1
|
Escot-Espinoza VM, Rodríguez-Márquez S, Briseño-Bugarín J, López-Luna MA, Flores de la Torre JA. Presence of Potentially Toxic Elements in Historical Mining Areas in the North-Center of Mexico and Possible Bioremediation Strategies. TOXICS 2024; 12:813. [PMID: 39590994 PMCID: PMC11598068 DOI: 10.3390/toxics12110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
This paper provides an overview of the impacts of mining-related environmental liabilities on humans, soils, sediments, surface water and groundwater across various mining districts in Zacatecas, Mexico. An analysis has been carried out on the areas of the state most affected by the presence of potentially toxic elements (PTEs) such as arsenic, lead, cadmium, copper, chromium and zinc, identifying priority areas for environmental assessment and remediation. Likewise, a review of the concentrations of PTEs reported in different environmental matrices of the state's mining areas with the presence of environmental liabilities was carried out, most of which exceed the maximum permissible limits established by Mexican and international regulations, generating an environmental risk for the populations near these districts due to their potential incorporation into the food chain. Additionally, this study explores research focused on the biostabilization of PTEs using microorganisms with specific metabolic activities. Phytoremediation is presented as a viable tool for the stabilization and elimination of PTEs, in which endemic plants from arid-semi-arid climates have shown favorable results in terms of the phytostabilization and phytoextraction processes of the PTEs present in mining waste.
Collapse
Affiliation(s)
- Victor Manuel Escot-Espinoza
- Toxicology and Pharmacy Laboratory, Health Sciences Area, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (V.M.E.-E.); (J.B.-B.); (M.A.L.-L.)
| | - Susana Rodríguez-Márquez
- Secretary of Water and Environment of the State of Zacatecas, Building F, Cerro del Gato Circuit, Administrative City, Zacatecas 99160, Mexico;
| | - Jorge Briseño-Bugarín
- Toxicology and Pharmacy Laboratory, Health Sciences Area, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (V.M.E.-E.); (J.B.-B.); (M.A.L.-L.)
| | - Maria Argelia López-Luna
- Toxicology and Pharmacy Laboratory, Health Sciences Area, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (V.M.E.-E.); (J.B.-B.); (M.A.L.-L.)
| | - Juan Armando Flores de la Torre
- Toxicology and Pharmacy Laboratory, Health Sciences Area, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (V.M.E.-E.); (J.B.-B.); (M.A.L.-L.)
| |
Collapse
|
2
|
Li T, Yang P, Yan J, Chen M, You S, Bai J, Yu G, Ullah H, Chen J, Lin H. Effects of Hydraulic Retention Time on Removal of Cr (VI) and p-Chlorophenol and Electricity Generation in L. hexandra-Planted Constructed Wetland-Microbial Fuel Cell. Molecules 2024; 29:4773. [PMID: 39407701 PMCID: PMC11478292 DOI: 10.3390/molecules29194773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Hexavalent chromium (Cr (VI)) and para-chlorophenol (4-CP) are prevalent industrial wastewater contaminants that are recalcitrant to natural degradation and prone to migration in aquatic systems, thereby harming biological health and destabilizing ecosystems. Consequently, their removal is imperative. Compared to conventional chemical treatment methods, CW-MFC technology offers broader application potential. Leersia hexandra Swartz can enhance Cr (VI) and 4-CP absorption, thereby improving wastewater purification and electricity generation in CW-MFC systems. In this study, three CW-MFC reactors were designed with L. hexandra Swartz in distinct configurations, namely, stacked, multistage, and modular, to optimize the removal of Cr (VI) and 4-CP. By evaluating wastewater purification, electrochemical performance, and plant growth, the optimal influent hydraulic retention time (HRT) was determined. The results indicated that the modular configuration at an HRT of 5 days achieved superior removal rates and power generation. The modular configuration also supported the best growth of L. hexandra, with optimal photosynthetic parameters, and physiological and biochemical responses. These results underscore the potential of modular CW-MFC technology for effective detoxification of complex wastewater mixtures while concurrently generating electricity. Further research could significantly advance wastewater treatment and sustainable energy production, addressing water pollution, restoring aquatic ecosystems, and mitigating the hazards posed by Cr (VI) and 4-CP to water and human health.
Collapse
Affiliation(s)
- Tangming Li
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (T.L.); (P.Y.); (J.Y.); (M.C.); (S.Y.); (J.B.); (G.Y.); (J.C.)
| | - Peiwen Yang
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (T.L.); (P.Y.); (J.Y.); (M.C.); (S.Y.); (J.B.); (G.Y.); (J.C.)
| | - Jun Yan
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (T.L.); (P.Y.); (J.Y.); (M.C.); (S.Y.); (J.B.); (G.Y.); (J.C.)
| | - Mouyixing Chen
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (T.L.); (P.Y.); (J.Y.); (M.C.); (S.Y.); (J.B.); (G.Y.); (J.C.)
| | - Shengxiong You
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (T.L.); (P.Y.); (J.Y.); (M.C.); (S.Y.); (J.B.); (G.Y.); (J.C.)
| | - Jiahuan Bai
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (T.L.); (P.Y.); (J.Y.); (M.C.); (S.Y.); (J.B.); (G.Y.); (J.C.)
| | - Guo Yu
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (T.L.); (P.Y.); (J.Y.); (M.C.); (S.Y.); (J.B.); (G.Y.); (J.C.)
| | - Habib Ullah
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou 311400, China;
| | - Jihuan Chen
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (T.L.); (P.Y.); (J.Y.); (M.C.); (S.Y.); (J.B.); (G.Y.); (J.C.)
| | - Hua Lin
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (T.L.); (P.Y.); (J.Y.); (M.C.); (S.Y.); (J.B.); (G.Y.); (J.C.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, Guilin 541000, China
| |
Collapse
|
3
|
Dinh T, Kovács H, Dobó Z. The formation of gold in woody biomass combustion ashes. Heliyon 2024; 10:e32425. [PMID: 38961906 PMCID: PMC11219344 DOI: 10.1016/j.heliyon.2024.e32425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
This paper investigates the enrichment of gold through combustion and ash-leaching techniques utilizing woody biomass as a fuel source. It delves into the formation of gold in ashes derived from the fixed grate combustion of pelletized woody biomass containing noble metals, conducted at a pilot-scale boiler. The biomass sample was gathered from a brownfield land at an abandoned mining area, avoiding induced phytoextraction. The fuel contained <0.05 mg/kg gold, while the bottom ash, after heat exchanger ash, deposited ash, and fly ash contained 1.52 mg/kg, 1.99 mg/kg, 2.64 mg/kg, and 3.52 mg/kg of gold, respectively. Although the amount of fly ash is lower compared to bottom ash, the concentration of gold is the highest in fly ash, which follows the after heat exchanger ash and bottom ash. The concentration of gold was enriched by a three-stage procedure of water leaching, acid leaching (10 % HCl), and alkaline leaching (5 % NaOH), after which 12.1 mg/kg and 12.6 mg/kg gold was found in the residues obtained from leached bottom ash and deposited ash, respectively. SEM was utilized to depict the morphology of gold, which appears in bottom ash as individual neat particles with a purity higher than 98 %. Pure gold particles in the size of 1-2 μm are presented in the after heat exchanger ash; meanwhile, gold in fly ash is primarily associated with potassium, sodium, sulfur, and oxygen. The findings in this study pave the way for reclaiming gold from bio-ores as well as assist in better understanding the formation of this precious metal in these secondary resources.
Collapse
Affiliation(s)
- Truong Dinh
- Institute of Energy, Ceramics and Polymer Technology, University of Miskolc, 3515, Miskolc, Hungary
| | - Helga Kovács
- Institute of Energy, Ceramics and Polymer Technology, University of Miskolc, 3515, Miskolc, Hungary
| | - Zsolt Dobó
- Institute of Energy, Ceramics and Polymer Technology, University of Miskolc, 3515, Miskolc, Hungary
| |
Collapse
|
4
|
Hu Y, Wang J, Yang Y, Li S, Wu Q, Nepovimova E, Zhang X, Kuca K. Revolutionizing soil heavy metal remediation: Cutting-edge innovations in plant disposal technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170577. [PMID: 38311074 DOI: 10.1016/j.scitotenv.2024.170577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Soil contamination with heavy metals has emerged as a global environmental threat, compromising agricultural productivity, ecosystem integrity, and human health. Conventional remediation techniques often fall short due to high costs, operational complexities, and environmental drawbacks. Plant-based disposal technologies, including biochar, phytometallurgy, and phrolysis, have emerged as promising solutions in this regard. Grounded in a novel experimental framework, biochar is studied for its dual role as soil amendment and metal adsorbent, while phytometallurgy is explored for its potential in resource recovery and economic benefits derived from harvested metal-rich plant biomass. Pyrolysis, in turn, is assessed for transforming contaminated biomass into value-added products, thereby minimizing waste. These plant disposal technologies create a circular model of remediation and resource utilization that holds the potential for application in large-scale soil recovery projects, development of environmentally friendly agro-industries, and advancement in sustainable waste management practices. This review mainly discussed cutting-edge plant disposal technologies-biochar application, phytometallurgy, and pyrolysis-as revolutionary approaches to soil heavy metal remediation. The efficacy, cost-effectiveness, and environmental impact of these innovative technologies are especially evaluated in comparison with traditional methods. The success of these applications could signal a paradigm shift in how we approach both environmental remediation and resource recovery, with profound implications for sustainable development and circular economy strategies.
Collapse
Affiliation(s)
- Yucheng Hu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Junbang Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Yang
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province/Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Sha Li
- School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Qinghua Wu
- College Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic.
| |
Collapse
|
5
|
Dixit R, Kumar S, Pandey G. Biological approaches for E-waste management: A green-go to boost circular economy. CHEMOSPHERE 2023:139177. [PMID: 37307925 DOI: 10.1016/j.chemosphere.2023.139177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
E-waste is a pressing situation on human due to its complex composition. Although E-waste on one hand has some toxic components but at the same time, it would be a promising business sector. Recycling of E-waste to mine-out valuable metals and other components has opened a chance of business and hence a way towards transformation of linear economy to circular one. Chemical, physical and traditional technologies are holding the position in E-waste recycling sector but sustainability with respect to cost and environmental issues is a major concern associated with these technologies. In order to overcome these gaps, lucrative, environment friendly and sustainable technologies need to be implied. Biological approaches could be a green and clean approach to handle E-waste through sustainable and cost-effective means by considering socio-economic and environmental aspects. This review elaborates biological approaches for E-waste management and advancements in expanse. The novelty covers the environmental and socio-economic impacts of E-waste, solution and further scope of biological approaches, further research and development need in this contour to come up with sustainable recycling process.
Collapse
Affiliation(s)
- Rashmi Dixit
- CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagp, 440 020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, India; CSIR- TMD, 3rd Floor, 14, NISCAIR Building, Satsang Vihar Marg, Block A, Qutab Institutional Area, New Delhi, Delhi, 110 016, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagp, 440 020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Govind Pandey
- Madan Mohan Malaviya University of Technology, Gorakhpur, 273 010, India
| |
Collapse
|
6
|
Nazir A, Sarfraz W, Allah D, Khalid N, Farid M, Shafiq M, Bareen FE, Rizvi ZF, Naeem N. Synergistic impact of two autochthonous saprobic fungi ( A. niger and T. pseudokoningii) on the growth, ionic contents, and metals uptake in Brassica juncea L. and Vigna radiata L. under tannery solid waste contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1488-1500. [PMID: 36633455 DOI: 10.1080/15226514.2023.2166457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Unrestricted disposal of tannery solid waste (TSW) into agricultural soils has resulted in the contamination of heavy metals (HMs) such as chromium (Cr) cadmium (Cd), Copper (Cu), and Zinc (Zn) along with the severe potential to degrade the environmental quality around the world. In the present study, a combined phyto- and myco-remediation strategy was evaluated to enhance the growth, ionic contents, and phytoextraction potential of Brassica juncea and Vigna radiata for HMs from TSW-contaminated soil. A pot experiment was conducted in the greenhouse using single or combined inoculation of Trichoderma pseudokoningii (Tp) and Aspergillus niger (An) in B. juncea and V. radiata under TSW-contaminated soil at different doses (0, 50, and 100%). The results showed that the growth parameters of both B. juncea and V. radiata were severely affected under 50 and 100% TSW treatment. The combined inoculation of both the fungal species ameliorated the positive impacts of 50 and 100% TSW application on growth and ionic contents accumulation in B. juncea and V. radiata. The combined application of An + Tp at 100% TSW enhanced the shoot length (87.8, 157.2%), root length (123.9, 120.6%), number of leaves (184.2, 175.0%), number of roots (104.7, 438.9%), and dry weight (179.4, 144.8%) of B. juncea and V. radiata, respectively as compared to control with any fungal treatment at 100% TSW. A single application of An at different doses of TSW enhanced the metal concentration in B. juncea, whereas Tp increased the concentration of the metals in V. radiata. The concentration of Cr in roots (196.2, 263.8%), shoots (342.4, 182.2%), Cu in roots (187.6, 137.0%), shoots (26.6, 76.0%), Cd in roots (245.2, 184.6%), shoots (142.1, 73.4%), Zn in roots (73.4, 57.5%), shoots (62.9, 57.6%), in B. juncea were increased by the application of An at 50 and 100% treatment levels of TSW, respectively compared to control (C). Moreover, the HMs (Cr, Cu, Cd, and Zn) uptake was also improved under 50 and 100% TSW with the combined inoculation of Tp + An in both B. juncea and V. radiata. In conclusion, the combined inoculation of Tp + An was more effective in metal removal from TSW-treated soil.NOVELTY STATEMENTLimited studies have been conducted on filamentous fungi systematically under metal-contaminated sites for their diversity, metal tolerance, and their potential in enhancing the phytoremediation potential of different crop plants.In the present study, single and/or combined inoculation of fungal strains was found effective in alleviating different metals stress in tannery solid waste contaminated soil by improving defense mechanisms and plant growth due to the association between fungal strains and plants.The combined application of both fungal strains had an additive effect in enhancing the bioaccumulation capacity of B. juncea and V. radiata compared to their single inoculation.
Collapse
Affiliation(s)
- Aisha Nazir
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Wajiha Sarfraz
- Department of Botany, Govt. College Women University, Sialkot, Pakistan
| | - Ditta Allah
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Pakistan
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Noreen Khalid
- Department of Botany, Govt. College Women University, Sialkot, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Muhammad Shafiq
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | | | | - Nayab Naeem
- Department of Botany, Govt. College Women University, Sialkot, Pakistan
| |
Collapse
|
7
|
Dinh T, Dobo Z, Kovacs H. Phytomining of noble metals - A review. CHEMOSPHERE 2022; 286:131805. [PMID: 34391113 DOI: 10.1016/j.chemosphere.2021.131805] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Phytomining of noble metals (NMs) offers a promising possibility of metal extraction at sites where traditional mining activities or recovering NMs from low-grade minerals are not competitive. In addition to conventional mining, producing NMs from secondary resources strengthening the circular economy has been paid worldwide attention. The review presented in this paper links three scientific areas as the essential elements to form the phytomining chain of NMs. The accumulation of NMs in plants is the first step, referred as the phytoextraction process. This is followed by heightening the concentration of NMs via the enrichment stage. Eventually, although less well understood, extraction methods of NMs from biomass solid remains as well as from diverse secondary sources particularly incineration ashes are discussed that assist to visualize the potential pathways in phytomining.
Collapse
Affiliation(s)
- Truong Dinh
- Institute of Energy and Quality, University of Miskolc, Address: 3515, Mikolc, Egyetemváros, Hungary.
| | - Zsolt Dobo
- Institute of Energy and Quality, University of Miskolc, Address: 3515, Mikolc, Egyetemváros, Hungary.
| | - Helga Kovacs
- Institute of Energy and Quality, University of Miskolc, Address: 3515, Mikolc, Egyetemváros, Hungary.
| |
Collapse
|
8
|
He W, Long A, Zhang C, Cao M, Luo J. Mass balance of metals during the phytoremediation process using Noccaea caerulescens: a pot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8476-8485. [PMID: 33063210 DOI: 10.1007/s11356-020-11216-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
There are two widely used methods to estimate the time taken for phytoremediation for the removal of the target pollutants, i.e., using the data of metal uptake by the harvested parts of the selected plant or using the decrement in average element content between the beginning and end of the remediation. The latter not only depends on sampling points but is also determined by sampling time because even if the soil is initially perfectly homogenized, plant growth itself heterogenizes the soil as time goes by. In this study, phytoremediation was tested on one homogenized soil obtained from various soil samples taken within an e-waste dismantling and recycling site, and the remediation time for different points of bulk and rhizosphere soil was estimated using the two methods. Phytoremediation efficiency, as assessed by the change in soil metal concentrations over 100 days, widely varied depending on which of the six soil compartments of the pot was sampled, and the standard deviations of Cd, Zn, Pb, and Cu increased as the experiment proceeded, indicating the inaccuracy of this method. When applied to rhizosphere soil, this method led to a large overestimation of phytoremediation efficiency for Cd and Zn, which was 81- and 77-fold that was obtained by measuring the actual amount of metals taken up by Noccaea caerulescens. The significant difference between the two methods indicated that the blended soil became heterogeneous during the phytoremediation process because the species extracted metals from different soil parts, manifested by the variation in the metal content. The gap between these two estimation methods decreased when the soil was mixed thoroughly at the end of the experiment. This work shows that calculating the metal decontamination efficiency based on the measurement of the actual amount of metal taken by the plant is more robust than estimating it based on the evolution of soil metal concentration over time. In addition, our study reveals that using N. caerulescens may not be appropriate in Pb- or Cu-polluted soil, since this species mobilized these metals but did not extract them.
Collapse
Affiliation(s)
- Wenxiang He
- KLETOR Ministry of Education, Yangtze University, Wuhan, China
| | - Aogui Long
- KLETOR Ministry of Education, Yangtze University, Wuhan, China
| | - Chunming Zhang
- KLETOR Ministry of Education, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Jie Luo
- KLETOR Ministry of Education, Yangtze University, Wuhan, China.
| |
Collapse
|
9
|
Xie L, van Zyl D. Distinguishing reclamation, revegetation and phytoremediation, and the importance of geochemical processes in the reclamation of sulfidic mine tailings: A review. CHEMOSPHERE 2020; 252:126446. [PMID: 32182510 DOI: 10.1016/j.chemosphere.2020.126446] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The reclamation of tailings, especially acid-generating tailings resulting from the oxidation of sulfide minerals, has been an urgent but difficult task for a long period. Phytoremediation has been received great concerns in the area of metal (loid)s removal in recent two decades. However, in the reclamation of tailings, the term "revegetation" has been mentioned frequently. In order to help to design an appropriate reclamation plan during mine closure stage, this paper aims to distinguish the concepts of reclamation, revegetation and phytoremediation, and then clarify their relationships. After review and discussion, it is concluded that the concept of reclamation includes the concept of revegetation, and revegetation includes phytoremediation. The amended phytostabilization is proposed as the most potential phytoremediation technique for reducing the metal (loid)s mobility in sulfidic tailings. Moreover, since much research has been focusing on microbial activities in the tailings - plants system, this paper further indicated the importance of inorganic geochemical processes in the direct revegetation on sulfidic mine tailings and emphasized its potential being an anticipated research direction in the near future.
Collapse
Affiliation(s)
- Lina Xie
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Dirk van Zyl
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
10
|
Alcantara HJP, Jativa F, Doronila AI, Anderson CWN, Siegele R, Spassov TG, Sanchez-Palacios JT, Boughton BA, Kolev SD. Localization of mercury and gold in cassava (Manihot esculenta Crantz). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18498-18509. [PMID: 32193739 DOI: 10.1007/s11356-020-08285-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The potential of cassava (Manihot esculenta Crantz.) for simultaneous Hg and Au phytoextraction was explored by investigating Hg and Au localization in cassava roots through Micro-Proton Induced X-Ray Emission, High-Resolution Transmission Electron Microscopy (HR-TEM) and X-Ray Diffractometry (XRD). The effect of Hg and Au in the cyanogenic glucoside linamarin distribution was also investigated using Matrix Assisted Laser Desorption Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (MALDI-FT-ICR-MS) imaging. Hg was located mainly in the root vascular bundle of plants grown in 50 or 100 μmol L-1 Hg solutions. Au was localized in the epidermis and cortex or in the epidermis and endodermis for 50 and 100 μmol L-1 Au solutions, respectively. For 50 μmol L-1 solutions of both Hg and Au, the two metals were co-localized in the epidermis. When the Hg concentrations were increased to 100 μmol L-1, Au was still localized to a considerable extent in the epidermis while Hg was located in all root parts. HR-TEM and XRD revealed that Au nanoparticles were formed in cassava roots. MALDI-FT-ICR-MS imaging showed linamarin distribution in the roots of control and plants and metal-exposed plants thus suggesting that linamarin might be involved in Hg and Au uptake and distribution.
Collapse
Affiliation(s)
- Hannah Joy P Alcantara
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia
- Institute of Biology, The University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Fernando Jativa
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Augustine I Doronila
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Christopher W N Anderson
- Soil and Earth Sciences Group, Institute of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
| | - Rainer Siegele
- Institute for Environmental Research, Australian Nuclear Science and Technology Organisation (ANSTO), PMB1, Menai, NSW, 2234, Australia
| | - Tony G Spassov
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl.Ohridski", 1 James Bourchier Blvd., 1164, Sofia, Bulgaria
| | | | - Berin A Boughton
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Spas D Kolev
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
11
|
Prakash S, Deswal R. Analysis of temporally evolved nanoparticle-protein corona highlighted the potential ability of gold nanoparticles to stably interact with proteins and influence the major biochemical pathways in Brassica juncea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:143-156. [PMID: 31751914 DOI: 10.1016/j.plaphy.2019.10.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 05/25/2023]
Abstract
Nanoparticles (NPs) are known to adsorb proteins from their surroundings, forming NP-protein corona, which determines their fate, distribution, and effects, yet no information of protein corona (PC) has been gathered in the plants so far. Here we report, the analysis of temporally evolved (2 h-36 h) AuNP-protein coronas formed with Brassica juncea leaf crude protein & nuclear-enriched fraction. Protein coronas were characterized by the techniques including SDS PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis), spectrophotometry, dynamic light scattering, zeta potential measurements, and Nano LC-MS/MS. Data analysis revealed the formation of two regimes (Regime I from 2 to 8 h & regime II from 16 to 36 h). Interestingly, coated AuNPs had approx. 30% higher zeta potential than pristine AuNPs after 36 h of interactions. The increase in hydrodynamic radii and adsorbed protein concentrations were consistent with the evolution of zeta potential, indicating the probable role of proteins in providing the better stability of AuNPs. MS analysis identified 97 proteins from regime I (soft corona) and 181 proteins from regime II (hard corona) of crude PC. On the other hand, 282 and 308 proteins were identified from nuclear soft and hard corona respectively, indicating better affinity of nuclear proteins. Besides, the high-affinity proteins (fold change ≥5) were found to be rich in lysine residues showing their involvement in promoting the adsorption. Notably, 27% of regime II corona proteins of the crude protein fraction were from energy-yielding pathways highlighting the potential ability AuNPs to influence the yield in Brassica juncea.
Collapse
Affiliation(s)
- Satya Prakash
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|