
Accumulation of Proline in Plants under Contaminated Soils—Are We on the Same Page? Antioxidants (Basel) 2023; 12:antiox12030666. [PMID: 36978914 PMCID: PMC10045403 DOI: 10.3390/antiox12030666] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Agricultural soil degradation is occurring at unprecedented rates, not only as an indirect effect of climate change (CC) but also due to intensified agricultural practices which affect soil properties and biodiversity. Therefore, understanding the impacts of CC and soil degradation on plant physiology is crucial for the sustainable development of mitigation strategies to prevent crop productivity losses. The amino acid proline has long been recognized for playing distinct roles in plant cells undergoing osmotic stress. Due to its osmoprotectant and redox-buffering ability, a positive correlation between proline accumulation and plants’ tolerance to abiotic stress has been pointed out in numerous reviews. Indeed, proline quantification is used systematically by plant physiologists as an indicator of the degree of tolerance and a measurement of the antioxidant potential in plants under stressful conditions. Moreover, the exogenous application of proline has been shown to increase resilience to several stress factors, including those related to soil degradation such as salinity and exposure to metals and xenobiotics. However, recent data from several studies often refer to proline accumulation as a signal of stress sensitivity with no clear correlation with improved antioxidant activity or higher stress tolerance, including when proline is used exogenously as a stress reliever. Nevertheless, endogenous proline levels are strongly modified by these stresses, proving its involvement in plant responses. Hence, one main question arises—is proline augmentation always a sign of improved stress resilience? From this perspective, the present review aims to provide a more comprehensive understanding of the implications of proline accumulation in plants under abiotic stress induced by soil degradation factors, reinforcing the idea that proline quantification should not be employed as a sole indicator of stress sensitivity or resilience but rather complemented with further biochemical and physiological endpoints.
Collapse
|
5
|
Sunyer-Caldú A, Golovko O, Kaczmarek M, Asp H, Bergstrand KJ, Gil-Solsona R, Gago-Ferrero P, Diaz-Cruz MS, Ahrens L, Hultberg M. Occurrence and fate of contaminants of emerging concern and their transformation products after uptake by pak choi (Brassica rapa subsp. chinensis). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120958. [PMID: 36603758 DOI: 10.1016/j.envpol.2022.120958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Recovery and reuse of nutrients is a major challenge in agriculture. A new process contributing to a circular economy is the anaerobic digestion of food waste, which is a sustainable way of recycling nutrients as the digestate can be used as fertiliser in agriculture and horticulture. However, the digestate may be polluted with contaminants of emerging concern (CECs) that can be circulated back into the food chain, posing a risk to the environment and human health. In this work, the nutrient solution was spiked with 18 selected CECs frequently detected in food waste biogas facilities, and subsequent uptake and fate of these CECs were evaluated in pak choi grown in two different nutrient solutions (mineral and organic). All spiked compounds except two (propylparaben, fenbendazole) were taken up by pak choi plants, with perfluorobutanoic acid (PFBA) and sertraline displaying the highest concentrations (270 and 190 μg/kg fresh weight, respectively). There were no statistically significant differences in uptake between mineral and organic nutrient solutions. Uptake of per- and polyfluoroalkyl substances (PFAS) was negatively correlated with perfluorocarbon chain length and dependent on the functional group (r = -0.73). Sixteen transformation products (TPs) were tentatively identified using suspect screening, most of which were Phase II or even Phase III metabolites. Six of these TPs were identified for the first time in plant metabolism and their metabolic pathways were considered.
Collapse
Affiliation(s)
- Adrià Sunyer-Caldú
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, Barcelona 08034, Spain; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden.
| | - Michał Kaczmarek
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Håkan Asp
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), SE-234 56 Alnarp, Sweden
| | - Karl-Johan Bergstrand
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), SE-234 56 Alnarp, Sweden
| | - Rubén Gil-Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - M Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Malin Hultberg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), SE-234 56 Alnarp, Sweden
| |
Collapse
|
6
|
Dimunová D, Matoušková P, Podlipná R, Boušová I, Skálová L. The role of UDP-glycosyltransferases in xenobiotic-resistance. Drug Metab Rev 2022; 54:282-298. [DOI: 10.1080/03602532.2022.2083632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diana Dimunová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Praha 6 - Lysolaje, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Dimunová D, Matoušková P, Navrátilová M, Nguyen LT, Ambrož M, Vokřál I, Szotáková B, Skálová L. Environmental circulation of the anthelmintic drug albendazole affects expression and activity of resistance-related genes in the parasitic nematode Haemonchus contortus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153527. [PMID: 35101480 DOI: 10.1016/j.scitotenv.2022.153527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Veterinary anthelmintics excreted from treated animals pass to soil, subsequently to plants and then to their consumers. This circulation might have various consequences, including drug-resistance promotion in helminths. The present study was designed to follow the effect of the environmental circulation of the common anthelmintic drug albendazole (ABZ) in real farm conditions on the parasitic nematode Haemonchus contortus in vivo. Two fields with fodder plants (clover and alfalfa) were fertilized, the first with dung from ABZ-treated sheep (at the recommended dosage), the second with dung from non-treated sheep (controls). After a 10-week growth period, the fresh fodder from both fields was used to feed two groups of sheep, which were infected with H. contortus. Eggs and adult nematodes from the animals of both groups were isolated, and various parameters were compared. No significant changes in the eggs' sensitivity to ABZ and thiabendazole were observed. However, significantly increased expression of several cytochromes P450 and UDP-glycosyl transferases as well as increased oxidation and glycosylation of ABZ and ABZ-sulfoxide (ABZ-SO) was found in the exposed nematodes. These results show that ABZ environmental circulation improves the ability of the helminths to deactivate ABZ.
Collapse
Affiliation(s)
- Diana Dimunová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Linh Thuy Nguyen
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Martin Ambrož
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic.
| |
Collapse
|
8
|
Benzimidazoles and Plants: Uptake, Transformation and Effect. TOXICS 2022; 10:toxics10030135. [PMID: 35324760 PMCID: PMC8951012 DOI: 10.3390/toxics10030135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
|
9
|
Podlipná R, Navrátilová M, Raisová Stuchlíková L, Moťková K, Langhansová L, Skálová L, Szotáková B. Soybean ( Glycine max) Is Able to Absorb, Metabolize and Accumulate Fenbendazole in All Organs Including Beans. Int J Mol Sci 2021; 22:6647. [PMID: 34206260 PMCID: PMC8268216 DOI: 10.3390/ijms22136647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 01/16/2023] Open
Abstract
Although manure is an important source of minerals and organic compounds it represents a certain risk of spreading the veterinary drugs in the farmland and their permeation to human food. We tested the uptake of the anthelmintic drug fenbendazole (FBZ) by soybean, a common crop plant, from the soil and its biotransformation and accumulation in different soybean organs, including beans. Soybeans were cultivated in vitro or grown in a greenhouse in pots. FBZ was extensively metabolized in roots of in vitro seedlings, where sixteen metabolites were identified, and less in leaves, where only two metabolites were found. The soybeans in greenhouse absorbed FBZ by roots and translocated it to the leaves, pods, and beans. In roots, leaves, and pods two metabolites were identified. In beans, FBZ and one metabolite was found. FBZ exposure did not affect the plant fitness or yield, but reduced activities of some antioxidant enzymes and isoflavonoids content in the beans. In conclusion, manure or biosolids containing FBZ and its metabolites represent a significant risk of these pharmaceuticals entering food consumed by humans or animal feed. In addition, the presence of these drugs in plants can affect plant metabolism, including the production of isoflavonoids.
Collapse
Affiliation(s)
- Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (R.P.); (K.M.); (L.L.)
| | - Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (M.N.); (L.R.S.); (L.S.)
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (M.N.); (L.R.S.); (L.S.)
| | - Kateřina Moťková
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (R.P.); (K.M.); (L.L.)
| | - Lenka Langhansová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (R.P.); (K.M.); (L.L.)
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (M.N.); (L.R.S.); (L.S.)
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (M.N.); (L.R.S.); (L.S.)
| |
Collapse
|
10
|
Kellerová P, Navrátilová M, Nguyen LT, Dimunová D, Raisová Stuchlíková L, Štěrbová K, Skálová L, Matoušková P. UDP-Glycosyltransferases and Albendazole Metabolism in the Juvenile Stages of Haemonchus contortus. Front Physiol 2020; 11:594116. [PMID: 33324241 PMCID: PMC7726322 DOI: 10.3389/fphys.2020.594116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
The nematode Haemonchus contortus, a gastrointestinal parasite of ruminants, can severely burden livestock production. Although anthelmintics are the mainstay in the treatment of haemonchosis, their efficacy diminishes due to drug-resistance development in H. contortus. An increased anthelmintics inactivation via biotransformation belongs to a significant drug-resistance mechanism in H. contortus. UDP-glycosyltransferases (UGTs) participate in the metabolic inactivation of anthelmintics and other xenobiotic substrates through their conjugation with activated sugar, which drives the elimination of the xenobiotics due to enhanced solubility. The UGTs family, in terms of the biotransformation of commonly used anthelmintics, has been well described in adults as a target stage. In contrast, the free-living juvenile stages of H. contortus have attracted less attention. The expression of UGTs considerably varies throughout the life cycle of the juvenile nematodes, suggesting their different roles. Furthermore, the constitutive expression in a susceptible strain with two resistant strains shows several resistance-related changes in UGTs expression, and the exposure of juvenile stages of H. contortus to albendazole (ABZ) and ABZ-sulfoxide (ABZSO; in sublethal concentrations) leads to the increased expression of several UGTs. The anthelmintic drug ABZ and its primary metabolite ABZSO biotransformation, tested in the juvenile stages, shows significant differences between susceptible and resistant strain. Moreover, higher amounts of glycosidated metabolites of ABZ are formed in the resistant strain. Our results show similarly, as in adults, the UGTs and glycosidations significant for resistance-related differences in ABZ biotransformation and warrant further investigation in their individual functions.
Collapse
Affiliation(s)
- Pavlína Kellerová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Martina Navrátilová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Linh Thuy Nguyen
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Diana Dimunová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Lucie Raisová Stuchlíková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Karolína Štěrbová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Lenka Skálová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Petra Matoušková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| |
Collapse
|
11
|
Navrátilová M, Raisová Stuchlíková L, Skálová L, Szotáková B, Langhansová L, Podlipná R. Pharmaceuticals in environment: the effect of ivermectin on ribwort plantain (Plantago lanceolata L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31202-31210. [PMID: 32483720 DOI: 10.1007/s11356-020-09442-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The anthelmintic drug ivermectin (IVM), used frequently especially in veterinary medicine, enters the environment mainly via excrements in pastures and could negatively affect non-target organisms including plants. The present study was designed to follow up on our previous investigations into IVM metabolism and its effects in the common meadow plant ribwort plantain (Plantago lanceolata L.) during long-term exposure of both cell suspensions and whole plant regenerants. IVM uptake, distribution, and biotransformation pathways were studied using UHPLC-MS analysis. In addition, the IVM effect on antioxidant enzymes activities, proline concentration, the content of all polyphenols, and the level of the main bioactive secondary metabolites was also tested with the goal of learning more about IVM-induced stress in the plant organism. Our results showed that the ribwort plantain was able to uptake IVM and transform it via demethylation and hydroxylation. Seven and six metabolites respectively were detected in cell suspensions and in the roots of regenerants. However, only the parent drug IVM was detected in the leaves of the regenerants. IVM accumulated in the roots and leaves of plants might negatively affect ecosystems due to its toxicity to herbivorous invertebrates. As IVM exposition increased the activity of catalase, the concentration of proline and polyphenols, as well as decreased the activity of ascorbate peroxidase and the concentration of the bioactive compounds acteoside and aucubin, long-term exposition of the ribwort plantain to IVM caused abiotic stress and might decrease the medicinal value of this herb.
Collapse
Affiliation(s)
- Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lenka Langhansová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic.
| |
Collapse
|
12
|
Navrátilová M, Raisová Stuchlíková L, Moťková K, Szotáková B, Skálová L, Langhansová L, Podlipná R. The Uptake of Ivermectin and Its Effects in Roots, Leaves and Seeds of Soybean ( Glycine max). Molecules 2020; 25:E3655. [PMID: 32796616 PMCID: PMC7466097 DOI: 10.3390/molecules25163655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In recent years interest has grown in the occurrence and the effects of pharmaceuticals in the environment. The aim of this work is to evaluate the risk of fertilizing crops with manure from livestock treated with anthelmintics. The present study was designed to follow the fate of the commonly used anthelmintic drug, ivermectin (IVM) and its metabolites in soybeans (Glycine max (L.) Merr.), a plant that is grown and consumed world-wide for its high content of nutritional and health-beneficial substances. In vitro plantlets and soybean plants, cultivated in a greenhouse, were used for this purpose. Our results showed the uptake of IVM and its translocation to the leaves, but not in the pods and the beans. Four IVM metabolites were detected in the roots, and one in the leaves. IVM exposure decreased slightly the number and weight of the beans and induced changes in the activities of antioxidant enzymes. In addition, the presence of IVM affected the proportion of individual isoflavones and reduced the content of isoflavones aglycones, which might decrease the therapeutic value of soybeans. Fertilization of soybean fields with manure from IVM-treated animals appears to be safe for humans, due to the absence of IVM in beans, the food part of plants. On the other hand, it could negatively affect soybean plants and herbivorous invertebrates.
Collapse
Affiliation(s)
- Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (M.N.); (L.R.S.); (B.S.); (L.S.)
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (M.N.); (L.R.S.); (B.S.); (L.S.)
| | - Kateřina Moťková
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Praha 6-Lysolaje, Czech Republic; (K.M.); (L.L.)
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (M.N.); (L.R.S.); (B.S.); (L.S.)
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (M.N.); (L.R.S.); (B.S.); (L.S.)
| | - Lenka Langhansová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Praha 6-Lysolaje, Czech Republic; (K.M.); (L.L.)
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Praha 6-Lysolaje, Czech Republic; (K.M.); (L.L.)
| |
Collapse
|
13
|
Suppressive Effect of Huzhentongfeng on Experimental Gouty Arthritis: An In Vivo and In Vitro Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2969364. [PMID: 31871475 PMCID: PMC6913320 DOI: 10.1155/2019/2969364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/24/2019] [Accepted: 09/17/2019] [Indexed: 01/30/2023]
Abstract
Background Huzhentongfeng (HZTF) is an extract from four Chinese medical herbs for treating gout. This study aims to evaluate its antigout activity and preliminary explore its mechanism in vivo and in vitro. Methods The rats were intragastrically administered with HZTF for 5 days and then injected 0.1 ml (10 mg) of MSU crystals to their joints for generating a gout model to analyze the paw volume and histopathology of joint synovial tissues of rats with different doses. We also investigated the antioxidant capacity of HZTF in vitro using indication including lipid peroxidation, DPPH·, and ABTS+ radical-scavenging capacity; besides, we used qRT-PCR to measure the effect of HZTF on interleukin (IL)-1β, caspase-1, NLRP3, and NQO1 expression in hydrogen peroxide-stimulated RAW264.7 macrophages and IL-1β, IL-6, and tumor necrosis factor (TNF)-α in MSU crystal-induced THP-1 monocytes. Confocal microscopy analysis was used to observe the dimerization of ASC adapter proteins. In addition, we also established quality standard of HZTF by using the high-performance liquid chromatography (HPLC) method. Results HZTF could significantly suppress the paw swelling and neutrophil infiltration induced by MSU intra-articular injection in rats compared with the control group. HZTF also showed inhibition effects of inflammatory cytokines (IL-1β, IL-6, and TNF-α) secretion at 25.00 and 50.00 μg/ml in MSU-induced THP-1 cells but showed no effects of IL-1β, IL-6, and TNF-α mRNA expression in MSU-induced THP-1 cells. Furthermore, confocal microscopy analysis showed that HZTF could prevent the oligomerization of ASC. Moreover, HZTF also showed effects in cell-free and cell-base tests of antioxidant capacity. Conclusion The results prove that HZTF possessed the potential preventive effect against gout arthritis, and the effect may be attributed to its preventing effect on neutrophil infiltration and proinflammatory cytokines secretion such as IL-1β, IL-6, and TNF-α which were caused by the activation of inflammasome.
Collapse
|
14
|
Stuchlíková LR, Jakubec P, Langhansová L, Podlipná R, Navrátilová M, Szotáková B, Skálová L. The uptake, effects and biotransformation of monepantel in meadow plants used as a livestock feed. CHEMOSPHERE 2019; 237:124434. [PMID: 31374394 DOI: 10.1016/j.chemosphere.2019.124434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Drugs are potentially dangerous environmental contaminants, as they are designed to have biological effects at low concentrations. Monepantel (MOP), an amino-acetonitrile derivative, is frequently used veterinary anthelmintics, but information about MOP environmental circulation and impact is almost non-existent. We studied the phytotoxicity, uptake and biotransformation of MOP in two fodder plants, Plantago lanceolata and Medicago sativa. The seeds and whole plant regenerants were cultivated with MOP. The plant roots and the leaves were collected after 1, 2, 3, 4, 5 and 6 weeks of cultivation. The lengths of roots and proline concentrations in the roots and leaves were measured to evaluate MOP phytotoxicity. The UHPLC-MS/MS technique with a Q-TOF mass analyser was used for the identification and semi-quantification of MOP and its metabolites. Our results showed no phytotoxicity of MOP. However, both plants were able to uptake, transport and metabolize MOP. Comparing both plants, the uptake of MOP was much more extensive in Medicago sativa (almost 10-times) than in Plantago lanceolate. Moreover, 9 various metabolites of MOP were detected in Medicago sativa, while only 7 MOP metabolites were found in Plantago lanceolata. Based on metabolites structures, scheme of the metabolic pathways of MOP in both plants was proposed. MOP and its main metabolite (MOP sulfone), both anthelmintically active, were present not only in roots but also in leaves that can be consumed by animals. This indicates the potential for undesirable circulation of MOP in the environment, which could lead to many pharmacological and toxicological consequences.
Collapse
Affiliation(s)
- Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Pavel Jakubec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Lenka Langhansová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Lysolaje, Czech Republic.
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Lysolaje, Czech Republic.
| | - Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| |
Collapse
|
15
|
Snow DD, Cassada DA, Biswas S, Malakar A, D'Alessio M, Carter LJ, Johnson RD, Sallach JB. Detection, occurrence, and fate of emerging contaminants in agricultural environments (2019). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1103-1113. [PMID: 31420905 DOI: 10.1002/wer.1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
A review of 82 papers published in 2018 is presented. The topics ranged from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, microplastics, and engineered nanomaterials in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Fate and Occurrence, Pharmaceutical Metabolites, Anthelmintics, Microplastics, and Engineered Nanomaterials. PRACTITIONER POINTS: New research describes innovative new techniques for emerging contaminant detection in agricultural settings. Newer classes of contaminants include human and veterinary pharmaceuticals. Research in microplastics and nanomaterials shows that these also occur in agricultural environments and will likely be topics of future work.
Collapse
Affiliation(s)
- Daniel D Snow
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - David A Cassada
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Saptashati Biswas
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Arindam Malakar
- Nebraska Water Center, Part of the Robert B. Dougherty Water for Food Institute, University of Nebraska, Lincoln, Nebraska
| | - Matteo D'Alessio
- Nebraska Water Center, Part of the Robert B. Dougherty Water for Food Institute, University of Nebraska, Lincoln, Nebraska
| | | | | | | |
Collapse
|
16
|
Syslová E, Landa P, Stuchlíková LR, Matoušková P, Skálová L, Szotáková B, Navrátilová M, Vaněk T, Podlipná R. Metabolism of the anthelmintic drug fenbendazole in Arabidopsis thaliana and its effect on transcriptome and proteome. CHEMOSPHERE 2019; 218:662-669. [PMID: 30502705 DOI: 10.1016/j.chemosphere.2018.11.135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Fenbendazole, a broad spectrum anthelmintic used especially in veterinary medicine, may impact non-target organisms in the environment. Nevertheless, information about the effects of fenbendazole in plants is limited. We investigated the biotransformation of fenbendazole and the effect of fenbendazole and its metabolites on gene expression in the model plant Arabidopsis thaliana. High-sensitive UHPLC coupled with tandem mass spectrometry, RNA-microarray analysis together with qPCR verification and nanoLC-MS proteome analysis were used in this study. Twelve fenbendazole metabolites were identified in the roots and leaves of A. thaliana plants. Hydroxylation, S-oxidation and glycosylation represent the main fenbendazole biotransformation pathways. Exposure of A. thaliana plants to 5 μM fenbendazole for 24 and 72 h significantly affected gene and protein expression. The changes in transcriptome were more pronounced in the leaves than in roots, protein expression was more greatly affected in the roots at a shorter period of exposure (24 h) and in leaf rosettes over a longer period (72 h). Up-regulated (>2-fold change, p < 0.1) proteins are involved in various biological processes (electron transport, energy generating pathways, signal transduction, transport), and in response to stresses (e.g. catalase, superoxide dismutase, cytochromes P450, UDP-glycosyltransferases). Some of the proteins which were up-regulated after fenbendazole-exposure probably participate in fenbendazole biotransformation (e.g. cytochromes P450, UDP-glucosyltransferases). Finally, fenbendazole in plants significantly affects many physiological and metabolic processes and thus the contamination of ecosystems by manure containing this anthelmintic should be restricted.
Collapse
Affiliation(s)
- Eliška Syslová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic.
| | - Přemysl Landa
- Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic.
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Tomáš Vaněk
- Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic.
| | - Radka Podlipná
- Laboratory of Plant Biotechnology, Institute of Experimental Botany, Czech Academy of Science, Rozvojová 313, 165 02, Praha 6 - Lysolaje, Czech Republic.
| |
Collapse
|
17
|
Klampfl CW. Metabolization of pharmaceuticals by plants after uptake from water and soil: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Raisová Stuchlíková L, Králová V, Lněničková K, Zárybnický T, Matoušková P, Hanušová V, Ambrož M, Šubrt Z, Skálová L. The metabolism of flubendazole in human liver and cancer cell lines. Drug Test Anal 2018; 10:1139-1146. [PMID: 29426058 DOI: 10.1002/dta.2369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/06/2022]
Abstract
Flubendazole (FLU), a benzimidazole anthelmintic drug widely used in veterinary medicine, has been approved for the treatment of gut-residing nematodes in humans. In addition, FLU is now considered a promising anti-cancer agent. Despite this, information about biotransformation of this compound in human is lacking. Moreover, there is no information regarding whether cancer cells are able to metabolize FLU in order to deactivate it. For these reasons, the present study was designed to identify all metabolites of Phase I and Phase II of FLU in human liver and in various cancer cells using ultra high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Precision-cut human liver slices and 9 cell lines of different origin (breast, colon, oral cavity) were used as in vitro model systems. Our study showed that FLU with a reduced carbonyl group (FLUR) is the only FLU metabolite formed in the human liver. All human cancer cell lines were able to form FLUR. In addition, methylated FLUR was detected in breast cells MCF7 and intestinal SW480 cells. The accumulation of FLU and its reduction to FLUR markedly differed among cells. The extent of FLU reduction was in a good correlation with the detected expression level of carbonyl reductase 1. In most cases, FLU entered in a higher amount and was reduced to a lesser extent in proliferating (metastatic) cells than in differentiated (non-cancerous, non-metastatic) ones. These results support the promising potential of FLU in anti-cancer therapy.
Collapse
Affiliation(s)
- Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Věra Králová
- Department of Biology, Faculty of Medicine, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Lněničková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Zárybnický
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Veronika Hanušová
- Department of Biology, Faculty of Medicine, Charles University, Hradec Králové, Czech Republic
| | - Martin Ambrož
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Zdeněk Šubrt
- Department of Surgery, Faculty of Medicine, Charles University, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|