1
|
Gajula SK, Konkala A, Narra MR. Physiological and biochemical responses of Labeo rohita to neonicotinoids imidacloprid, clothianidin, and their mixture. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:13. [PMID: 39621244 DOI: 10.1007/s10695-024-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024]
Abstract
Neonicotinoids, widely used insecticides, pose severe environmental risks due to their persistence in soil and water, adversely affecting non-target organisms and ecosystem integrity. The present study examined the 56 days effects of imidacloprid (66.6 mg/l), clothianidin (30 mg/l), and their combination (33.3 mg/l and 15 mg/l) on Labeo rohita, using one-third of the LC50 sub-lethal concentrations. Survival, weight gain, and the hepatosomatic index decreased insignificantly in the IMI group and significantly in the CLO and Mix groups. Haematological indicators, including erythrocyte counts, haemoglobin, and haematocrit values, were also significantly reduced. Blood glucose and serum creatinine levels increased, while serum albumin, globulin, and plasma total proteins decreased. White blood cell counts elevated, while immunoglobulin (IgM), respiratory burst, and lysozyme activities were significantly inhibited. Liver, brain and muscle lactate and malate dehydrogenases were elevated, whereas succinate and glutamate dehydrogenases were decreased. Liver aspartate aminotransferase activity was substantially higher than that of brain and muscle, which had considerably higher levels of alanine aminotransferase in muscle than in the brain and liver. Additionally, muscle alkaline phosphatase activity was significantly higher than in the liver and brain, whereas liver acid phosphatase showed a greater elevation than in the muscle and brain. The physiological, haematological, and biochemical indices peaked on day 28 and slight recovery was observed on day 56 (IMI > CLO > Mix). The study highlights that the mixture of insecticides poses greater hazards compared to a single active compound, and the indiscriminate use of these insecticides jeopardizes non-target organisms, ecosystems, and public health.
Collapse
Affiliation(s)
- Sadaya Kumar Gajula
- Tara Government College (A) Sangareddy, Department of Zoology, Osmania University, Hyderabad, India
| | - Anand Konkala
- Govt City Collage-Hyderabad, Department of Zoology, Osmania University, Hyderabad, India
| | - Madhusudan Reddy Narra
- Department of Zoology, College of Science, Osmania University, Hyderabad, 500007, India.
| |
Collapse
|
2
|
Retinal Toxicity Induced by Chemical Agents. Int J Mol Sci 2022; 23:ijms23158182. [PMID: 35897758 PMCID: PMC9331776 DOI: 10.3390/ijms23158182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Vision is an important sense for humans, and visual impairment/blindness has a huge impact in daily life. The retina is a nervous tissue that is essential for visual processing since it possesses light sensors (photoreceptors) and performs a pre-processing of visual information. Thus, retinal cell dysfunction or degeneration affects visual ability and several general aspects of the day-to-day of a person's lives. The retina has a blood-retinal barrier, which protects the tissue from a wide range of molecules or microorganisms. However, several agents, coming from systemic pathways, reach the retina and influence its function and survival. Pesticides are still used worldwide for agriculture, contaminating food with substances that could reach the retina. Natural products have also been used for therapeutic purposes and are another group of substances that can get to the retina. Finally, a wide number of medicines administered for different diseases can also affect the retina. The present review aimed to gather recent information about the hazard of these products to the retina, which could be used to encourage the search for more healthy, suitable, or less risky agents.
Collapse
|
3
|
Meng S, Delnat V, Stoks R. Multigenerational effects modify the tolerance of mosquito larvae to chlorpyrifos but not to a heat spike and do not change their synergism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118333. [PMID: 34637829 DOI: 10.1016/j.envpol.2021.118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
While interactions with global warming and multigenerational effects are considered crucial to improve risk assessment of pesticides, these have rarely been studied in an integrated way. While heat extremes can magnify pesticide toxicity, no studies tested how their combined effects may transmit to the next generation. We exposed mosquito larvae in a full factorial, two-generation experiment to a heat spike followed by chlorpyrifos exposure. As expected, the heat spike magnified the chlorpyrifos-induced lethal and sublethal effects within both generations. Only when preceded by the heat spike, chlorpyrifos increased mortality and reduced the population growth rate. Moreover, chlorpyrifos-induced reductions in heat tolerance (CTmax), acetylcholinesterase (AChE) activity and development time were further magnified by the heat spike. Notably, when parents were exposed to chlorpyrifos, the chlorpyrifos-induced lethal and sublethal effects in the offspring were smaller, indicating increased tolerance to chlorpyrifos. In contrast, there was no such multigenerational effect for the heat spike. Despite the adaptive multigenerational effect to the pesticide, the synergism with the heat spike was still present in the offspring generation. Generally, our results provide important evidence that short exposure to pulse-like global change stressors can strongly affect organisms within and across generations, and highlight the importance of considering multigenerational effects in risk assessment.
Collapse
Affiliation(s)
- Shandong Meng
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| |
Collapse
|
4
|
Meng S, Tran TT, Delnat V, Stoks R. Transgenerational exposure to warming reduces the sensitivity to a pesticide under warming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117217. [PMID: 33915393 DOI: 10.1016/j.envpol.2021.117217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Despite the increased attention for temporal aspects of stressor interactions and for effects of warming in ecotoxicological studies, we lack knowledge on how different exposure durations to warming may affect pesticide sensitivity. We tested how three types of exposure duration to 4 °C warming (acute, developmental and transgenerational exposure to 24 °C vs 20 °C) shape the effect of the pesticide chlorpyrifos on two ecologically relevant fitness-related traits of mosquito larvae: heat tolerance and antipredator behaviour. Transgenerational (from the parental generation) and developmental (from the egg stage) warming appeared energetically more stressful than acute warming (from the final instar), because (i) only the latter resulted in an adaptive increase of heat tolerance, and (ii) especially developmental and transgenerational warming reduced the diving responsiveness and diving time. Exposure to chlorpyrifos decreased the heat tolerance, diving responsiveness and diving time. The impact of chlorpyrifos was lower at 24 °C than at 20 °C indicating that the expected increase in toxicity at 24 °C was overruled by the observed increase in pesticide degradation. Notably, although our results suggest that transgenerational warming was energetically more stressful, it did reduce the chlorpyrifos-induced negative effects at 24 °C on heat tolerance and the alarm escape response compared to acute warming. Our results provide important evidence that the exposure duration to warming may determine the impact of a pesticide under warming, thereby identifying a novel temporal aspect of stressor interactions in risk assessment.
Collapse
Affiliation(s)
- Shandong Meng
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Tam T Tran
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium; Institute of Aquaculture, Nha Trang University, Khanh Hoa, Viet Nam
| | - Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| |
Collapse
|
5
|
Anderson JC, Marteinson SC, Prosser RS. Prioritization of Pesticides for Assessment of Risk to Aquatic Ecosystems in Canada and Identification of Knowledge Gaps. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:171-231. [PMID: 34625837 DOI: 10.1007/398_2021_81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pesticides can enter aquatic environments via direct application, via overspray or drift during application, or by runoff or leaching from fields during rain events, where they can have unintended effects on non-target aquatic biota. As such, Fisheries and Oceans Canada identified a need to prioritize current-use pesticides based on potential risks towards fish, their prey species, and habitats in Canada. A literature review was conducted to: (1) Identify current-use pesticides of concern for Canadian marine and freshwater environments based on use and environmental presence in Canada, (2) Outline current knowledge on the biological effects of the pesticides of concern, and (3) Identify general data gaps specific to biological effects of pesticides on aquatic species. Prioritization was based upon recent sales data, measured concentrations in Canadian aquatic environments between 2000 and 2020, and inherent toxicity as represented by aquatic guideline values. Prioritization identified 55 pesticides for further research nationally. Based on rank, a sub-group of seven were chosen as the top-priority pesticides, including three herbicides (atrazine, diquat, and S-metolachlor), three insecticides (chlorpyrifos, clothianidin, and permethrin), and one fungicide (chlorothalonil). A number of knowledge gaps became apparent through this process, including gaps in our understanding of sub-lethal toxicity, environmental fate, species sensitivity distributions, and/or surface water concentrations for each of the active ingredients reviewed. More generally, we identified a need for more baseline fish and fish habitat data, ongoing environmental monitoring, development of marine and sediment-toxicity benchmarks, improved study design including sufficiently low method detection limits, and collaboration around accessible data reporting and management.
Collapse
Affiliation(s)
| | - Sarah C Marteinson
- National Contaminants Advisory Group, Ecosystems and Oceans Science Sector, Fisheries and Oceans Canada, Ottawa, ON, Canada.
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
6
|
Macirella R, Curcio V, Brunelli E. Morpho-Functional Alterations in the Gills of a Seawater Teleost, the Ornate Wrasse ( Thalassoma pavo L.), after Short-Term Exposure to Chlorpyrifos. TOXICS 2020; 8:toxics8040097. [PMID: 33171834 PMCID: PMC7711812 DOI: 10.3390/toxics8040097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
Chlorpyrifos (CPF) is an organophosphorus insecticide commonly used for domestic and agricultural purposes. The risk posed by environmental contamination from CPF is well acknowledged, and it has been detected worldwide in aquatic habitats and coastal areas. In addition, due to its slower degradation in seawater compared to freshwater, CPF is of particular concern for marine environments. Here, we investigated for the first time the morpho-functional alterations induced by CPF on the gills of Thalassoma pavo, a widespread species in the Mediterranean Sea. We tested the effects of two sublethal concentrations (4 and 8 µg/L) after 48 and 96 h. Our study demonstrates that the alterations induced by CPF are dose and time-dependent and highlight the harmful properties of this insecticide. After exposure to the low tested concentration, the more frequent alteration is an intense proliferation of the primary epithelium, whereas after exposure to the high concentration, the primary epithelium proliferation is less extensive, and the most evident effects are the thinning of secondary lamellae and the ectopia of chloride and goblet cells. CPF also modulated the expression of Na+/K+-ATPase. Dilation of lamellar apical tips, pillar cell degeneration, and appearance of aneurysms are often observed.
Collapse
Affiliation(s)
| | | | - Elvira Brunelli
- Correspondence: ; Tel.: +39-09-8449-2996; Fax: +39-09-8449-2986
| |
Collapse
|
7
|
Banaee M, Akhlaghi M, Soltanian S, Sureda A, Gholamhosseini A, Rakhshaninejad M. Combined effects of exposure to sub-lethal concentration of the insecticide chlorpyrifos and the herbicide glyphosate on the biochemical changes in the freshwater crayfish Pontastacus leptodactylus. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1500-1515. [PMID: 32445013 DOI: 10.1007/s10646-020-02233-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 05/04/2023]
Abstract
Glyphosate is an herbicide that inhibits the growth of weed plants, while chlorpyrifos is an insecticide commonly applied to control the pests' population. This study aimed to investigate the combined effects of chlorpyrifos and glyphosate on biochemical, immunological parameters, and oxidative stress biomarkers in freshwater crayfish Pontastacus leptodactylus for 21 days. The experimental design of this study was factorial (3 × 3), including 0.0, 0.4, and 0.8 mg L-1 glyphosate and 0.0, 2.5, and 5 µg L-1 chlorpyrifos. The exposure to chlorpyrifos, glyphosate alone and a mixture of them significantly decreased acetylcholinesterase, alkaline phosphatase, phenoloxidase activities, and total protein levels. The lactate dehydrogenase, glutamic-pyruvic-transaminase, and catalase activities, the contents of glucose, and malondialdehyde levels were increased in the crayfish. No significant changes were detected in glutamic-oxaloacetic-transaminase (SGOT) activity, triglyceride, and total antioxidant (TAO) levels in the crayfish treated with 0.4 mg L-1 glyphosate and the control group. Co-exposure of crayfish to chlorpyrifos and glyphosate increased SGOT activity and TAO levels. Although chlorpyrifos combined with glyphosate decreased the γ-Glutamyltransferase (GGT) activity, the GGT activity was significantly increased in the P. leptodactylus exposed during 21 days to 5 µg L-1 chlorpyrifos alone and 0.8 mg L-1 glyphosate alone. In comparison with the reference group, no significant changes were evidenced in the cholesterol levels in the P. leptodactylus treated with 2.5 µg L-1 chlorpyrifos, but its levels were significantly increased in the other treatment groups. In conclusion, the mix of glyphosate and chlorpyrifos exhibited synergic effects on the different toxicological biomarkers in the narrow-clawed crayfish. Co-exposure to pesticides may result in disruption of homeostasis in the crayfish by altering the biochemical and immunological parameters.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Mostafa Akhlaghi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Siyavash Soltanian
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Department of Fundamental Biology and Health Sciences, and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Amin Gholamhosseini
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mostafa Rakhshaninejad
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Meng S, Delnat V, Stoks R. Mosquito larvae that survive a heat spike are less sensitive to subsequent exposure to the pesticide chlorpyrifos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114824. [PMID: 32454381 DOI: 10.1016/j.envpol.2020.114824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/10/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
While extreme high temperatures are an important aspect of global warming, their effects on organisms are relatively understudied, especially in ecotoxicology. Sequential exposure to heat spikes and pesticides is a realistic scenario as both are typically transient stressors and are expected to further increase in frequency under global warming. We tested the effects of exposure to a lethal heat spike and subsequently to an ecologically relevant lethal pulse exposure of the pesticide chlorpyrifos in the larvae of mosquito Culex pipiens. The heat spike caused direct and delayed mortality, and resulted in a higher heat tolerance and activity of acetylcholinesterase, and a lower fat content in the survivors. The chlorpyrifos exposure caused mortality, accelerated growth rate, and decreased the heat tolerance and the activity of acetylcholinesterase. The preceding heat spike did not change how chlorpyrifos reduced the heat tolerance. Notably, the preceding heat spike did lower the lethal effect of the pesticide, which makes an important novel finding at the interface of ecotoxicology and global change biology, and adds a new dimension to the "climate-induced toxicant sensitivity" (CITS) concept. This may be due to both survival selection and cross-tolerance, and therefore likely a widespread phenomenon. Our results emphasize the importance of including extreme high temperatures as an important transient global change stressor in ecotoxicology.
Collapse
Affiliation(s)
- Shandong Meng
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| |
Collapse
|
9
|
Krzykwa JC, Sellin Jeffries MK. Comparison of behavioral assays for assessing toxicant-induced alterations in neurological function in larval fathead minnows. CHEMOSPHERE 2020; 257:126825. [PMID: 32381281 DOI: 10.1016/j.chemosphere.2020.126825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Neuroactive compounds are routinely detected in surface waters at concentrations that pose potential threats to wildlife. Exposure to neurotoxicants can adversely affect exposed organism by altering ecologically-important behaviors (e.g., feeding and predator response) that are likely to have important repercussions for populations. These compounds can elicit behavioral effects at concentrations lower than those that induce overt toxicity as indicated by mortality or decreased growth. Though a wide variety of methods have been employed to assess the behavior of early life stage fish, it is unclear which assays are best suited for identifying ecologically-relevant behavioral changes following exposures to neurotoxicants. The goal of the present study was to promote the use of behavioral assays for assessing the behavioral impacts of exposure to neurotoxic compounds by comparing the performance of different behavioral assays in larval fish. To achieve this goal, the sensitivity and practicality of three behavioral assays (i.e., feeding, optomotor response, and C-start assays) were compared in larval fathead minnows exposed to a known neurotoxicant, chlorpyrifos. There were significant alterations in the performance of fathead minnow larvae in all three behavioral assays in response to a 12-d embryo-larval exposure to chlorpyrifos. However, feeding and C-start were the most practical of the selected assays, as they took less time and allowed for larger samples sizes. Further work to standardize behavioral testing methods, and to link alterations to ecologically-relevant behaviors, will help promote the use of these assays when investigating the potential environmental impacts of neurotoxic compounds.
Collapse
Affiliation(s)
- Julie C Krzykwa
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | | |
Collapse
|
10
|
Meng S, Delnat V, Stoks R. The Exposure Order Strongly Modifies How a Heat Spike Increases Pesticide Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11476-11484. [PMID: 32804496 DOI: 10.1021/acs.est.0c03848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The exposure order may strongly affect the impact of stressors, yet is largely ignored for the frequently occurring combinations of toxicants with natural stressors. We tested how exposure order shaped the interactive effects of serial exposure to the pesticide chlorpyrifos and to a heat spike in the larvae of the mosquito Culex pipiens. Notably, the chlorpyrifos-induced mortality was much more magnified by the heat spike and a synergism was already detected at the low concentration when exposure to chlorpyrifos followed the heat spike. This suggests that the preceding heat spike weakened the larvae as reflected in their lower net energy budget, moreover the chlorpyrifos-induced inhibition of its target enzyme (acetylcholinesterase) was only magnified by the heat spike when it was the first stressor. Also the chlorpyrifos-induced reduction in heat tolerance was stronger when the pesticide pulse followed the heat spike, and was buffered by the heat spike when this was the second stressor. Our results provide the first evidence that the exposure order can strongly change the magnifying effect of an important climate change factor on the toxicity of a pesticide. This highlights the importance of exposure order in ecological risk assessment of toxicants under realistic combinations with natural stressors.
Collapse
Affiliation(s)
- Shandong Meng
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven 3000, Belgium
| | - Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven 3000, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
11
|
Huang X, Cui H, Duan W. Ecotoxicity of chlorpyrifos to aquatic organisms: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110731. [PMID: 32450436 DOI: 10.1016/j.ecoenv.2020.110731] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 05/08/2023]
Abstract
Pesticides play an important role in promoting agricultural development, while their unreasonable use has led to environmental problems. Chlorpyrifos (CPF), a typical organophosphate pesticide, is used globally as an insecticide in agriculture. The extensive application of CPF has resulted in water contamination, and CPF has been detected in rivers, lakes, seawater, and even in rain. In the present review, CPF was selected due to its extensive use in agriculture and higher detection rate in surface waters. In this review we summarised the evidence related to CPF pollution and focused on discussing the ecotoxicity of CPF to aquatic systems and revealed the mechanism of action of CPF. The aim of this literature review was to summarise the knowledge of the toxicity to marine and freshwater organisms of CPF as well as try to select a series of sensitive biomarkers, which are suitable for ecotoxicological assessment and environmental monitoring in aquatic systems.
Collapse
Affiliation(s)
- Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province, PR China
| | - Hongwu Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong Province, PR China
| | - Weiyan Duan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China.
| |
Collapse
|
12
|
Macirella R, Madeo G, Sesti S, Tripepi M, Bernabò I, Godbert N, La Russa D, Brunelli E. Exposure and post-exposure effects of chlorpyrifos on Carassius auratus gills: An ultrastructural and morphofunctional investigation. CHEMOSPHERE 2020; 251:126434. [PMID: 32169701 DOI: 10.1016/j.chemosphere.2020.126434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Widespread environmental contamination from chlorpyrifos (CPF) is well acknowledged and has led to the proposal to ban or limit its use in agricultural and domestic, within the regulatory context of both America and Europe. Furthermore, great concerns arise as to whether exposure to CPF represents a potential risk to human health. In the present study, by subjecting the goldfish model to three environmentally realistic concentrations of CPF (1, 4, and 8 μg/L) for 96 h, we demonstrated that this pesticide has the potential to induce severe morphological, ultrastructural and functional alterations in gills, even at very low concentrations. The degree of pathological effects was dose-dependent, and the main morphological alterations recorded were: regression of interlamellar cellular mass (ILCM), hypertrophy, and hyperplasia of epithelial cells, degeneration of both chloride cells and pillar cells. CPF exposure resulted in a decrease of Na+/K+-ATPase expression and the induction of iNOS, as revealed by immunohistochemical analysis. In order to determine the overall toxicity of CPF, we also investigated the recovery capability of goldfish gills following a period of 7 days in pesticide-free water. Our results clearly showed that there exists a threshold of CPF dose below which the effects on gills are reversible and beyond which the ability of gills to recover their typical features is completely lost. The information presented in this paper emphasises the importance of evaluating the recovery ability of organisms after chemical input and enhances our knowledge of the potential hazard of organophosphorus pesticides (OPs) on freshwater ecosystems.
Collapse
Affiliation(s)
- Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, Rende, Cosenza, 87036, Italy
| | - Giuseppe Madeo
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, Rende, Cosenza, 87036, Italy
| | - Settimio Sesti
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, Rende, Cosenza, 87036, Italy
| | - Manuela Tripepi
- Department of Biological and Chemical Sciences, East Falls Campus College of Life Sciences, Jefferson University, 4201 Henry Ave, Philadelphia, PA, 19144, USA
| | - Ilaria Bernabò
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, Rende, Cosenza, 87036, Italy
| | - Nicolas Godbert
- MAT-INLAB Laboratory, Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci 14/C, Rende, Cosenza, 87036, Italy
| | - Daniele La Russa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende, Cosenza, 87036, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, Rende, Cosenza, 87036, Italy.
| |
Collapse
|
13
|
Delnat V, Tran TT, Verheyen J, Van Dinh K, Janssens L, Stoks R. Temperature variation magnifies chlorpyrifos toxicity differently between larval and adult mosquitoes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1237-1244. [PMID: 31470486 DOI: 10.1016/j.scitotenv.2019.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 05/12/2023]
Abstract
To improve risk assessment there is increasing attention for the effect of climate change on the sensitivity to contaminants and vice versa. Two important and connected topics have been largely ignored in this context: (i) the increase of daily temperature variation (DTV) as a key component of climate change, and (ii) differences in sensitivity to climate change and contaminants between developmental stages. We therefore investigated whether DTV magnified the negative effects of the organophosphate insecticide chlorpyrifos on mortality and heat tolerance and whether this effect was stronger in aquatic larvae than in terrestrial adults of the mosquito Culex pipiens. Exposure to chlorpyrifos at a constant temperature imposed mortality and reduced the heat tolerance in both larvae and adult males, but not in adult females. This provides the first evidence that the TICS ("toxicant-induced climate change sensitivity") concept can be sex-specific. DTV had no direct negative effects. Yet, consistent with the CITS ("climate-induced toxicant sensitivity") concept, DTV magnified the toxicity of the pesticide in terms of larval mortality. This was not the case in the adult stage indicating the CITS concept to be dependent on the developmental stage. Notably, chlorpyrifos reduced the heat tolerance of adult females only in the presence of DTV, thereby providing support for the reciprocal effects between DTV and contaminants, hence the coupling of the TICS and CITS concepts. Taken together, our results highlight the importance of integrating DTV and the developmental stage to improve risk assessment of contaminants under climate change.
Collapse
Affiliation(s)
- Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Tam T Tran
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium; Institute of Aquaculture, Nha Trang University, Khanh Hoa, Viet Nam.
| | - Julie Verheyen
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Khuong Van Dinh
- Institute of Aquaculture, Nha Trang University, Khanh Hoa, Viet Nam.
| | - Lizanne Janssens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| |
Collapse
|
14
|
Mearns AJ, Bissell M, Morrison AM, Rempel-Hester MA, Arthur C, Rutherford N. Effects of pollution on marine organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1229-1252. [PMID: 31513312 DOI: 10.1002/wer.1218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This review covers selected 2018 articles on the biological effects of pollutants, including human physical disturbances, on marine and estuarine plants, animals, ecosystems, and habitats. The review, based largely on journal articles, covers field and laboratory measurement activities (bioaccumulation of contaminants, field assessment surveys, toxicity testing, and biomarkers) as well as pollution issues of current interest including endocrine disrupters, emerging contaminants, wastewater discharges, marine debris, dredging, and disposal. Special emphasis is placed on effects of oil spills and marine debris due largely to the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico and proliferation of data on the assimilation and effects of marine debris. Several topical areas reviewed in the past (e.g., mass mortalities ocean acidification) were dropped this year. The focus of this review is on effects, not on pollutant sources, chemistry, fate, or transport. There is considerable overlap across subject areas (e.g., some bioaccumulation data may be appear in other topical categories such as effects of wastewater discharges, or biomarker studies appearing in oil toxicity literature). Therefore, we strongly urge readers to use keyword searching of the text and references to locate related but distributed information. Although nearly 400 papers are cited, these now represent a fraction of the literature on these subjects. Use this review mainly as a starting point. And please consult the original papers before citing them.
Collapse
Affiliation(s)
- Alan J Mearns
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | - Mathew Bissell
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | | | | | | | - Nicolle Rutherford
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| |
Collapse
|
15
|
Delnat V, Janssens L, Stoks R. Whether warming magnifies the toxicity of a pesticide is strongly dependent on the concentration and the null model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:38-45. [PMID: 30921756 DOI: 10.1016/j.aquatox.2019.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
How global warming changes the toxicity of contaminants is a research priority at the intersection of global change biology and ecotoxicology. While many pesticides are more toxic at higher temperatures this is not always detected. We studied whether deviations from this general pattern can be explained by concentration-dependent interaction effects and by testing the interaction against the inappropriate null model. We exposed larvae of the mosquito Culex pipiens to three concentrations of the pesticide chlorpyrifos (absence, low and high) in the absence and presence of 4 °C warming. Both the low and high chlorpyrifos concentration were lethal and generated negative sublethal effects: activity of acetylcholinesterase (AChE) and total fat content decreased, and oxidative damage to lipids increased, yet growth rate increased. Warming was slightly lethal, yet had positive sublethal effects: growth rate, total fat content and metabolic rate increased, and oxidative damage decreased. For four out of seven response variables the independent action model identified the expected synergistic interaction between chlorpyrifos and warming. Notably, for three variables (survival, AChE and fat content) this was strongly dependent on the chlorpyrifos concentration, and for two of these (AChE and fat content) not associated with a significant interaction in the general(ized) linear models. For survival and fat content, warming only potentiated chlorpyrifos (CPF) toxicity at the low CPF concentration, while the opposite was true for AChE. Our results highlight that taking into account concentration-dependence and appropriate null model testing is crucial to improve our understanding of the toxicity of contaminants in a warming world.
Collapse
Affiliation(s)
- Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Lizanne Janssens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| |
Collapse
|
16
|
Verheyen J, Delnat V, Stoks R. Increased Daily Temperature Fluctuations Overrule the Ability of Gradual Thermal Evolution to Offset the Increased Pesticide Toxicity under Global Warming. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4600-4608. [PMID: 30921514 DOI: 10.1021/acs.est.8b07166] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The widespread evidence that global warming can increase species sensitivities to chemical toxicants, and vice versa, and the recent insight that thermal evolution may mitigate these effects is crucial to predict the future impact of toxicants in a warming world. Nevertheless, a major component of global warming, the predicted increase in daily temperature fluctuations (DTFs), has been ignored at the interface of evolutionary ecotoxicology and global change biology. We studied whether 4 °C warming and a 5 °C DTF increase (to 10 °C DTF) magnified the negative impact of the insecticide chlorpyrifos (CPF) in larvae of low- and high-latitude populations of the damselfly Ischnura elegans. While 4 °C warming only increased CPF-induced mortality in high-latitude larvae, the high (10 °C) DTF increased CPF-induced larval mortality at both latitudes. CPF reduced the heat tolerance; however, this was buffered by latitude-specific thermal adaptation to both mean temperature and DTF. Integrating our results in a space-for-time substitution indicated that gradual thermal evolution in high-latitude larvae may offset the negative effects of CPF on heat tolerance under warming, unless the expected DTF increase is taken into account. Our results highlight the crucial importance of jointly integrating DTFs and thermal evolution to improve risk assessment of toxicants under global warming.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| | - Vienna Delnat
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| |
Collapse
|
17
|
Wang C, Bourland WA, Mu W, Pan X. Transcriptome analysis on chlorpyrifos detoxification in Uronema marinum (Ciliophora, Oligohymenophorea). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33402-33414. [PMID: 30264342 DOI: 10.1007/s11356-018-3195-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Chlorpyrifos (CPF) pollution has drawn widespread concerns in aquatic environments due to its risks to ecologic system, however, the response mechanisms of ciliates to CPF pollution were poorly studied. In our current work, the degradation of CPF by ciliates and the morphological changes of ciliates after CPF exposure were investigated. In addition, the transcriptomic profiles of the ciliate Uronema marinum, with and without exposure with CPF, were detected using digital gene expression technologies. De novo transcriptome assembly 166,829,634 reads produced from three groups (untreated, CPF treatment at 12 h and 24 h) by whole transcriptome sequencing (RNA-Seq). Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways were analyzed in all unigenes and different expression genes to identify their biological functions and processes. Furthermore, the results indicated that genes related to the stress response, cytoskeleton and cell structure proteins, and antioxidant systems might play an important role in the resistance mechanism of ciliates. The enzyme activities of SOD and GST after CPF stress were also analyzed, and the result showed the good antioxidant capacity of SOD and GST in ciliates inferred from the increase of the activities of the two enzymes. The ciliate Uronema marinum showed a resistance response to chlorpyrifos stress at the transcriptomic level in the present work, which indicates that ciliates can be considered as a potential bioremediation agent.
Collapse
Affiliation(s)
- Chongnv Wang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - William A Bourland
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA
| | - Weijie Mu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - Xuming Pan
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
18
|
Marigoudar SR, Nagarjuna A, Karthikeyan P, Mohan D, Sharma KV. Comparative toxicity of chlorpyrifos: Sublethal effects on enzyme activities and histopathology of Mugil cephalus and Chanos chanos. CHEMOSPHERE 2018; 211:89-101. [PMID: 30071440 DOI: 10.1016/j.chemosphere.2018.07.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Ecotoxicological data and potential impact of chlorpyrifos (CPF) in the region are scarce for prescribing safety limits. Therefore, toxicity and sublethal impact of CPF on fish fingerlings of Mugil cephalus (3.0 ± 1.2 cm) and Chanos chanos (3.0 ± 1.5 cm) were studied. Acute and chronic toxicity tests were conducted by continuous flow through method and derived 96 h median lethal concentration (LC50). Mean LC50 value of 1.13 μg/L for M. cephalus, and 3.20 μg/L for C. chanos were derived by Probit. Chronic toxicity tests were conducted for 30 days and determined no observed effect concentration values of 0.09 μg/L 0.17 μg/L and lowest observed effect concentration values of 0.16 μg/L 0.32 μg/L and chronic values of 0.13 μg/L 0.25 μg/L for M. cephalus and C. chanos respectively. Key biomarker enzyme activities viz., EST, SOD and MDH were studied at sublethal concentrations of CPF. Native gel electrophoresis revealed gradual decrease in isoforms of EST and SOD activities, whereas MDH activity increased in fingerlings. These responses indicate inhibition of cholinesterase, antioxidants and synthesis of ATPs in the cells due to CPF stress. Pathological lesions were evaluated in gill and eye tissues of fingerlings. Epithelial fusion and degenerative changes were prominent in primary lamellae. Hyperplasia, lifting epithelium, fusion of lamellae and necrosis were evidenced in the secondary lamellae. Cellular anomalies in the retina of the eye of C. chanos include vacuoles in nerve fiber layer, shrinkage of outer plexiform layer and detachment of pigment epithelium layer. These changes indicate physiological disturbance in the gill and eye.
Collapse
Affiliation(s)
- S R Marigoudar
- National Centre for Coastal Research, NIOT Campus, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai 600 100, India.
| | - A Nagarjuna
- National Centre for Coastal Research, NIOT Campus, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai 600 100, India
| | - P Karthikeyan
- National Centre for Coastal Research, NIOT Campus, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai 600 100, India
| | - D Mohan
- National Centre for Coastal Research, NIOT Campus, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai 600 100, India
| | - K V Sharma
- National Centre for Coastal Research, NIOT Campus, Ministry of Earth Sciences, Govt. of India, Pallikaranai, Chennai 600 100, India
| |
Collapse
|
19
|
Legradi JB, Di Paolo C, Kraak MHS, van der Geest HG, Schymanski EL, Williams AJ, Dingemans MML, Massei R, Brack W, Cousin X, Begout ML, van der Oost R, Carion A, Suarez-Ulloa V, Silvestre F, Escher BI, Engwall M, Nilén G, Keiter SH, Pollet D, Waldmann P, Kienle C, Werner I, Haigis AC, Knapen D, Vergauwen L, Spehr M, Schulz W, Busch W, Leuthold D, Scholz S, vom Berg CM, Basu N, Murphy CA, Lampert A, Kuckelkorn J, Grummt T, Hollert H. An ecotoxicological view on neurotoxicity assessment. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:46. [PMID: 30595996 PMCID: PMC6292971 DOI: 10.1186/s12302-018-0173-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 05/04/2023]
Abstract
The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.
Collapse
Affiliation(s)
- J. B. Legradi
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Environment and Health, VU University, 1081 HV Amsterdam, The Netherlands
| | - C. Di Paolo
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - M. H. S. Kraak
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - H. G. van der Geest
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - E. L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - A. J. Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| | - M. M. L. Dingemans
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - R. Massei
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - W. Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - X. Cousin
- Ifremer, UMR MARBEC, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, 34250 Palavas-les-Flots, France
- INRA, UMR GABI, INRA, AgroParisTech, Domaine de Vilvert, Batiment 231, 78350 Jouy-en-Josas, France
| | - M.-L. Begout
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, 17137 L’Houmeau, France
| | - R. van der Oost
- Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, The Netherlands
| | - A. Carion
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - V. Suarez-Ulloa
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - F. Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - B. I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany
| | - M. Engwall
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - G. Nilén
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - S. H. Keiter
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - D. Pollet
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - P. Waldmann
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - C. Kienle
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - I. Werner
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - A.-C. Haigis
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - D. Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - L. Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - M. Spehr
- Institute for Biology II, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - W. Schulz
- Zweckverband Landeswasserversorgung, Langenau, Germany
| | - W. Busch
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - D. Leuthold
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - S. Scholz
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - C. M. vom Berg
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600 Switzerland
| | - N. Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - C. A. Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, USA
| | - A. Lampert
- Institute of Physiology (Neurophysiology), Aachen, Germany
| | - J. Kuckelkorn
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - T. Grummt
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - H. Hollert
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|