1
|
Gao SC, Fan XX, Zhang Z, Li RT, Zhang Y, Gao TP, Liu Y. A dual-function mixed-culture biofilm for sulfadiazine removal and electricity production using bio-electrochemical system. Biosens Bioelectron 2024; 263:116552. [PMID: 39038400 DOI: 10.1016/j.bios.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Sulfadiazine (SDZ) is frequently detected in environmental samples, arousing much concern due to its toxicity and hard degradation. This study investigated the electricity generation capabilities, SDZ removal and microbial communities of a highly efficient mixed-culture system using repeated transfer enrichments in a bio-electrochemical system. The mixed-culture biofilm (S160-T2) produced a remarkable current density of 954.12 ± 15.08 μA cm-2 with 160 mg/L SDZ, which was 32.9 and 1.8 times higher than that of Geobacter sulfurreducens PCA with 40 mg/L SDZ and without additional SDZ, respectively. Especially, the impressive SDZ removal rate of 98.76 ± 0.79% was achieved within 96 h using the further acclimatized mixed-culture. The removal efficiency of this mixed-culture for SDZ through the bio-electrochemical system was 1.1 times higher than that using simple anaerobic biodegradation. Furthermore, the current density and removal efficiency in this system gradually decreased with increasing SDZ concentrations from 0 to 800 mg/L. In addition, community diversity data demonstrated that the dominant genera, Geobacter and Escherichia-Shigella, were enriched in mixed-culture biofilm, which might be responsible for the current production and SDZ removal. This work confirmed the important roles of acclimatized microbial consortia and co-substrates in the simultaneous removal of SDZ and electricity generation in an electrochemical system.
Collapse
Affiliation(s)
- Sheng-Chao Gao
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Xin-Xin Fan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Zhen Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Rui-Tao Li
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Yue Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Tian-Peng Gao
- The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou City University, Lanzhou, 730070, China; College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China.
| | - Ying Liu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
2
|
Zheng H, Zhu Z, Li S, Niu J, Dong X, Leong YK, Chang JS. Dissecting the ecological risks of sulfadiazine degradation intermediates under different advanced oxidation systems: From toxicity to the fate of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173678. [PMID: 38848919 DOI: 10.1016/j.scitotenv.2024.173678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
The incomplete degradation of antibiotics in water can produce intermediates that carry environmental risks and thus warrant concerns. In this study, the degradation of high concentrations of antibiotic sulfadiazine (SDZ) by advanced oxidation processes that leverage different reactive oxide species was systematically evaluated in terms of the influence of different degradation intermediates on the propagation of antibiotic resistance genes (ARGs). The ozone, persulfate, and photocatalytic oxidation systems for SDZ degradation are dominated by ozone, direct electron transfer, and singlet oxygen, hole, and superoxide radicals, respectively. These processes produce 15 intermediates via six degradation pathways. Notably, it was determined that three specific intermediates produced by the ozone and persulfate systems were more toxic than SDZ. In contrast, the photocatalytic system did not produce any intermediates with toxicity exceeding that of SDZ. Microcosm experiments combined with metagenomics confirmed significant changes in microbiota community structure after treatment with SDZ and its intermediates, including significant changes in the abundance of Flavobacterium, Dungenella, Archangium, and Comamonas. This treatment also led to the emergence of sulfonamide ARGs. The total abundance of sulfonamide ARGs was found to be positively correlated with residual SDZ concentration, with the lowest total abundance observed in the photocatalytic system. Additionally, the correlation analysis unveiled microbiota carrying sulfonamide ARGs.
Collapse
Affiliation(s)
- Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Zhiwei Zhu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xu Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
3
|
Qian G, Shao J, Hu P, Tang W, Xiao Y, Hao T. From micro to macro: The role of seawater in maintaining structural integrity and bioactivity of granules in treating antibiotic-laden mariculture wastewater. WATER RESEARCH 2023; 246:120702. [PMID: 37837903 DOI: 10.1016/j.watres.2023.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Granular sludge (GS) has superior antibiotic removal ability to flocs, due to GS's layered structure and rich extracellular polymeric substances. However, prolonged exposure to antibiotics degrades the performance and stability of GS. This study investigated how a seawater matrix might help maintain the structural integrity and bioactivity of granules. The results demonstrated that GS had better sulfadiazine (SDZ) removal efficiency in a seawater matrix (85.6 %) than in a freshwater matrix (57.6 %); the multiple ions in seawater enhanced boundary layer diffusion (kiR1 = 0.0805 mg·g-1·min-1/2 and kiR2 = 0.1112 mg·g-1·min-1/2) and improved adsorption performance by 15 % (0.123 mg/g-SS freshwater vs. 0.141 mg/g-SS seawater). Moreover, multiple hydrogen bonds (1-3) formed between each SDZ and lipid bilayer fortified the adsorption. Beyond S-N and S-C bond hydrolyses that took place in freshwater systems, there was an additional biodegradation pathway for GS to be cultivated in a saltwater system that involved sulfur dioxide extrusion. This additional pathway was attributable to the greater microbial diversity and larger presence of sulfadiazine-degrading bacteria containing SadAC genes, such as Leucobacter and Arthrobacter, in saltwater wastewater. The findings of this study elucidate how seawater influences GS properties and antibiotic removal ability.
Collapse
Affiliation(s)
- Guangsheng Qian
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Jingyi Shao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Peng Hu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Wentao Tang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
4
|
Chen Y, Yue Y, Wang J, Li H, Wang Z, Zheng Z. Microbial community dynamics and assembly mechanisms across different stages of cyanobacterial bloom in a large freshwater lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168207. [PMID: 39492525 DOI: 10.1016/j.scitotenv.2023.168207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Cyanobacterial bloom caused by eutrophication in lakes has become one of the significant environmental problems worldwide. However, a notable research gap persists in understanding the environmental adaptation and community assembly of microbial dynamics in response to different blooming stages. Therefore, metagenomic sequencing was employed in this study to investigate alterations in the microbial community composition in water and sediment during different stages of cyanobacterial blooms in Lake Taihu. The results indicated significant spatiotemporal variations in physicochemical parameters across the early, medium, and late stages of a complete cyanobacteria bloom cycle. Diversity analysis further revealed that the temporal differences in the microbial community were substantially greater than spatial variations. Notably, during the medium-blooming stages in water, Microcystis emerged as the predominant detected cyanobacteria genus. Interestingly, the content of superoxide dismutase (SOD), malondialdehyde (MDA), and catalase (CAT) in sediment exceeded those in water by over 10 times, indicating that sediment-dwelling Cyanobacteria might constitute a crucial source of water blooms. Moreover, dissolved oxygen, pH, and water temperature were identified as the most influential environmental variables shaping the microbial community in the water. Stochasticity emerged as a prominent factor governing microbial community assembly across different bloom periods. Meanwhile, co-occurrence patterns suggested fewer interactions and instability between species in medium-blooming stages. Notably, the potential keystone phyla occupied crucial ecological niches. This research carries significant theoretical implications for managing cyanobacterial blooms in freshwater ecosystems.
Collapse
Affiliation(s)
- Yican Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Yihong Yue
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Jie Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Hairui Li
- Shanghai Majorbio Bio-pharm Technology Co., Ltd., Shanghai, China
| | - Zhikai Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Wang T, Zhang W, Liao G, Zhang M, Li L, Wang D. Occurrence and influencing factors of antibiotics and antibiotic resistance genes in sediments of the largest multi-habitat lakes in Northern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2567-2578. [PMID: 36057679 DOI: 10.1007/s10653-022-01377-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Baiyangdian Lake is a typical and largest multi-habitat lake in the North plain of China. To understand the generation and transmission of antibiotics resistance genes (ARGs) in multi-habitat lakes, the contents of nutrients (TC, TOC, TN, TP and TS), heavy metals (Zn, Cr, Ni, Cu, Pb, As, Cd and Hg), 22 antibiotics, 16S-rRNA(16S), Class I integron (intI1) and 20 ARGs were determined. Samples were taken from the Fuhe river, river estuaries, reed marshes, living area, fish ponds and open water of Baiyangdian Lake. The results showed that quinolones were the main pollutants in six habitats, and the content range was ND-104.94 ng/g. Thereinto, aac (6') -IB, blaTEM-1, ermF, qnrA, qnrD, tetG, sul1, sul2 and tetM were detected in all the analyzed samples. The absolute abundance of sul1 was the highest (5.25 × 105 copies/g-6.21 × 107 copies/g) in most of the samples. In these different habitats, the abundance of antibiotics and ARGs in river estuary was the highest, and that in reed marshes was the lowest. There was a significant positive correlation between the abundance of heavy metals (Cu, Pb, Zn, Ni, Cd, Hg) and the absolute abundance of 11 ARGs (P < 0.01). Redundancy analysis showed that Cu, Zn, intI1, TP and macrolides were the important factors affecting the distribution of ARGs. Our finding provides a more likely driving and influencing factor for the transmission of ARGs in lakes with complex and diverse habitats.
Collapse
Affiliation(s)
- Tongfei Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Guiying Liao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China.
| | - Meiyi Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Liqing Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
6
|
Roy K, Moholkar VS. Sulfadiazine degradation by combination of hydrodynamic cavitation and Fenton-persulfate: parametric optimization and deduction of chemical mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25569-25581. [PMID: 35624375 DOI: 10.1007/s11356-022-20846-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
This paper reports the degradation of the sulfadiazine (SDZ) drug with a hybrid advanced oxidation process (AOP) of heterogeneous α-Fe2O3/persulfate coupled with hydrodynamic cavitation. The major objectives of the study are parametric optimization of the process and elucidation of the chemical mechanism of degradation. The optimum conditions for maximum SDZ degradation of 93.07 ± 1.67% were as follows: initial SDZ concentration = 20 ppm, pH = 4, α-Fe2O3 = 181.82 mg/L, Na2S2O8 = 348.49 mg/L, H2O2 = 0.95 mL/L, inlet pressure = 0.81 MPa (8 atm), orifice plate configuration: hole dia. = 2 mm and number of holes = 4. Density functional theory (DFT) calculations revealed that the atoms of SDZ with a high Fukui index (f 0) were potentially active sites for the attack of •OH and [Formula: see text] radicals. Fukui index calculation revealed that atom 11 N has a higher value of f 0 (0.1026) for oxidation at the α-amine group of the sulfadiazine molecule. Degradation intermediates detected through LC-MS/MS analysis corroborated the results of DFT simulations. Using these results, a chemical pathway has been proposed for SDZ degradation.
Collapse
Affiliation(s)
- Kuldeep Roy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, Assam, India
| | | |
Collapse
|
7
|
Wang J, Qu D, Bu L, Zhu S. Inactivation efficiency of P. Aeruginosa and ARGs removal in UV/NH2Cl process: Comparisons with UV and NH2Cl. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Yang G, Xie S, Yang M, Tang S, Zhou L, Jiang W, Zhou B, Li Y, Si B. A critical review on retaining antibiotics in liquid digestate: Potential risk and removal technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158550. [PMID: 36075409 DOI: 10.1016/j.scitotenv.2022.158550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Substantial levels of antibiotics remain in liquid digestate, posing a significant threat to human safety and the environment. A comprehensive assessment of residual antibiotics in liquid digestate and related removal technologies is required. To this end, this review first evaluates the potential risks of the residual antibiotics in liquid digestate by describing various anaerobic digestion processes and their half-lives in the environment. Next, emerging technologies for removing antibiotics in liquid digestate are summarized and discussed, including membrane separation, adsorption, and advanced oxidation processes. Finally, this study comprehensively and critically discusses these emerging technologies' prospects and challenges, including techno-economic feasibility and environmental impacts.
Collapse
Affiliation(s)
- Gaixiu Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shihao Xie
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Min Yang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Shuai Tang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Lei Zhou
- Center for Professional Training and Service, China Association for Science and Technology, Beijing 100081, China
| | - Weizhong Jiang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Buchun Si
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Zhang Q, Wu M, Ailijiang N, Mamat A, Chang J, Pu M, He C. Impact of Voltage Application on Degradation of Biorefractory Pharmaceuticals in an Anaerobic-Aerobic Coupled Upflow Bioelectrochemical Reactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15364. [PMID: 36430083 PMCID: PMC9690855 DOI: 10.3390/ijerph192215364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Diclofenac, ibuprofen, and carbamazepine are frequently detected in the environment, where they pose a threat to organisms and ecosystems. We developed anaerobic-aerobic coupled upflow bioelectrochemical reactors (AO-UBERs) with different voltages, hydraulic retention times (HRTs), and types of electrode conversion, and evaluated the ability of the AO-UBERs to remove the three pharmaceuticals. This study showed that when a voltage of 0.6 V was applied, the removal rate of ibuprofen was slightly higher in the system with aerobic cathodic and anaerobic anodic chambers (60.2 ± 11.0%) with HRT of 48 h than in the control systems, and the removal efficiency reached stability faster. Diclofenac removal was 100% in the 1.2 V system with aerobic anodic and anaerobic cathodic chambers, which was greater than in the control system (65.5 ± 2.0%). The contribution of the aerobic cathodic-anodic chambers to the removal of ibuprofen and diclofenac was higher than that of the anaerobic cathodic-anodic chambers. Electrical stimulation barely facilitated the attenuation of carbamazepine. Furthermore, biodegradation-related species (Methyloversatilis, SM1A02, Sporomusa, and Terrimicrobium) were enriched in the AO-UBERs, enhancing pharmaceutical removal. The current study sheds fresh light on the interactions of bacterial populations with the removal of pharmaceuticals in a coupled system.
Collapse
Affiliation(s)
- Qiongfang Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Mei Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Anwar Mamat
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Jiali Chang
- Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Leshan 614000, China
| | - Miao Pu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
10
|
Shi F, Zhao X, Cheng Q, Lin H, Zheng H, Zhou Q. High-Energy-Density Organic Amendments Enhance Soil Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12212. [PMID: 36231512 PMCID: PMC9566092 DOI: 10.3390/ijerph191912212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Soil microbial biomass (SMB) and soil microbial communities (SMCs) are the key factors in soil health and agricultural sustainability. We hypothesized that low bioavailable carbon (C) and energy were the key limiting factors influencing soil microbial growth and developed a new fertilization system to address this: the simultaneous application of mineral fertilizers and high-energy-density organic amendments (HED-OAs). A microcosm soil incubation experiment and a Brassica rapa subsp. chinensis pot culture experiment were used to test the effects of this new system. Compared to mineral fertilizer application alone, the simultaneous input of fertilizers and vegetable oil (SIFVO) achieved a bacterial abundance, fungal abundance, and fungal:bacterial ratio that were two orders of magnitude higher, significantly higher organic C and nitrogen (N) content, significantly lower N loss, and nearly net-zero N2O emissions. We proposed an energy and nutrient threshold theory to explain the observed bacterial and fungal growth characteristics, challenging the previously established C:N ratio determination theory. Furthermore, SIFVO led to microbial community improvements (an increased fungal:bacterial ratio, enriched rhizosphere bacteria and fungi, and reduced N-transformation bacteria) that were beneficial for agricultural sustainability. A low vegetable oil rate (5 g/kg) significantly promoted Brassica rapa subsp. chinensis growth and decreased the shoot N content by 35%, while a high rate caused severe N deficiency and significantly inhibited growth of the crop, confirming the exceptionally high microbial abundance and indicating severe microbe-crop competition for nutrients in the soil.
Collapse
Affiliation(s)
- Feifan Shi
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qilu Cheng
- Institute of Environment Resources Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hui Lin
- Institute of Environment Resources Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huabao Zheng
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang A&F University, Hangzhou 311300, China
| | - Qifa Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Zhang K, Wang T, Chen J, Guo J, Luo H, Chen W, Mo Y, Wei Z, Huang X. The reduction and fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in microbial fuel cell (MFC) during treatment of livestock wastewater. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 247:103981. [PMID: 35247696 DOI: 10.1016/j.jconhyd.2022.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The fate and removal efficiency of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in livestock wastewater by microbial fuel cell (MFC) was evaluated by High-throughput quantitative PCR. The results showed that 137 ARGs and 9 MGEs were detected in untreated livestock wastewater. The ARG number of macrolide-lincosamide-streptogramin group B (MLSB), tetracycline and sulfonamide were relatively higher. Throughout the treatment process, the number and abundance of ARGs and MGEs significantly decreased. The relative abundance of tetracycline, sulfonamide and chloramphenicol resistance genes showed the most obvious decreasing trend, and the relative abundance of MGEs decreased by 75% (from 0.012 copies/16S rRNA copies to 0.003 copies/16S rRNA copies). However, the absolute abundance of beta-lactamase resistance genes slightly increased. The operation process of MFC produces selective pressure on microorganisms, and Actinobacteria were predominant and had the ability to decompose antibiotics. The COD removal rate and TN removal rate of livestock wastewater were 67.81% and 62.09%, and the maximum power density and coulomb efficiency (CE) reached 11.49% and 38.40% respectively. This study demonstrated that although the removal of COD and TN by MFC was limited, MFC was quite effective in reducing the risk of antibiotic toxicity and horizontal gene transfer.
Collapse
Affiliation(s)
- Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
| | - Tingting Wang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Jia Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China.
| | - Jingyue Guo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - You Mo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Zhaolan Wei
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| | - Xiuzhong Huang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China
| |
Collapse
|
12
|
Guo ZB, Sun WL, Zuo XJ, Song HL, Ling H, Zhang S. Increase of antibiotic resistance genes via horizontal transfer in single- and two-chamber microbial electrolysis cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36216-36224. [PMID: 35061176 DOI: 10.1007/s11356-022-18676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Microbial electrolysis cells (MECs) have been applied for antibiotic degradation but simultaneously induced antibiotic resistance genes (ARGs), thus representing a risk to disseminate antibiotic resistance. However, few studies were on the potential and risk of ARGs transmission in the MECs. This work assessed conjugative transfer of ARGs under three tested conditions (voltages, cell concentration, and donor/recipient ratio) in both single- and two-chamber MECs. The results indicated that voltages (> 0.9 V) facilitated the horizontal frequency of ARGs in the single-chamber MECs and anode chamber of two-chamber MECs. The donor cell number (donor/recipient ratio was 2:1) increased the transfer frequency of ARGs. Furthermore, voltages ranged from 0.9 to 2.5 V increased reactive oxygen species (ROS) production and cell membrane permeability in MECs. These findings offer new insights into the roles of ARG transfer under different applied voltages in the MECs, which should not be ignored for horizontal transfer of antibiotic resistance.
Collapse
Affiliation(s)
- Zhao-Bing Guo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wen-Long Sun
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao-Jun Zuo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hai-Liang Song
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Hao Ling
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
13
|
Ahmad A, Priyadarshani M, Das S, Ghangrekar MM. Role of bioelectrochemical systems for the remediation of emerging contaminants from wastewater: A review. J Basic Microbiol 2022; 62:201-222. [PMID: 34532865 DOI: 10.1002/jobm.202100368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 02/05/2023]
Abstract
Bioelectrochemical systems (BESs) are a unique group of wastewater remediating technology that possesses the added advantage of valuable recovery with concomitant wastewater treatment. Moreover, due to the application of robust microbial biocatalysts in BESs, effective removal of emerging contaminants (ECs) can be accomplished in these BESs. Thus, this review emphasizes the recent demonstrations pertaining to the removal of complex organic pollutants of emerging concern present in wastewater through BES. Owing to the recalcitrant nature of these pollutants, they are not effectively removed through conventional wastewater treatment systems and thereby are discharged into the environment without proper treatment. Application of BES in terms of ECs removal and degradation mechanism along with valuables that can be recovered are discussed. Moreover, the factors affecting the performance of BES, like biocatalyst, substrate, salinity, and applied potential are also summarized. In addition, the present review also elucidates the occurrence and toxic nature of ECs as well as future recommendations pertaining to the commercialization of this BES technology for the removal of ECs from wastewater. Therefore, the present review intends to aid the researchers in developing more efficient BESs for the removal of ECs from wastewater.
Collapse
Affiliation(s)
- Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Monali Priyadarshani
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Makarand Madhao Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
14
|
Li J, Gao F, Chen X, Zhang Y, Dong H. Insights into nitrogen removal from seawater-based wastewater through marine anammox bacteria under ampicillin stress: Microbial community evolution and genetic response. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127597. [PMID: 34782200 DOI: 10.1016/j.jhazmat.2021.127597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Global spread of ampicillin (AMP) in the aquatic environment have attracted much attention recently. Marine anammox bacteria (MAB) have potentials in saline wastewater treatment due to their good salt tolerance. However, to date, the effect resulting from AMP on MAB is still unknown. Herein, the effect of AMP on MAB, involving microbial community evolution and genetic response, was investigated for the first time. A lab-scale reactor inoculated by MAB sludge was operated under saline condition (35 g/L) and AMP stress of different gradients. Within 200 cycles, nitrogen removal performance was monitored and sludge samples were withdrawn for high-throughput sequencing analyses and qPCR. The results confirmed that the nitrogen removal capacity of MAB declined with increasing AMP dosage, and almost collapsed at 300 mg/L AMP. The total nitrogen removal rate and specific anammox activity finally dropped to 0.17 kg N m-3 d-1 and 101.86 mg N g-1VSS d-1, respectively. Pseudoalteromonas (38.13%) dominated the reactor on Cycle 190, which formed a new symbiosis with MAB. And the emergence of oleophilic bacteria such as Colwellia (2.53%) was also observed. Moreover, antibiotic resistance genes were detected with increased abundance and diversity, indicating the AMP dosing significantly promoted microbial community evolution and genetic response.
Collapse
Affiliation(s)
- Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fei Gao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiuqin Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yulong Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Huiyu Dong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
15
|
Bimetallic nitrogen-doped porous carbon derived from ZIF-L&FeTPP@ZIF-8 as electrocatalysis and application for antibiotic wastewater treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Cabrera J, Irfan M, Dai Y, Zhang P, Zong Y, Liu X. Bioelectrochemical system as an innovative technology for treatment of produced water from oil and gas industry: A review. CHEMOSPHERE 2021; 285:131428. [PMID: 34237499 DOI: 10.1016/j.chemosphere.2021.131428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Disposal of the high volume of produced water (PW) is a big challenge to the oil and gas industry. High cost of conventional treatment facilities, increasing energy prices and environmental concern had focused governments and the industry itself on more efficient treatment methods. Bioelectrochemical system (BES) has attracted the attention of researchers because it represents a sustainable way to treat wastewater. This is the first review that summarizes the progress done in PW-fed BESs with a critical analysis of the parameters that influence their performances. Inoculum, temperature, hydraulic retention time, external resistance, and the use of real or synthetic produced water were found to be deeply related to the performance of BES. Microbial fuel cells are the most analyzed BES in this field followed by different types of microbial desalination cells. High concentration of sulfates in PW suggests that most of hydrocarbons are removed mainly by using sulfates as terminal electron acceptor (TEA), but other TEAs such as nitrate or metals can also be employed. The use of real PW as feed in experiments is highly recommended because biofilms when using synthetic PW are not the same. This review is believed to be helpful in guiding the research directions on the use of BES for PW treatment, and to speed up the practical application of BES technology in oil and gas industry.
Collapse
Affiliation(s)
- Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China
| | - Muhammad Irfan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China
| | - Yexin Dai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Yanping Zong
- Tianjin Marine Environmental Center Station, Ministry of Natural Resources, Tianjin, PR China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China.
| |
Collapse
|
17
|
Chen P, Guo X, Li S, Li F. A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2021; 156:106689. [PMID: 34175779 DOI: 10.1016/j.envint.2021.106689] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic contamination and the resulting resistance genes have attracted worldwide attention because of the extensive overuse and abuse of antibiotics, which seriously affects the environment as well as human health. Bioelectrochemical system (BES), a potential avenue to be explored, can alleviate antibiotic pollution and reduce antibiotic resistance genes (ARGs). This review mainly focuses on analyzing the possible reasons for the good performance of ARG reduction by BESs and potential ways to improve its performance on the basis of revealing the generation and transmission of ARGs in BES. This system reduces ARGs through two pathways: (1) the contribution of BES to the low selection pressure of ARGs caused by the efficient removal of antibiotics, and (2) inhibition of ARG transmission caused by low sludge yield. To promote the reduction of ARGs, incorporating additives, improving the removal rate of antibiotics by adjusting the environmental conditions, and controlling the microbial community in BES are proposed. Furthermore, this review also provides an overview of bioelectrochemical coupling systems including the BES coupled with the Fenton system, BES coupled with constructed wetland, and BES coupled with photocatalysis, which demonstrates that this method is applicable in different situations and conditions and provides inspiration to improve these systems to control ARGs. Finally, the challenges and outlooks are addressed, which is constructive for the development of technologies for antibiotic and ARG contamination remediation and blocking risk migration.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China
| | - Xiaoyan Guo
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China
| | - Shengnan Li
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fengxiang Li
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China.
| |
Collapse
|
18
|
Jiang J, Wang H, Zhang S, Li S, Zeng W, Li F. The influence of external resistance on the performance of microbial fuel cell and the removal of sulfamethoxazole wastewater. BIORESOURCE TECHNOLOGY 2021; 336:125308. [PMID: 34044244 DOI: 10.1016/j.biortech.2021.125308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Microbial fuel cells (MFCs) are promising equipment for simultaneous treatment of sewage and power generation. External resistance (Rext) plays a crucial impact in the performance of MFCs in antibiotic wastewater treatment and antibiotic resistance genes (ARGs) reduction. In this study, Rext and whether to add 20 mg/L sulfamethoxazole (SMX) as variables, it was observed that the performance of several chemical properties of MFCs was optimal when Rext was 1000 Ω. The power density before and after addition of SMX was 1220.5 ± 24.5 mW/m2 and 1186.2 ± 9.2 mW/m2, respectively; Furthermore, the degradation rate of SMX was as high as 87.52 ± 1.97% within 48 h. High-throughput sequencing results showed that both Rext and SMX affected the microbial community and relative abundance of the phylum and genera. Meanwhile, the MFCs with 1000 Ω Rext generated less the targeted ARGs. Experimental results showed that 1000 Ω was the most suitable Rext for MFCs in the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Jiwei Jiang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Haonan Wang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Shixuan Zhang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Shengnan Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Wenlu Zeng
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
19
|
Wang Q, Zhang Z, Xu G, Li G. Pyrolysis of penicillin fermentation residue and sludge to produce biochar: Antibiotic resistance genes destruction and biochar application in the adsorption of penicillin in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125385. [PMID: 33611034 DOI: 10.1016/j.jhazmat.2021.125385] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 05/18/2023]
Abstract
A process of antibiotic fermentation residue and sludge pyrolysis to produce biochar was proposed, with antibiotic resistance genes destruction and biochar application in the adsorption of penicillin in water. The results showed that the β-lactam resistance genes were completely destroyed during pyrolysis. The prepared biochar from antibiotic fermentation residues (AFRB) and sludge (AFSB) at 800 °C and 600 °C had a good adsorption effect on the low concentration penicillin in water, with removal efficiencies of 93.32% and 98.50% for penicillin in aqueous solution and maximum adsorption capacities of 44.05 mg/g and 23.26 mg/g, respectively. Characterization of AFRB revealed that its surface was predominantly aromatic carbon, AFSB contained significant amounts of Fe3O4. Weak interactions (H‧‧‧π, H‧‧‧O˭C, π-π interactions) and active sites (aromatic ring, H and -C˭O groups) of penicillin with aromatic structures on AFRB and the chemisorption (-C˭O-Fe-, -C˭OO-Fe-), and active sites (-C˭O, -COO- groups) of penicillin on the (110) surface of Fe3O4 on AFSB were revealed by quantum chemical methods. This work provides a novel pathway for the risk reduction of antibiotic production residue and sludge associated with the generation of biochar for antibiotic removal from the environment.
Collapse
Affiliation(s)
- Qiuju Wang
- School of Environment, Harbin Institute of Technology, P.O. Box 2602, Harbin 150090, China
| | - Zhao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, P.O. Box 2602, Harbin 150090, China; College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Guibai Li
- School of Environment, Harbin Institute of Technology, P.O. Box 2602, Harbin 150090, China.
| |
Collapse
|
20
|
Li S, Zhu X, Yu H, Wang X, Liu X, Yang H, Li F, Zhou Q. Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes. ENVIRONMENTAL RESEARCH 2021; 197:111054. [PMID: 33775682 DOI: 10.1016/j.envres.2021.111054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic wastewater presents serious challenges in water treatment. Metal-organic frameworks (MOFs) have received significant attention as promising precursors and sacrificial templates in the preparation of porous carbon-supported catalysts. Herein, we investigated the sulfamethoxazole (SMX) degradation and electrochemical performance of microbial fuel cells (MFCs) that applied as-prepared Ni-MOF-74 and Ni-N-C (Ni-MOF-74 underwent pyrolysis treatment at different temperatures) as air-cathode catalyst. Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating disk electrode. The results showed that electron transfer number for Ni-MOF-74 was 2.12, while that of 800Ni-N-C was 3.44, which was close to four-electron reduction. Applying Ni-MOF-74 in MFCs, a maximum power density of 446 mW/m2 was obtained, which was close to that of 800Ni-N-C. Besides, using Ni-MOF-74 as cathode catalyst, a chemical oxygen demand removal rate of about 84% was obtained, and the degradation rate of 10 mg/L SMX was 61%. The degradation rate decreased with increasing antibiotic concentration, but the average degradation efficiency increased stepwise. Additionally, the relative abundance of resistant gene sul1 in the reactors of the new catalytic material was about 62% lower than that of sul1 in the control (Pt/C) reactors, and the relative abundance of sul2 was about 73% lower. Moreover, cost assessments related to the catalyst performance are presented. The findings of this study demonstrated that Ni-MOF-74 could be considered as a two-electron transfer ORR catalyst, and offers a promising technique for preparation of Ni-N-C for use as four-electron transfer ORR catalysts. In comparison, Ni-MOF-74 could be a promising ORR catalyst of MFCs for antibiotic degradation.
Collapse
Affiliation(s)
- Shengnan Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xuya Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Hang Yu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Xizi Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Xiaqing Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Hui Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China.
| | - Qixing Zhou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| |
Collapse
|
21
|
Hassan M, Zhu G, Yang Z, Lu Y. Simultaneous removal of sulfamethoxazole and enhanced denitrification process from simulated municipal wastewater by a novel 3D-BER system. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:23-38. [PMID: 34150216 PMCID: PMC8172732 DOI: 10.1007/s40201-020-00562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
In this study, at an electric current intensity at 60 mA, more than 90.50 ± 4.76% of Sulfamethoxazole (SMX) was degraded. The strengthening of bacterial metabolisms and the sustainment of electrical stimulation contributed to the rapid removal of SMX and nitrates from simulated wastewater by a novel 3D-BER system. From the literature, very few studies have been performed to investigate the high risk of nitrates and antibiotics SMX found in wastewater treatment. The highest antibiotic SMX and nitrogen removal efficiency was 96.45 ± 2.4% (nitrate-N), 99.5 ± 1.5% (nitrite-N), 88.45 ± 1.4% (ammonia-N), 78.6 ± 1.0% (total nitrogen), and SMX (90.50 ± 4.76%), respectively. These results were significantly higher as compared to control system (p < 0.05). The highest denitrification efficiency was achieved at the pH level of 7.0 ± 0.20 - 7.5 ± 0.31. Lower or higher pH value can effect on an approach of heterotrophic-autotrophic denitrification. Moreover, low current intensity did not show any significant effect on the degradation, however, enhanced the removal rate of nitrate or nitrite as well as antibiotic SMX. Based on the results of HPLC and LC-MS/MS analysis, the intermediate products were proposed after efficient biodegradation of SMX. Finally, these results is expected to provide some new insights towards the high electric currents, changes the bacterial community structure, and the activated sludge which played an important role in the biodegradation of SMX and nitrates removal more efficiently.
Collapse
Affiliation(s)
- Mahdi Hassan
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
| | - Guangcan Zhu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
- School of Information Engineering, Xizang Minzu University, Xianyang, 712082 China
| | - Zhonglian Yang
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
| | - Yongze Lu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
| |
Collapse
|
22
|
Li Z, Dai R, Yang B, Chen M, Wang X, Wang Z. An electrochemical membrane biofilm reactor for removing sulfonamides from wastewater and suppressing antibiotic resistance development: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124198. [PMID: 33068987 DOI: 10.1016/j.jhazmat.2020.124198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/06/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Sulfonamides, such as sulfadiazine (SDZ), are frequently detected in water and wastewater with their toxic and persistent nature arousing much concern. In this work, a novel electrochemical membrane biofilm reactor (EMBfR) was constructed for the removal of SDZ whilst suppressing the development of antibiotic resistance genes (ARGs). Results showed that the EMBfR achieved 94.9% removal of SDZ, significantly higher than that of a control membrane biofilm reactor (MBfR) without electric field applied (44.3%) or an electrolytic reactor without biofilm (77.3%). Moreover, the relative abundance of ARGs in the EMBfR was only 32.0% of that in MBfR, suggesting that the production of ARGs was significantly suppressed in the EMBfR. The underlying mechanisms relate to (i) the change of the microbial community structure in the presence of the electric field, leading to the enrichment of potential aromatic-degrading microorganisms (e.g., Rhodococcus accounting for 51.0% of the total in the EMBfR compared to 10.0% in the MBfR) and (ii) the unique degradation pathway of SDZ in the EMBfR attributed to the synergistic effect between the electrochemical and biological processes. Our study highlights the benefits of EMBfR in removing pharmaceuticals from contaminated waters and suppressing the development (and transfer) of ARGs in the environment.
Collapse
Affiliation(s)
- Zhouyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Baichuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
23
|
Liang DH, Hu Y, Liang D, Chenga J, Chena Y. Bioaugmentation of Moving Bed Biofilm Reactor (MBBR) with Achromobacter JL9 for enhanced sulfamethoxazole (SMX) degradation in aquaculture wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111258. [PMID: 32971319 DOI: 10.1016/j.ecoenv.2020.111258] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
This study investigated whether bioaugmentation improves sulfamethoxazole (SMX) degradation and nitrogen removal in the Moving Bed Biofilm Reactor (MBBR) system. The effects of the C/N ratio on SMX degradation and nitrogen removal were also evaluated. Using MBBR system operation experiments, the bioaugmented reactor was found to perform more effectively than the non-bioaugmentation reactor, with the highest SMX, nitrate-N, and ammonia-N removal efficiencies of 80.49, 94.70, and 96.09%, respectively. The changes in the sulfonamide resistance genes and bacterial communities were detected at various operating conditions. The results indicate that the diversity of the bacterial communities and the abundance of resistance genes were markedly influenced by bioaugmentation and the C/N ratio, with Achromobacter among the dominant genera in the MBBR system. The bio-toxicity of samples, calculated as the inhibition percentage (IP) toward Escherichia coli, was found to decrease to non-toxic ranges after treatment.
Collapse
Affiliation(s)
- Dong Hui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Dongmin Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Jianhua Chenga
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yuancai Chena
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| |
Collapse
|
24
|
Zhang X, Li R. Variation and distribution of antibiotic resistance genes and their potential hosts in microbial electrolysis cells treating sewage sludge. BIORESOURCE TECHNOLOGY 2020; 315:123838. [PMID: 32693346 DOI: 10.1016/j.biortech.2020.123838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrolysis cells (MECs) system is an emerging pollution control technology. However, information on the variation of antibiotic resistance genes (ARGs) in MECs treating sewage sludge is still very limited. In this study, the fate of ARGs and their correlation with microbes in MECs under different applied voltages (0-1.5 V) were studied. Most target ARGs were effectively removed, but tetB, tetM and tetQ were enriched up to 2.05 log units in suspended sludge. Most ARGs were mainly distributed on electrodes, except tetQ and tetM enriched in suspended sludge. The selective pressure of residual antibiotics in the sewage sludge was negligible. Horizontal gene transfer was validated for the spread of sul1, sul2, tetA and tetC in MECs. Network analysis revealed that the potential hosts of ARGs mainly belonged to Bacteroidetes, Firmicutes and Proteobacteria. Some genera related to electron transfer were newly found to be the potential ARGs hosts in MECs.
Collapse
Affiliation(s)
- Xiangyu Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
25
|
Ou Q, Xu S, Long Y, Zhang X. Porous visible light-responsive Fe 3+-doped carbon nitride for efficient degradation of sulfadiazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27849-27858. [PMID: 32399874 DOI: 10.1007/s11356-020-08749-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/03/2020] [Indexed: 05/06/2023]
Abstract
The development of efficient solar driven catalyst for the degradation of antibiotics has become increasingly important in environmental protection. However, the reported efficient photocatalysts for antibiotic degradation are limited. In this work, porous Fe3+-doped graphitic carbon nitride (g-C3N4) with outstanding photocatalytic ability is synthesized and then used as the photocatalyst for the efficient degradation of sulfadiazine (SDZ) under visible light. A series of characterization results indicate that Fe3+ is successfully doped into the interlayer of g-C3N4 and is stabilized in g-C3N4 by Fe-N coordination bond. The SEM, DRS and ESI and transient photocurrent results demonstrated that Fe3+-doped g-C3N4 has a porous structure, a low band gap, improved separation efficiency of photogenerated electron and holes as well as a wider light absorption range. Such improved physical and chemical properties greatly enhanced the photocatalytic ability. Using Fe3+-doped g-C3N4 for photocatalytic degradation of SDZ under white light, almost complete degradation of SDZ was achieved with a degradation efficiency as high as 99.8% (whereas only 52.1% for bulk g-C3N4) within 90 min. The degradation was mainly ascribe to 1O2 during the irradiation, and also a small amount of •O2-, OH• and h+ are involved in the degradation process. The Fe3+-doped g-C3N4 was applicable for the degradation of a wide range of antibiotic pollutants.
Collapse
Affiliation(s)
- Qi Ou
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Shuxia Xu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yuanli Long
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xinfeng Zhang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
26
|
Li S, Hua T, Yuan CS, Li B, Zhu X, Li F. Degradation pathways, microbial community and electricity properties analysis of antibiotic sulfamethoxazole by bio-electro-Fenton system. BIORESOURCE TECHNOLOGY 2020; 298:122501. [PMID: 31841825 DOI: 10.1016/j.biortech.2019.122501] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Sulfamethoxazole (SMX) is a general antibiotic that is frequently identified in wastewater and surface water. In this study, the degradation and metabolic pathway of SMX by bio-electro-Fenton systems equipped with a CNT/r-FeOOH cathode were investigated. When initial SMX = 25 mg/L, the removal efficiency of SMX reached 94.66% by the bio-electro-Fenton system. The concentrations of sul1, sul2, sul3, sulA, intI1 and 16S rRNA genes were examined in effluents. Four out of the six ARGs analysed were detected. Among all quantified sul genes, sul1 and sulA were the most abundant. High-throughput sequencing revealed that the microbial communities and relative abundance at the phylum and genus levels were affected by different SMX concentrations. In addition, the intermediates were detected and the possible SMX degradation pathway by the bio-electro-Fenton process in the present system was proposed. Furthermore, the highest power density obtained was 283.32 ± 16.35 mW/m2 (SMX = 25 mg/L). This study provides an efficient and cost effective method for degrading antibiotics.
Collapse
Affiliation(s)
- Shengnan Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350, China
| | - Tao Hua
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350, China
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, United States
| | - Xuya Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350, China.
| |
Collapse
|
27
|
Wang D, Li Y, Zhuang H, Yi X, Yang F, Han H. Direct current triggering enhanced anaerobic treatment of acetyl pyrimidine-containing wastewater in up-flow anaerobic sludge blanket coupled with bioelectrocatalytic system. CHEMOSPHERE 2019; 231:457-467. [PMID: 31151005 DOI: 10.1016/j.chemosphere.2019.05.160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/28/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
In this study, the novel up-flow anaerobic sludge blanket coupled with bioelectrocatalytic system (UASB-BEC) was developed with the attempt to enhance treatment of acetyl pyrimidine-containing wastewater. The results revealed that higher current applied had a positive effect on acetyl pyrimidine (AP) degradation but a negative impact could be followed by the overhigh current (>1.26 A m-3). Removal efficiencies of AP and total organic carbon (TOC) were as high as 96.3 ± 2.6% and 92.9 ± 3.2% while methane production reached up to 0.70 ± 0.03 NL-CH4 L-1-reactor d-1 at applied current of 1.26 A m-3, which were significantly higher those in control system. Moreover, high-throughput 16S rRNA gene pyrosequencing further indicated that Desulfovibrio and Methanimicrococcus species were specially enriched in suspended sludge and cathodic biofilm with current involvement. It could be reasonably speculated that enrichment of Desulfovibrio and Methanimicrococcus species could promote biotransformation of AP and final H2-depended methylotrophic methanogenesis. This study could shed light on better understanding of AP transformation in bioelectrocatalytic system and provide a valuable reference to practical application of anaerobic AP-containing wastewater treatment.
Collapse
Affiliation(s)
- Dexin Wang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Yangyang Li
- Department of Environmental Science and Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Xuesong Yi
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Fei Yang
- Department of Environmental Science and Engineering, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
28
|
Pun Á, Boltes K, Letón P, Esteve-Nuñez A. Detoxification of wastewater containing pharmaceuticals using horizontal flow bioelectrochemical filter. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
29
|
Yu Z, Zhang X, Ngo HH, Guo W, Wen H, Deng L, Li Y, Guo J. Removal and degradation mechanisms of sulfonamide antibiotics in a new integrated aerobic submerged membrane bioreactor system. BIORESOURCE TECHNOLOGY 2018; 268:599-607. [PMID: 30138872 DOI: 10.1016/j.biortech.2018.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
A novel laboratory-scale aerobic submerged membrane bioreactor integrating sponge-plastic biocarriers (SPSMBR) was conducted to study the removal and degradation mechanisms of sulfonamide antibiotics (SAs). Experimental results indicated that SPSMBR had a better removal of sulfadiazine (91% SDZ) and sulfamethoxazole (88% SMZ) than that of a conventional aerobic submerged membrane bioreactor (CSMBR) (76% SDZ and 71% SMZ, respectively). Material balance calculations suggested that biodegradation is the primary removal mechanism of SDZ and SMZ. Protein (tyrosine-like materials) significantly affected the removal of SAs. Moreover, the SPSMBR exhibited its better performance in removing SAs due to more abundance of tyrosine-like materials. The 16S rRNA sequencing showed that biocarriers could promote the enrichment of slow growing bacteria, especially Thermomonas, associated with the removal of SAs. Valuable insights into the removal and degradation mechanisms of SAs in the SPSMBR systems are documented here.
Collapse
Affiliation(s)
- Zhihao Yu
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Haitao Wen
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Lijuan Deng
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yajing Li
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Jianbo Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, China and School of Civil and Environmental Engineering, University of Technology Sydney, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
30
|
Li H, Zhang S, Yang XL, Xu H, Yang YL, Wang YW, Song HL. Simulated wastewater reduced Klebsiella michiganensis strain LH-2 viability and corresponding antibiotic resistance gene abundance in bio-electrochemical reactors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:376-382. [PMID: 30015182 DOI: 10.1016/j.ecoenv.2018.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
A previous study revealed that the electrolytic stimulation process in bio-electrochemical reactors (BER) can accelerate growth of sulfadiazine (SDZ) antibiotic resistant bacteria (ARB) in nutrient broth medium. However, the influence of different medium nutrient richness on the fate of ARB and the relative abundance of their corresponding antibiotic resistance genes (ARGs) in this process is unknown. Specifically, it is not clear if the fate of ARB in minimal nutrition simulated wastewater is the same as in nutrient broth under electrolytic stimulation. Therefore, in this study, nutrient broth medium and the simulated wastewater were compared to identify differences in the relative abundance of Klebsiella michiganensis LH-2 ARGs in response to the electrolytic stimulation process, as well as the fate of the strain in simulated wastewater. Lower biomass, specific growth rates and viable bacterial counts were obtained in response to the application of increasing current to simulated wastewater medium. Furthermore, the percentage of ARB lethality, which was reflected by flow cytometry analysis, increased with current in the medium. A significant positive correlation of sul genes and intI gene relative abundance versus current was also observed in nutrient broth. However, a significant negative correlation was observed in simulated wastewater because of the higher metabolic burden, which may have led to decreased ARB viability. Further investigation showed that the decrease in ARGs abundance was responsible for decreased strain tolerance to SDZ in simulated wastewater. These results reveal that minimal nutrition simulated wastewater may reduce ARB and ARGs propagation in BER.
Collapse
Affiliation(s)
- Hua Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Shuai Zhang
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Han Xu
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Yu-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 210096, China; School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China; Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Ya-Wen Wang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
31
|
Li H, Song HL, Yang XL, Zhang S, Yang YL, Zhang LM, Xu H, Wang YW. A continuous flow MFC-CW coupled with a biofilm electrode reactor to simultaneously attenuate sulfamethoxazole and its corresponding resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:295-305. [PMID: 29751310 DOI: 10.1016/j.scitotenv.2018.04.359] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 05/12/2023]
Abstract
A continuous flow microbial fuel cell constructed wetland (MFC-CW) coupled with a biofilm electrode reactor (BER) system was constructed to remove sulfamethoxazole (SMX). The BER unit powered by the stacked MFC-CWs was used as a pretreatment unit, and effluent flowed into the MFC-CW for further degradation. The experimental results indicated that the removal rate of 2 or 4 mg/L SMX in a BER unit was nearly 90%, and the total removal rate in the coupled system was over 99%. As the hydraulic retention time (HRT) was reduced from 16 h to 4 h, the SMX removal rate in the BER decreased from 75% to 48%. However, the total removal rate in the coupled system was still over 97%. The maximum SMX removal rate in the MFC-CW, which accounted for 42%-55% of the total removal, was obtained in the anode layer. In addition, the relative abundances of sul genes detected in the systems were in the order of sulI > sulII > sulIII, and significant positive correlations of sul gene copy numbers versus SMX concentration and 16S rRNA gene copy numbers were observed. Furthermore, significant negative correlations were identified between sul genes, 16S rRNA gene copy numbers, and HRT. The abundances of the sul genes in the effluent of the MFC-CW were lower than the abundances observed in the BER effluent. High-throughput sequencing revealed that the microbial community diversity of the BER was affected by running time, power supply forms and HRT. Bio-electricity from the MFC-CW may reduce microbial community diversity and contribute to reduction of the antibiotic resistance gene (ARG) abundance in the BER. Taken together, the BER-MFC-CW coupled system is a potential tool to treat wastewater containing SMX and attenuate corresponding ARG abundance.
Collapse
Affiliation(s)
- Hua Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Shuai Zhang
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China; School of Civil Engineering, Southeast University, Nanjing 210096, China; Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Li-Min Zhang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.
| | - Han Xu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Ya-Wen Wang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| |
Collapse
|