1
|
Darvishi F, Mirelmi B, Soudi MR, Shiri M, Mahdavinia GR, Shi S. Reusable magnetic alginate nanocomposite with immobilized Pseudozyma antarctica yeast cells offers the potential for bioremediation and detoxification of reactive black 5 dye. Int J Biol Macromol 2025; 306:141641. [PMID: 40032101 DOI: 10.1016/j.ijbiomac.2025.141641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Azo dyes in wastewater of textile, paper and pulp, cosmetics, and leather tanning industries have toxicity and mutagenicity for all living organisms. The aim of the current research was the study of free and immobilized yeast cells of Pseudozyma antarctica on the beads of magnetic alginate nanocomposite to decolorize and detoxify Reactive Black 5 (RB5) as a representative of azo dyes. This yeast decolorized a high concentration of RB5 (2500 mg/L) with 82.30 % decolorization efficiency. The beads containing immobilized yeast cells were used for decolorization in consecutive cycles, and the decolorization efficiency of the beads after four cycles was more than 67 %. UV-visible and FTIR spectroscopy studies showed that the azo bond in RB5 was removed and destroyed by yeast activity. The azo bond of RB5 is destroyed in the biodegradation mechanism which confirms the decolorization of RB5 by P. antarctica via the biodegradation mechanism. According to the phytotoxicity results, RB5 decolorization by P. antarctica reduced the toxicity of the dye. This is the first study on the decolorizing and detoxifying potentials of P. antarctica and introduces a promising candidate for the treatment of wastewater containing azo dyes. Furthermore, its successful immobilization on magnetic alginate nanocomposite and its convenient consecutive uses make it more attractive for environmental applications.
Collapse
Affiliation(s)
- Farshad Darvishi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran.
| | - Behnaz Mirelmi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran
| | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Gholam Reza Mahdavinia
- Polymer Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Ge M, Deng W, Wang Z, Weng C, Yang Y. Effective Decolorization and Detoxification of Single and Mixed Dyes with Crude Laccase Preparation from a White-Rot Fungus Strain Pleurotus eryngii. Molecules 2024; 29:669. [PMID: 38338413 PMCID: PMC10856677 DOI: 10.3390/molecules29030669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
To fully harness the potential of laccase in the efficient decolorization and detoxification of single and mixed dyes with diverse chemical structures, we carried out a systematic study on the decolorization and detoxification of single and mixed dyes using a crude laccase preparation obtained from a white-rot fungus strain, Pleurotus eryngii. The crude laccase preparation showed efficient decolorization of azo, anthraquinone, triphenylmethane, and indigo dyes, and the reaction rate constants followed the order Remazol Brilliant Blue R > Bromophenol blue > Indigo carmine > New Coccine > Reactive Blue 4 > Reactive Black 5 > Acid Orange 7 > Methyl green. This laccase preparation exhibited notable tolerance to SO42- salts such as MnSO4, MgSO4, ZnSO4, Na2SO4, K2SO4, and CdSO4 during the decolorization of various types of dyes, but was significantly inhibited by Cl- salts. Additionally, this laccase preparation demonstrated strong tolerance to some organic solvents such as glycerol, ethylene glycol, propanediol, and butanediol. The crude laccase preparation demonstrated the efficient decolorization of dye mixtures, including azo + azo, azo + anthraquinone, azo + triphenylmethane, anthraquinone + indigo, anthraquinone + triphenylmethane, and indigo + triphenylmethane dyes. The decolorization kinetics of mixed dyes provided preliminary insight into the interactions between dyes in the decolorization process of mixed dyes, and the underlying reasons and mechanisms were discussed. Importantly, the crude laccase from Pleurotus eryngii showed efficient repeated-batch decolorization of single-, two-, and four-dye mixtures. This crude laccase demonstrated high stability and reusability in repeated-batch decolorization. Furthermore, this crude laccase was efficient in the detoxification of different types of single dyes and mixed dyes containing different types of dyes, and the phytotoxicity of decolorized dyes (single and mixed dyes) was significantly reduced. The crude laccase efficiently eliminated phytotoxicity associated with single and mixed dyes. Consequently, the crude laccase from Pleurotus eryngii offers significant potential for practical applications in the efficient decolorization and management of single and mixed dye pollutants with different chemical structures.
Collapse
Affiliation(s)
| | | | | | | | - Yang Yang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
3
|
Lin X, Zhou Q, Xu H, Chen H, Xue G. Advances from conventional to biochar enhanced biotreatment of dyeing wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167975. [PMID: 37866601 DOI: 10.1016/j.scitotenv.2023.167975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
DW (Dyeing wastewater) contains a large amount of dye organic compounds. A considerable proportion of dye itself or its intermediate products generated during wastewater treatment process exhibits CMR (Carcinogenic/Mutagenic/Toxic to Reproduction) toxicity. Compared with physicochemical methods, biological treatment is advantageous in terms of operating costs and greenhouse gas emissions, and has become the indispensable mainstream technology for DW treatment. This article reviews the adsorption and degradation mechanisms of dye organic compounds in wastewater and analyzed different biological processes, ranging from traditional methods to processes enhanced by biochar (BC). For traditional biological processes, microbial characteristics and communities were discussed, as well as the removal efficiency of different bioreactors. BC has adsorption and redox electron mediated effects, and coupling with biological treatment can further enhance the process of biosorption and degradation. Although BC coupled biological treatment shows promising dye removal, further research is still needed to optimize the treatment process, especially in terms of technical and economic competitiveness.
Collapse
Affiliation(s)
- Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qifan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huanghuan Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China.
| |
Collapse
|
4
|
Mutanda I, Zahoor, Sethupathy S, Xu Q, Zhu B, Shah SWA, Zhuang Z, Zhu D. Optimization of heterologous production of Bacillus ligniniphilus L1 laccase in Escherichia coli through statistical design of experiments. Microbiol Res 2023; 274:127416. [PMID: 37290170 DOI: 10.1016/j.micres.2023.127416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Laccases are powerful multi-copper oxidoreductases that have wide applicability as "green" biocatalysts in biotechnological, bioremediation, and industrial applications. Sustainable production of large amounts of functional laccases from original sources is limited by low yields, difficulties in purification, slow growth of the organisms, and high cost of production. Harnessing the full potential of these versatile biocatalysts will require the development of efficient heterologous systems that allow high-yield, scalable, and cost-effective production. We previously cloned a temperature- and pH-stable laccase from Bacillus ligniniphilus L1 (L1-lacc) that demonstrated remarkable activity in the oxidation of lignin and delignification for bioethanol production. However, L1-lacc is limited by low enzyme yields in both the source organism and heterologous systems. Here, to improve production yields and lower the cost of production, we optimized the recombinant E. coli BL21 strain for high-level production of L1-lacc. Several culture medium components and fermentation parameters were optimized using one-factor-at-a-time (OFAT) and Plackett-Burman design (PBD) to screen for important factors that were then optimized using response surface methodology (RSM) and an orthogonal design. The optimized medium composition had compound nitrogen (15.6 g/L), glucose (21.5 g/L), K2HPO4 (0.15 g/L), MgSO4 (1 g/L), and NaCl (7.5 g/L), which allowed a 3.3-fold yield improvement while subsequent optimization of eight fermentation parameters achieved further improvements to a final volumetric activity titer of 5.94 U/mL in 24 h. This represents a 7-fold yield increase compared to the initial medium and fermentation conditions. This work presents statistically guided optimization strategies for improving heterologous production of a bacterial laccase that resulted in a high-yielding, cost-efficient production system for an enzyme with promising applications in lignin valorization, biomass processing, and generation of novel composite thermoplastics.
Collapse
Affiliation(s)
- Ishmael Mutanda
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zahoor
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qi Xu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sayed Waqas Ali Shah
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhipeng Zhuang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Rodrigues AF, da Silva AF, da Silva FL, dos Santos KM, de Oliveira MP, Nobre MM, Catumba BD, Sales MB, Silva AR, Braz AKS, Cavalcante AL, Alexandre JY, Junior PG, Valério RB, de Castro Bizerra V, do Santos JC. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Asemoloye MD, Marchisio MA. Synthetic Saccharomyces cerevisiae tolerate and degrade highly pollutant complex hydrocarbon mixture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113768. [PMID: 35724516 DOI: 10.1016/j.ecoenv.2022.113768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Fungal laccase (Lac) has become a very useful biocatalyst in different industries, bio-refineries and, most importantly, bioremediation. Many reports have also linked hydrocarbon tolerance and degradation by various microorganisms with Lac secretion. In this study, Trametes trogii Lac (Ttlcc1) was engineered into Saccharomyces cerevisiae strain CEN.PK2-1 C under the constitutive GPD promoter (pGPD) for multi-fold synthesis with efficient hydrocarbon tolerance and degradation. Protein expression in heterologous hosts is strictly strain-specific, it can also be influenced by the synthetic design and culture conditions. We compared synthetic designs with different shuttle vectors for the yeast strains and investigated the best culture conditions by varying the pH, temperature, carbon, nitrogen sources, and CuSO4 amount. Two S. cerevisiae strains were built in this study: byMM935 and byMM938. They carry the transcription unit pGPD-Ttlcc1-CYC1t either inside the pRSII406 integrative plasmid (byMM935) or the pRSII426 multicopy plasmid (byMM938). The performance of these two synthetic strains were studied by comparing them to the wild-type strain (byMM584). Both byMM935 and byMM938 showed significant response to different carbon sources (glucose, galactose, lactose, maltose, and sucrose), nitrogen sources (NH4Cl, NH4NO3, KNO3, malt extract, peptone, and yeast extract), and solid state fermentation of different plant biomasses (bagasse, banana peels, corn cob, mandarin peels, and peanut shells). They performed best in optimized growth conditions with specific carbon and nitrogen sources, and a preferred pH in the range 3.5-4.5, temperature between 30 and 40 0C, and 1 mM CuSO4. In optimized yeast-growth medium, strain byMM935 showed the highest laccase activities of 1.621 ± 0.063 U/mL at 64 h, whereas byMM938 gave its highest activity (1.417 ± 0.055 U/mL) at 48 h. In this work, we established, by using Bushnell Hass synthetic medium, that the new Ttlcc1-yeast strains tolerated extreme pH and complex hydrocarbon mixture (CHM) toxicity. They degraded 60-90% of the key components in CHM within 48 h, including poly-cyclic aromatic hydrocarbons, alkyl indenes, alkyl tetralines, alkyl benzenes, alkyl biphenyls, and BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes). This is the first report on the hydrocarbon degradation potential of a Ttlcc1-yeast. Compared to the native organism, such synthetic strains are better suited for meeting growing demands and have potentials for application in large-scale in situ bioremediation of hydrocarbon-polluted sites.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University Nankai District, 92 Weijin Road, Tianjin 300072, China.
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University Nankai District, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
7
|
Kurniati A, Puspaningsih NNT, Putri KDA, Damayanti M, Purwani NN, Rahmah SA, Purkan, Fujiyama K, Sakka M, Sakka K, Kimura T, Rohman A, Baktir A, Sanjaya RE. Heterologous fusion gene expression and characterization of a novel carbohydrate binding module (Cbm36) to laccase (Lcc2). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Bharathi D, Nandagopal JGT, Ranjithkumar R, Gupta PK, Djearamane S. Microbial approaches for sustainable remediation of dye-contaminated wastewater: a review. Arch Microbiol 2022; 204:169. [PMID: 35157149 DOI: 10.1007/s00203-022-02767-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
Abstract
The coloured effluents produced from different industries, such as textile, plastics, printing, cosmetics, leather and paper, are extremely toxic and a tremendous threat to the aquatic organisms and human beings. The removal of coloured dye pollutants from the aqueous environment is a great challenge and a pressing task. The growing demand for low-cost and efficient treatment approaches has given rise to alternative and eco-friendly methods, such as biodegradation and microbial remediation. This work summarizes the overview and current research on the remediation of dye pollutants from the aqueous environment by microbial bio-sorbents, such as bacteria, fungi, algae, and yeast. In addition, dye degradation capabilities of microbial enzymes have been highlighted and discussed. Further, the influence of various experimental parameters, such as temperature, pH, and concentrations of nutrients, and dye, has been summarized. The proposed mechanism for dye removal by microorganisms is also discussed. The object of this review is to provide a state-of-the-art of microbial remediation technologies in eliminating dye pollutants from water resources.
Collapse
Affiliation(s)
- Devaraj Bharathi
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamil Nadu, 641028, India.
| | | | | | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900, Kampar, Perak, Malaysia
| |
Collapse
|
9
|
Li Z, Zhu Q, Liu Z, Sha L, Chen Z. Improved performance of immobilized laccase for catalytic degradation of synthetic dyes using redox mediators. NEW J CHEM 2022. [DOI: 10.1039/d2nj00049k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Laccase is an important biodegradation agent as the catalytic degradation could be enhanced in the presence of redox mediators. This work aims to improve removal performance of the immobilized laccase...
Collapse
|
10
|
Brugnari T, Braga DM, Dos Santos CSA, Torres BHC, Modkovski TA, Haminiuk CWI, Maciel GM. Laccases as green and versatile biocatalysts: from lab to enzyme market-an overview. BIORESOUR BIOPROCESS 2021; 8:131. [PMID: 38650295 PMCID: PMC10991308 DOI: 10.1186/s40643-021-00484-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Laccases are multi-copper oxidase enzymes that catalyze the oxidation of different compounds (phenolics and non-phenolics). The scientific literature on laccases is quite extensive, including many basic and applied research about the structure, functions, mechanism of action and a variety of biotechnological applications of these versatile enzymes. Laccases can be used in various industries/sectors, from the environmental field to the cosmetics industry, including food processing and the textile industry (dyes biodegradation and synthesis). Known as eco-friendly or green enzymes, the application of laccases in biocatalytic processes represents a promising sustainable alternative to conventional methods. Due to the advantages granted by enzyme immobilization, publications on immobilized laccases increased substantially in recent years. Many patents related to the use of laccases are available, however, the real industrial or environmental use of laccases is still challenged by cost-benefit, especially concerning the feasibility of producing this enzyme on a large scale. Although this is a compelling point and the enzyme market is heated, articles on the production and application of laccases usually neglect the economic assessment of the processes. In this review, we present a description of laccases structure and mechanisms of action including the different sources (fungi, bacteria, and plants) for laccases production and tools for laccases evolution and prediction of potential substrates. In addition, we both compare approaches for scaling-up processes with an emphasis on cost reduction and productivity and critically review several immobilization methods for laccases. Following the critical view on production and immobilization, we provide a set of applications for free and immobilized laccases based on articles published within the last five years and patents which may guide future strategies for laccase use and commercialization.
Collapse
Affiliation(s)
- Tatiane Brugnari
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil.
| | - Dayane Moreira Braga
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Camila Souza Almeida Dos Santos
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Bruno Henrique Czelusniak Torres
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Tatiani Andressa Modkovski
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Charles Windson Isidoro Haminiuk
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Giselle Maria Maciel
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| |
Collapse
|
11
|
Yarrowia lipolytica Bioprocess Development: From Flask to Bioreactor. Methods Mol Biol 2021. [PMID: 33847993 DOI: 10.1007/978-1-0716-1414-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Yarrowia lipolytica produces a range of valuable biotechnological products from natural metabolites and enzymes to heterologous proteins. The production of these products is affected by medium composition and various environmental factors. Here we describe bioprocess development for a recombinant laccase production by Y. lipolytica. At first, response surface methodology (RSM), as a statistical technique for design of experiment (DOE), is used for the optimization of medium composition in flask level. Then, results of RSM are applied to increase laccase production in controlled conditions of the bioreactor.
Collapse
|
12
|
Ren L, Ji H, Heuzé K, Faure B, Genin E, Rousselot Pailley P, Tron T. Modulation of laccase catalysed oxidations at the surface of magnetic nanoparticles. Colloids Surf B Biointerfaces 2021; 206:111963. [PMID: 34293579 DOI: 10.1016/j.colsurfb.2021.111963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
We explored the coupling of laccases to magnetic nanoparticles (MNPs) with different surface chemical coating. Two laccase variants offering two opposite and precise orientations of the substrate oxidation site were immobilised onto core-shell MNPs presenting either aliphatic aldehyde, aromatic aldehyde or azide functional groups at the particles surface. Oxidation capabilities of the six-resulting laccase-MNP hybrids were compared on ABTS and coniferyl alcohol. Herein, we show that the original interfaces created differ substantially in their reactivities with an amplitude from 1 to > 4 folds depending on the nature of the substrate. Taking enzyme orientation into account in the design of surface modification represents a way to introduce selectivity in laccase catalysed reactions.
Collapse
Affiliation(s)
- Lu Ren
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR7313, 13397 Marseille, France
| | - Hongtao Ji
- Institut des Sciences Moléculaires, Université de Bordeaux, CNRS UMR5255, 33405 Talence cedex, France
| | - Karine Heuzé
- Institut des Sciences Moléculaires, Université de Bordeaux, CNRS UMR5255, 33405 Talence cedex, France.
| | - Bruno Faure
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR7313, 13397 Marseille, France
| | - Emilie Genin
- Institut des Sciences Moléculaires, Université de Bordeaux, CNRS UMR5255, 33405 Talence cedex, France
| | | | - Thierry Tron
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR7313, 13397 Marseille, France.
| |
Collapse
|
13
|
Kasemiire A, Avohou HT, De Bleye C, Sacre PY, Dumont E, Hubert P, Ziemons E. Design of experiments and design space approaches in the pharmaceutical bioprocess optimization. Eur J Pharm Biopharm 2021; 166:144-154. [PMID: 34147574 DOI: 10.1016/j.ejpb.2021.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/04/2023]
Abstract
The optimization of pharmaceutical bioprocesses suffers from several challenges like complexity, upscaling costs, regulatory approval, leading to the risk of delivering substandard drugs to patients. Bioprocess is very complex and requires the evaluation of multiple components that need to be monitored and controlled in order to attain the desired state when the process ends. Statistical design of experiments (DoE) is a powerful tool for optimizing bioprocesses because it plays a critical role in the quality by design strategy as it is useful in exploring the experimental domain and providing statistics of interest that enable scientists to understand the impact of critical process parameters on the critical quality attributes. This review summarizes selected publications in which DoE methodology was used to optimize bioprocess. The main objective of the critical review was to clearly demonstrate potential benefits of using the DoE and design space methodologies in bioprocess optimization.
Collapse
Affiliation(s)
- Alice Kasemiire
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium.
| | - Hermane T Avohou
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Charlotte De Bleye
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Pierre-Yves Sacre
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Elodie Dumont
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Philippe Hubert
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Eric Ziemons
- University of Liege (ULiege), CIRM, ViBra-Sante Hub, Department of Pharmacy, Pharmaceutical Analytical Chemistry, Avenue Hippocrate 15, 4000 Liege, Belgium
| |
Collapse
|
14
|
Liu Y, Mao H, Woldemariam Yohannes K, Wan Z, Cao Y, Tron T, Lin J, Jiang Y, Li H, Wang J. Degradation of aflatoxin B 1 by a recombinant laccase from Trametes sp. C30 expressed in Saccharomyces cerevisiae: A mechanism assessment study in vitro and in vivo. Food Res Int 2021; 145:110418. [PMID: 34112421 DOI: 10.1016/j.foodres.2021.110418] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/06/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022]
Abstract
Aflatoxin B1 (AFB1) is the most harmful mycotoxin and presents risks to human health. Utilization of enzyme to degrade AFB1 is a promising strategy to overcome this problem. In this study, we evaluated the effect of recombinant laccase expressed in Saccharomyces cerevisiae on the degradation of AFB1. It was found that AFB1 could be degraded effectively by laccase up to 91%.The results of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) showed that there were four main degradation products of AFB1 including C16H22O4, C14H16N2O2, C7H12N6O and C24H30O6. Two possible degradation pathways were proposed: 1) AFB1 lost -CO continuously, and then double bonds of furan ring were broken after reactions with H2O, H+, and -NH2; 2) AFB1 occurred decarbonylation reaction after losing -CO and double bonds were broken by additional reaction with H+. Two toxicological activity sites in AFB1, including a double bond of furo-furan ring and lactone ring in the coumarin in moiety, were destroyed. The toxicity of AFB1 degradation products was evaluated on HepG2 cells and in vivo tests, and the results indicated a decrease in hepatocytes apoptosis, liver and kidney histopathological lesions, oxidative stress, and inflammation as compared to non-laccase degraded AFB1. Moreover, the AFB1 degradation products significantly decreased the cytotoxicity and hepatotoxicity. This investigation provides innovative evidence on the effectiveness of laccase expressed in Saccharomyces cerevisiae in detoxifying AFB1.
Collapse
Affiliation(s)
- Yingli Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Huijia Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Kalekristos Woldemariam Yohannes
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Zhen Wan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yating Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Thierry Tron
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Junfang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agriculture University, Guangzhou 510640, China
| | - Yixuan Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Hongyan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
15
|
Li Z, Chen Z, Zhu Q, Song J, Li S, Liu X. Improved performance of immobilized laccase on Fe 3O 4@C-Cu 2+ nanoparticles and its application for biodegradation of dyes. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123088. [PMID: 32937718 DOI: 10.1016/j.jhazmat.2020.123088] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 05/05/2023]
Abstract
An effective strategy for enhancement of catalytic activity and stability of immobilized laccase via metal affinity adsorption on Fe3O4@C-Cu2+ nanoparticles was developed, which involved the fabrication of hydroxyl and carboxyl functionalized Fe3O4@C nanoparticles via a simple hydrothermal process and the subsequent chelation with Cu2+ for the immobilization of laccase under a mild condition. Our results revealed that the Fe3O4@C-Cu2+ nanoparticles possess a high loading amount of bovine serum albumin (BSA, 436 mg/g support) and laccase activity recovery of 82.3 % after immobilization. Laccase activity assays indicated that thermal and pH stabilities, and resistances to organic solvents and metal ions of the immobilized laccase were relatively higher than those of the free enzyme. The immobilized laccase maintained more than 61 % of its original activity after 10 consecutive reuses. Most importantly, the immobilized laccase possessed excellent degradation of diverse synthetic dyes. The degradation rates of malachite green (MG), brilliant green (BG), crystal violet (CV), azophloxine, Procion red MX-5B, and reactive blue 19 (RB19) was approximately 99, 93, 79, 88, 75 and 81 (%) in the first cycle. Even after 10 consecutive reuses, the removal efficiencies of the six dyes were found to be 94, 80, 71, 78, 60, and 65 (%), respectively.
Collapse
Affiliation(s)
- Zhiguo Li
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu, 241000, China
| | - Zhiming Chen
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu, 241000, China.
| | - Qingpeng Zhu
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu, 241000, China
| | - Jiaojiao Song
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China; Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu, 241000, China
| | - Song Li
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xinhua Liu
- School of Textile and Clothing, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
16
|
Wang Z, Ren D, Kang C, Zhang S, Zhang X, Deng Z, Huang C, Guo H. Migration of heavy metals and migration-degradation of phenanthrene in soil using electro kinetic-laccase combined remediation system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:704-711. [PMID: 32500809 DOI: 10.1080/03601234.2020.1773719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to solve the problem of heavy metal-organic compound soil pollution, in this paper, we developed a highly efficient electro kinetic-laccase combined remediation (EKLCR) system. The results showed that the EKLCR system had an obvious migration effect on heavy metals (copper and cadmium) and good migration-degradation effect on phenanthrene. The migration rates of copper and cadmium were 48.3% and 40.3%, respectively. Especially, with the presence of laccase, the removal rate of phenanthrene on Cu2+-contaminated soil was higher than that of Cd2+-contaminated soil due to the significant effect of heavy metals on the enzymatic activity of laccase. The average migration-degradation rate of phenanthrene by EKLCR system was 45.4%. Finally, gas chromatography-mass spectrometry (GC/MS) was used to analyze the degradation intermediates of phenanthrene in the soil, which included 9,10-Phenanthrenequinone, phthalic acid, and 2,2-Biphenyldicarboxylic Acid. In addition, we give the possible degradation pathways of phenanthrene, 2,2-Biphenyldicarboxylic Acid is further degraded to produce phthalic acid. The products of the phthalic acid metabolic pathway are protocatechuic acid, pyruvic acid or succinic acid, the final products of these organic acids are carbon dioxide and water.
Collapse
Affiliation(s)
- Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Chen Kang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Zhiqun Deng
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Chaofan Huang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Huiwen Guo
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Liu Y, Luo G, Ngo HH, Guo W, Zhang S. Advances in thermostable laccase and its current application in lignin-first biorefinery: A review. BIORESOURCE TECHNOLOGY 2020; 298:122511. [PMID: 31839492 DOI: 10.1016/j.biortech.2019.122511] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
As the most abundant aromatic polymers on the Earth, lignin has great potential to produce biofuels and aromatic chemicals due to their high carbon content and low oxygen content. Lignin-first biorefinery methods have attracted increasing attention recently for their high-value of aromatic chemicals, and high biofuels productivity from lignocellulosic wastes. Thermostable laccase has proven to be an excellent alternative catalyst in degrading lignin for its versatile catalytic abilities under industrial conditions and pollution-free by-products. Thermostable laccases can be found in native extreme environments or modified by biologically based technologies such as gene recombination expression and enzyme direct evolution. This review demonstrated thermostable laccases and their application in lignin degradation. Future research should focus more on the investigation of the reaction of thermostable laccases with lignin substrates.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
18
|
Arregui L, Ayala M, Gómez-Gil X, Gutiérrez-Soto G, Hernández-Luna CE, Herrera de los Santos M, Levin L, Rojo-Domínguez A, Romero-Martínez D, Saparrat MCN, Trujillo-Roldán MA, Valdez-Cruz NA. Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 2019; 18:200. [PMID: 31727078 PMCID: PMC6854816 DOI: 10.1186/s12934-019-1248-0] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/31/2019] [Indexed: 11/11/2022] Open
Abstract
The global rise in urbanization and industrial activity has led to the production and incorporation of foreign contaminant molecules into ecosystems, distorting them and impacting human and animal health. Physical, chemical, and biological strategies have been adopted to eliminate these contaminants from water bodies under anthropogenic stress. Biotechnological processes involving microorganisms and enzymes have been used for this purpose; specifically, laccases, which are broad spectrum biocatalysts, have been used to degrade several compounds, such as those that can be found in the effluents from industries and hospitals. Laccases have shown high potential in the biotransformation of diverse pollutants using crude enzyme extracts or free enzymes. However, their application in bioremediation and water treatment at a large scale is limited by the complex composition and high salt concentration and pH values of contaminated media that affect protein stability, recovery and recycling. These issues are also associated with operational problems and the necessity of large-scale production of laccase. Hence, more knowledge on the molecular characteristics of water bodies is required to identify and develop new laccases that can be used under complex conditions and to develop novel strategies and processes to achieve their efficient application in treating contaminated water. Recently, stability, efficiency, separation and reuse issues have been overcome by the immobilization of enzymes and development of novel biocatalytic materials. This review provides recent information on laccases from different sources, their structures and biochemical properties, mechanisms of action, and application in the bioremediation and biotransformation of contaminant molecules in water. Moreover, we discuss a series of improvements that have been attempted for better organic solvent tolerance, thermo-tolerance, and operational stability of laccases, as per process requirements.
Collapse
Affiliation(s)
- Leticia Arregui
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Ximena Gómez-Gil
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Guadalupe Gutiérrez-Soto
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa, 66059 Colonia Ex hacienda El Canadá, General Escobedo, Nuevo León Mexico
| | - Carlos Eduardo Hernández-Luna
- Laboratorio de Enzimología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba y Manuel L. Barragán, Cd. Universitaria, 66451 San Nicolás de los Garza, Nuevo León Mexico
| | - Mayra Herrera de los Santos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Laura Levin
- Laboratorio de Micología Experimental, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INMIBO-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, C1428BGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Arturo Rojo-Domínguez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Daniel Romero-Martínez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Mario C. N. Saparrat
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP)-CCT-La Plata-Consejo Nacional de Investigaciones Científicas y técnicas (CONICET), Diag. 113 y 61, 327CC, 1900, La Plata, Argentina
- Instituto de Botánica Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 53 # 477, 1900, La Plata, Argentina
| | - Mauricio A. Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Norma A. Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| |
Collapse
|
19
|
Yang B, Wang Y, Liu Z, Liu J, Cai J. Optimum removal conditions of aniline compounds in simulated wastewater by laccase from white-rot fungi. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:135-140. [PMID: 31321041 PMCID: PMC6581990 DOI: 10.1007/s40201-018-00334-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/20/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aniline compounds are widely applied as important chemical raw materials. However, they are so toxic and harmful to humans and environment that they need to be removed by an effective and economic approach, such as enzymatic reaction, which is in line with contemporary green development concepts. METHODS The effects of major factors, such as temperature, reaction time, concentration of laccase and the initial concentration of substrate on the removal of substrate were investigated by OFAT approach. After simulated wastewater is treated with enzymes, aniline concentration was determined by N-(1-Naphthyl)ethylene-diamine dihydrochloride spectrophotometric method. Concentration of o-phenylenediamine was determined by ferric ammonium alum spectrophotometric method. RESULTS For the removal of aniline, the optimum conditions were as follows: 50 °C, initial aniline concentration of 80 mg/L and laccase concentration of 1 g/L. In this case, the total removal of aniline reached 97.1% after 8 h, this also involves the volatilization of aniline itself. The optimum conditions of o-phenylenediamine were as follows: 50 °C, initial concentration of 100 mg/L and laccase concentration of 1 g/L. Under the above condition, the o-phenylenediamine could be removed completely after 60 min. CONCLUSION The results show that the removal of aniline compounds by laccase from white-rot fungi has good effect and potential application prospect.
Collapse
Affiliation(s)
- Bo Yang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042 Shandong China
| | - Yacheng Wang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042 Shandong China
| | - Zhiguo Liu
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042 Shandong China
| | - Jun Liu
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042 Shandong China
| | - Jiaming Cai
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042 Shandong China
| |
Collapse
|
20
|
Detoxification and Bioremediation of Sulfa Drugs and Synthetic Dyes by Streptomyces mutabilis A17 Laccase Produced in Solid State Fermentation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.09] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
21
|
Vandermies M, Fickers P. Bioreactor-Scale Strategies for the Production of Recombinant Protein in the Yeast Yarrowia lipolytica. Microorganisms 2019; 7:E40. [PMID: 30704141 PMCID: PMC6406515 DOI: 10.3390/microorganisms7020040] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/02/2023] Open
Abstract
Recombinant protein production represents a multibillion-dollar market. Therefore, it constitutes an important research field both in academia and industry. The use of yeast as a cell factory presents several advantages such as ease of genetic manipulation, growth at high cell density, and the possibility of post-translational modifications. Yarrowia lipolytica is considered as one of the most attractive hosts due to its ability to metabolize raw substrate, to express genes at a high level, and to secrete protein in large amounts. In recent years, several reviews have been dedicated to genetic tools developed for this purpose. Though the construction of efficient cell factories for recombinant protein synthesis is important, the development of an efficient process for recombinant protein production in a bioreactor constitutes an equally vital aspect. Indeed, a sports car cannot drive fast on a gravel road. The aim of this review is to provide a comprehensive snapshot of process tools to consider for recombinant protein production in bioreactor using Y. lipolytica as a cell factory, in order to facilitate the decision-making for future strain and process engineering.
Collapse
Affiliation(s)
- Marie Vandermies
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, University of Liège⁻Gembloux AgroBio Tech, 5030 Gembloux, Belgium.
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, University of Liège⁻Gembloux AgroBio Tech, 5030 Gembloux, Belgium.
| |
Collapse
|