1
|
Yang W, Lu T, Gong J, Li Q, Han C, Huang J. Morphological, histopathological and brain transcriptomic assessment reveal reproductive toxicity and neurotoxicity in western mosquitofish (Gambusia affinis) exposed to levonorgestrel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118153. [PMID: 40220358 DOI: 10.1016/j.ecoenv.2025.118153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
In recent years, more and more progestogens have been detected in the environment, especially levonorgestrel (LNG), which is widely used in medicine and veterinary medicine, but its potential effects on the reproductive and nervous systems of fish are not fully understood. The purpose of this study was to investigate the reproductive and neurological effects of LNG on female western mosquitofish (Gambusia affinis). Through a 30-day exposure experiment, we evaluated the morphological data, gonadal and brain histopathology, and brain transcriptome of mosquitofish under different concentrations of LNG (0, 5, 50, 500 ng/L). The results revealed that exposure to LNG led to a significant reduction in the body weight and condition factor of female fish, with the most pronounced decrease observed at a concentration of 500 ng/L. Morphological observations indicated that LNG exposure led to an increase in the 4th/6th anal fin ratio at concentrations of 50 and 500 ng/L. Additionally, histopathological analysis demonstrated pathological alterations, including ovarian degeneration induced by LNG, as well as vasodilation, congestion, and the enlargement of intercellular spaces in brain tissue. Analysis of brain tissue transcriptome data identified numerous differentially expressed genes related to cerebral vascular formation, nerve injury, and neuroendocrine regulation following LNG exposure. In summary, LNG has significant reproductive and neurotoxic effects on female mosquitofish, and these findings provide important data for further research on environmental risk assessment and aquatic toxicology of LNG.
Collapse
Affiliation(s)
- Weicheng Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tongfu Lu
- School of environmental sciences and engineering, Guangzhou University, Guangzhou 510006, China
| | - Jian Gong
- School of environmental sciences and engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiang Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Jianrong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
2
|
Shen X, Zhang Q, Xiang Q, Zhao J, Cao Y, Li K, Song J, Wang Z, Zhao X, Chen Q. Occurrences, source apportionment, and potential risks of 55 progestins in surface water of the Yellow River Delta, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136098. [PMID: 39405705 DOI: 10.1016/j.jhazmat.2024.136098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 12/01/2024]
Abstract
Progestins (PGs) are a group of emerging contaminants with endocrine disrupting effects. Despite their large amounts of use and excretion, investigations have been limited to several compounds in the aqueous phase, and the occurrences and distribution of numerous PGs in different matrices remain unclear. In this study, water, suspended particulate matter and sediment samples from rivers in the Yellow River Delta (YRD), China were investigated over two seasons to elucidate the occurrences, sources, and ecological risks of 55 natural and synthetic PGs. 40 PGs were detected with concentrations varied from not detected (ND) to 146 ng/L in water, ND to 251 ng/g dry weight (dw) in SPM, and ND-173 ng/g dw in sediment. The less-studied natural metabolites were the predominant PGs in all samples. 54-96 % of the PGs were concentrated in the aqueous phase, and SPM was also an important carrier, especially for hydrophobic compounds. Anthropogenic activities and environmental conditions together affected the spatiotemporal distribution of PGs. Animal sources, including aquaculture and animal husbandry, contributed most (42.3 %) to the total PGs, followed by treated sewage (32.9 %) and industrial sources (24.7 %). The risk assessment suggested that PGs posed moderate to high risks to aquatic organisms, especially the fish.
Collapse
Affiliation(s)
- Xiaoyan Shen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qudi Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qingyue Xiang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Jiajun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Yue Cao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Kun Li
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Jiayu Song
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Zihao Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
3
|
Mai S, Liang YQ, Zhou S, Lin H, Dong Z, Pan CG, Kong Q, Wang S, Wang S, Lin Z, Hou L. The long-term effects of norgestrel on the reproductive and thyroid systems in adult zebrafish at environmentally relevant concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107105. [PMID: 39306961 DOI: 10.1016/j.aquatox.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 11/12/2024]
Abstract
Progestins are crucial steroid hormones that have attracted wide attention due to their endocrine disrupting effects in fish. The aim of this study is to investigate the effects of long-term exposure to low concentrations of norgestrel (NGT) on the reproductive and thyroid endocrine systems of adult zebrafish. Adult zebrafish were exposed to 7 and 39 ng/L NGT for a duration of 90 days. The results revealed that exposure to 39 ng/L NGT led to a significant up-regulation of 3β-hydroxysteroid dehydrogenase (hsd3b) and 20β-hydroxysteroid dehydrogenase (hsd20b) genes in the ovary of female zebrafish. Additionally, there was a significant up-regulation of 11β-hydroxysteroid dehydrogenase 2 (hsd11b2) gene in the testis of male zebrafish. Furthermore, egg production decreased significantly, accompanied by notable alterations in the proportion of ovarian development stages, as well as reductions of sex hormone levels (E2, 11-KT, and T) in both females and males. However, long-term exposure to low concentrations of NGT did not lead to changes in thyroid hormone levels and thyroid histopathology in adult zebrafish. The overall results imply that environmental concentrations of NGT have a strong endocrine disrupting effect on the reproductive system of zebrafish, while the thyroid system is not sensitive to NGT exposure. The present study underscores the reproductive endocrine impacts of NGT and emphasizes the necessity for prolonged exposure at environmental concentrations.
Collapse
Affiliation(s)
- Shuyan Mai
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| | - Shuhui Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongjie Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongdian Dong
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Qingwei Kong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shaoshuai Wang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shiqing Wang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| |
Collapse
|
4
|
Jenila JS, Issac PK, Lam SS, Oviya JC, Jones S, Munusamy-Ramanujam G, Chang SW, Ravindran B, Mannacharaju M, Ghotekar S, Khoo KS. Deleterious effect of gestagens from wastewater effluent on fish reproduction in aquatic environment: A review. ENVIRONMENTAL RESEARCH 2023; 236:116810. [PMID: 37532209 DOI: 10.1016/j.envres.2023.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.
Collapse
Affiliation(s)
- J S Jenila
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - J Christina Oviya
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India; Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Ganesh Munusamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu, 603203, India.
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Balasubramani Ravindran
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India; Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Mahesh Mannacharaju
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science (University of Mumbai), Silvassa, 396 230, Dadra and Nagar Haveli (UT), India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
5
|
Zhao X, Wang Q, Li X, Xu H, Ren C, Yang Y, Xu S, Wei G, Duan Y, Tan Z, Fang Y. Norgestrel causes digestive gland injury in the clam Mactra veneriformis: An integrated histological, transcriptomics, and metabolomics study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162110. [PMID: 36764532 DOI: 10.1016/j.scitotenv.2023.162110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The potential adverse effects of progestins on aquatic organisms, especially non-target species, are of increasing concern worldwide. However, the effect and mechanism of progestin toxicity on aquatic invertebrates remain largely unexplored. In the present study, clams Mactra veneriformis were exposed to norgestrel (NGT, 0, 10, and 1000 ng/L), the dominant progestin detected in the aquatic environment, for 21 days. NGT accumulation, histology, transcriptome, and metabolome were assessed in the digestive gland. The bioconcentration factor (BCF) was 386 and 268 in the 10 ng/L NGT group and 1000 ng/L NGT group, respectively, indicating efficient accumulation of NGT in the clams. Histological analysis showed that NGT led to the swelling of epithelial cells and blurring of the basement membrane in the digestive gland. Differentially-expressed genes and KEGG pathway enrichment analysis using a transcriptomic approach suggested that NGT primarily disturbed the detoxification system, antioxidant defense, carbohydrate and amino acid metabolism, and steroid hormone metabolism, which was consistent with the metabolites analyzed using a metabolomic approach. Furthermore, we speculated that the oxidative stress caused by NGT resulted in histological damage to the digestive gland. This study showed that NGT caused adverse effects in the clams and sheds light on the mechanisms of progestin interference in aquatic invertebrates.
Collapse
Affiliation(s)
- Xiaoran Zhao
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiangfei Li
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Hua Xu
- Yantai Ecological Environment Monitoring Center, Shandong Province, Yantai 264010, PR China
| | - Chuanbo Ren
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Yanyan Yang
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Shuhao Xu
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Guoxing Wei
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Yujun Duan
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Zhitao Tan
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
6
|
Xu S, Wang W, Xu B, He X, Chen Z, Zhao X, Zhang Y, Zhou S, Fang Y, Wang Q. In vitro exposure to environmentally relevant concentrations of norgestrel affects sperm physiology and reproductive success of the Pacific oyster Crassostrea gigas. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105938. [PMID: 36870161 DOI: 10.1016/j.marenvres.2023.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Progestins in aquatic environments are of increasing concern, as shown by the results of toxicological studies on adult invertebrates with external fertilization. However, their potential effects on the gametes and reproductive success of such animals remain largely unknown. Thus, the current study assessed the effect of in vitro exposure of environmentally relevant concentrations (10 ng/L and 1000 ng/L) of norgestrel (NGT) on the sperm of Pacific oyster Crassostrea gigas, analyzing sperm motility, ultrastructure, mitochondrial function, ATP status, characteristic enzyme activities, and DNA integrity underlying fertilization and hatching success. The results showed that NGT increased the percentage of motile sperm by elevating intracellular Ca2+ levels, Ca2+-ATPase activity, creatine kinase activity, and ATP content. Although superoxide dismutase activity was enhanced to eliminate reactive oxygen species generated by NGT, oxidative stress occurred, as indicated by the increase in malonaldehyde content and damage to plasma membranes and DNA. As a consequence, fertilization rates decreased. However, hatching rates did not alter significantly, possibly as a result of DNA repair processes. This study demonstrates oyster sperm as a useful, sensitive tool for toxicological research of progestins and provides ecologically relevant information on reproductive disturbance in oysters resulting from exposure to NGT.
Collapse
Affiliation(s)
- Shuhao Xu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Bingqing Xu
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Xin He
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Zhixu Chen
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Xiaoran Zhao
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Yifei Zhang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Shuyu Zhou
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
7
|
Wang C, Chen Q, Tang M, Wei T, Zou J. Effects of TLR2/4 signalling pathway in western mosquitofish (Gambusia affinis) after Edwardsiella tarda infection. JOURNAL OF FISH DISEASES 2023; 46:299-307. [PMID: 36811195 DOI: 10.1111/jfd.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Gambusia affinis is regarded as an important animal model. Edwardsiella tarda is one of the most serious pathogens affecting aquaculture. The study explores the effects of TLR2/4 partial signalling pathway in G. affinis of E. tarda infection. The study collected the brain, liver, and intestine after E. tarda LD50 and 0.85% NaCl solution challenge at different times (0 h, 3 h, 9 h, 18 h, 24 h, and 48 h). In these three tissues, the mRNA levels of PI3K, AKT3, IRAK4, TAK1, IKKβ, and IL-1β were substantially enhanced (p < .05) then returned to normal levels. Additionally, Rac1 and MyD88 in liver had different trend with other genes in brain and intestine, which displayed significantly indifference. The overexpression of IKKβ, and IL-1β indicated that E. tarda also caused immune reaction in intestine and liver, which would be consistent with delayed edwardsiellosis, which causes intestinal lesions and liver and kidney necrosis. Additionally, MyD88 plays a smaller role than IRAK4 and TAK1 in this signalling pathways. This study could enrich the understanding of the immune mechanism of the TLR2/4 signalling pathway in fish and might help to prescribe preventive measures against E. tarda to prevent infectious diseases in fish.
Collapse
Affiliation(s)
- Chong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qingshi Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Manfei Tang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Tianli Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Hu X, Geng J, Zhao F, Min C, Guan L, Yu Q, Ren H. Fate of progesterone and norgestrel in anaerobic/anoxic/oxic (A/A/O) process: Insights from biotransformation and mass flow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158844. [PMID: 36126716 DOI: 10.1016/j.scitotenv.2022.158844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Progesterone (P4) and norgestrel (NGT) are two steroid progestogens that can pose adverse effects on aquatic organisms at ng/L levels. Despite increasing concern on their occurrence and removal in wastewater, their fate in the wastewater treatment process has not been well documented. This study identified the transformation products (TPs) of P4 and NGT in anaerobic/anoxic/oxic (A/A/O) process. Potential functional genes involved in biotransformation of P4 and NGT were explored. The elimination or formation behavior of P4, NGT and convinced TPs along various units of A/A/O process was revealed through the mass flow. Results showed that 12 and 13 TPs were identified in the P4 and NGT groups respectively, wherein 10 identical TPs and C-19 structures transformation pathways were observed in both groups. Six genes were found that may be involved in dehydrogenation and isomerization reactions in the pathways. Mass flow indicated that P4 and NGT were mainly eliminated in anaerobic and anoxic units, while convinced TPs mainly formed in anaerobic and anoxic units and were then eliminated in aerobic unit. Further, the ecological risks of the effluent should not be ignored as residual compounds including P4 or NGT and their TPs in the effluent still posed adverse effects on zebrafish transcript levels.
Collapse
Affiliation(s)
- Xianda Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Fuzheng Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Anning West Road No. 88, Lanzhou 730070, PR China
| | - Chao Min
- Laboratory of Data Intelligence and Interdisciplinary Innovation, School of Information Management, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Linchang Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
9
|
Synthetic Progestins in Waste and Surface Waters: Concentrations, Impacts and Ecological Risk. TOXICS 2022; 10:toxics10040163. [PMID: 35448424 PMCID: PMC9026682 DOI: 10.3390/toxics10040163] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
Synthetic progestins (PGs) are a large family of hormones used in continuously growing amounts in human and animal contraception and medicinal therapies. Because wastewater treatment plants (WWTPs) are unable to eradicate PGs after excretion, they are discharged into aquatic systems, where they can also be regenerated from conjugated PG metabolites. This review summarises the concentrations of 12 PGs in waters from 2015 to 2021. The selected PGs were considered of particular interest due to their wide use, activity, and hormonal derivation (from testosterone, progesterone, and spirolactone). We concluded that PGs had been analysed in WWTPs influents and effluents and, to a lesser extent, in other matrices, including surface waters, where their concentrations range from ng/L to a few µg/L. Because of their high affinity for cell hormone receptors, PGs are endocrine disruptor compounds that may alter the reproductive fitness and development of biota. This review focused on their biological effects in fish, which are the most used aquatic model organisms to qualify the impacts of PGs, highlighting the risks that environmental concentrations pose to their health, fecundity, and fertility. It is concluded that PGs research should be expanded because of the still limited data on their environmental concentrations and effects.
Collapse
|
10
|
Feng Y, Zhou A, Zhang Y, Liu S, Pan Z, Zou J, Xie S. Transcriptomic changes in western mosquitofish (Gambusia affinis) liver following benzo[a]pyrene exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21924-21938. [PMID: 32285385 DOI: 10.1007/s11356-020-08571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Widely distributed western mosquitofish (Gambusia affinis) has been used as a new model species for hazard assessment of environmental stressors such as polycyclic aromatic hydrocarbons (PAHs). However, most of the PAH studies using G. affinis rely on targeted biomarker-based analysis, and thus may not adequately address the complexity of the toxic mechanisms of the stressors. In the present study, the whole transcriptional sequencing of G. affinis liver after exposure to a PAH model, benzo[a]pyrene (BaP) (100 μg/L), for 20 days was performed by using the HiSeq XTen sequencers. In total, 58,156,233 and 51,825,467 clean nucleotide reads were obtained in the control and BaP-exposed libraries, respectively, with average N50 lengths of 1419 bp. In addition, after G. affinis was exposed for 20 days, 169 genes were upregulated, and 176 genes were downregulated in liver. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were applied to all the genes to determine the genes' biological functions and processes. The results clearly showed that the differentially expressed genes were mainly related to immune pathways and metabolic correlation pathways. Interestingly, almost all the pathways related with the immunity were upregulated, while the metabolism pathways were downregulated. Lastly, quantitative real-time PCR (qRT-PCR) was performed to measure expressional levels of twelve genes confirmed through the DGE analysis. These results demonstrate that BaP damages immunity and enhances the consumption of all available energy storage to activate mechanisms of the detoxification in G. affinis. Up until now, the present study is the first time that a whole transcriptome sequencing analysis in the liver of G. affinis exposed to BaP has been reported.
Collapse
Affiliation(s)
- Yongyong Feng
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Aiguo Zhou
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Zhang
- Departments of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shulin Liu
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Zhengkun Pan
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jixing Zou
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaolin Xie
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
11
|
Ding J, Liu C, Luo S, Zhang Y, Gao X, Wu X, Shen W, Zhu J. Transcriptome and physiology analysis identify key metabolic changes in the liver of the large yellow croaker (Larimichthys crocea) in response to acute hypoxia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109957. [PMID: 31759744 DOI: 10.1016/j.ecoenv.2019.109957] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most important marine economic fish in the southeast coast of China. However, hypoxia stress become a major obstacle to the benign development of L. crocea industry. To understand the energy metabolism mechanism adapted to hypoxia, we analyzed the transcriptome and physiology of L. crocea liver in response to hypoxia stress for different durations. We obtained 243,756,080 clean reads, of which 83.38% were successfully mapped to the reference genome of L. crocea. The heat map analysis showed that genes encoding enzymes involved in glycolysis/gluconeogenesis were significantly upregulated at various time points. Moreover, genes encoding enzymes related to the citrate cycle, oxidative phosphorylation, and amino acid metabolism were significantly downregulated at 6 and 24 h, but upregulated at 48 and 96 h. The change of liver in physiology processes, including respiratory metabolism, and activities of the carbohydrate metabolism enzymes showed a similar trend. The results revealed that the respiratory metabolism of L. crocea was mainly anaerobic within 24 h of hypoxia stress, and aerobic metabolism was dominant after 24 h. Carbohydrate metabolism plays a crucial role in energy supply and amino acid metabolism is an important supporting character to cope with acute hypoxia stress. There was no significant change in lipid utilization under short-term acute stress. This study increases our understanding of the energy metabolism mechanism of the hypoxia response in fish and provides a useful resource for L. crocea genetics and breeding.
Collapse
Affiliation(s)
- Jie Ding
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, 315012, China
| | - Cheng Liu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, 315012, China
| | - Shengyu Luo
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yibo Zhang
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, 315012, China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xiongfei Wu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, 315012, China
| | - Weiliang Shen
- State Key Laboratory of Large Yellow Croaker Breeding, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, 315012, China.
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|