1
|
Li M, Chen H, Wang M, Zhong Z, Lian C, Zhou L, Zhang H, Wang H, Cao L, Li C. Phenotypic plasticity of symbiotic organ highlight deep-sea mussel as model species in monitoring fluid extinction of deep-sea methane hydrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178048. [PMID: 39689471 DOI: 10.1016/j.scitotenv.2024.178048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Methane hydrates stored in cold seeps are an important source of energy and carbon for both the endemic chemosynthetic community and humanity. However, the methane fluids may cease and even stop naturally or anthropogenically, calling for a thorough evaluation of its potential impact on the endemic species and local chemosynthetic ecosystems. As one dominant megafauna in cold seeps, some of the deep-sea mussels rely on methanotrophic endosymbionts for nutrition and therefore could serve as a promising model in monitoring the dynamic changes of methane hydrate. However, knowledge on the long-term responses of deep-sea mussels to environmental stresses induced by methane reduction and deprivation, is still lacking. Here, we set up a laboratory system and cultivated methanotrophic deep-sea mussel Gigantidas platifrons without methane supply to survey the phenotypic changes after methane deprivation. While the mussels managed to survive for >10 months after the methane deprivation, drastic changes in the metabolism, function, and development of gill tissue, and in the association with methanotrophic symbionts were observed. In detail, the mussel digested all methanotrophic endosymbionts shortly after methane deprivation for nutrition and remodeled the global metabolism of gill to conserve energy. As the methane deprivation continued, the mussel replaced its bacteriocytes with ciliated cells to support filter-feeding, which is an atavistic trait in non-symbiotic mussels. During the long-term methane deprivation assay, the mussel also retained the generation of new cells to support the phenotypic changes of gill and even promoted the activity after being transplanted back to deep-sea, showing the potential resilience after long-term methane deprivation. Evidences further highlighted the participation of symbiont sterol metabolism in regulating these processes. These results collectively show the phenotypic plasticity of deep-sea mussels and their dynamic responses to methane deprivation, providing essential information in assessing the long-term influence of methane hydrate extinction.
Collapse
Affiliation(s)
- Mengna Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National Deep Sea Center, Qingdao 266071, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Laoshan Laboratory, Qingdao 266071, China.
| |
Collapse
|
2
|
Zhang H, Zhou Y, Yang Z. Genetic adaptations of marine invertebrates to hydrothermal vent habitats. Trends Genet 2024; 40:1047-1059. [PMID: 39277449 DOI: 10.1016/j.tig.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Hydrothermal vents are unique habitats like an oases of life compared with typical deep-sea, soft-sediment environments. Most animals that live in these habitats are invertebrates, and they have adapted to extreme vent environments that include high temperatures, hypoxia, high sulfide, high metal concentration, and darkness. The advent of next-generation sequencing technology, especially the coming of the new era of omics, allowed more studies to focus on the molecular adaptation of these invertebrates to vent habitats. Many genes linked to hydrothermal adaptation have been studied. We summarize the findings related to these genetic adaptations and discuss which new techniques can facilitate studies in the future.
Collapse
Affiliation(s)
- Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Yang Zhou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Zhuo Yang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Sousa CSV, Sun J, Mestre NC. Potential biomarkers of metal toxicity in deep-sea invertebrates - A critical review of the omics data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175628. [PMID: 39163939 DOI: 10.1016/j.scitotenv.2024.175628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Deep-sea mining (DSM) activities are expected to release potentially toxic metal mixtures through the generation of sediment plumes to the marine environment. This may disrupt the normal functioning of biological mechanisms, adversely affecting deep-sea invertebrate organisms. It is thus essential to understand the ecotoxicological effects from these toxic elements in deep-sea organisms and the omics approaches applied to ecotoxicology are seen as promising tools. Here, we provide an overview of the principal biological modifications identified in deep-sea invertebrates when exposed to metals and critically evaluate the current knowledge and discuss which potential biomarkers may be useful after metal exposure. Most of the 50 omics studies on deep-sea invertebrates revised are comparative transcriptomes (n = 41). Forty-three potential biomarker candidates are highlighted from immune system, 46 from cellular metabolism and 29 from oxidative stress. The processes mostly affected by metal toxicity in deep-sea invertebrates are related to innate immune defense; sulfur, chitin, and catabolic metabolism; antioxidation; and detoxification. We acknowledge the current limitations and future perspectives for their uses and emphasize the need to invest in further ecotoxicological studies using the omics approaches.
Collapse
Affiliation(s)
- Cármen S V Sousa
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Nélia C Mestre
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
4
|
Zhou L, Lian C, He Y, Chi X, Chen H, Zhong Z, Wang M, Cao L, Wang H, Zhang H, Li C. Toxicology assessment of deep-sea mining impacts on Gigantidas platifrons: A comparative in situ and laboratory metal exposure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173184. [PMID: 38750754 DOI: 10.1016/j.scitotenv.2024.173184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Deep-sea toxicology is essential for deep-sea environmental impact assessment. Yet most toxicology experiments are conducted solely in laboratory settings, overlooking the complexities of the deep-sea environment. Here we carried out metal exposure experiments in both the laboratory and in situ, to compare and evaluate the response patterns of Gigantidas platifrons to metal exposure (copper [Cu] or cadmium [Cd] at 100 μg/L for 48 h). Metal concentrations, traditional biochemical parameters, and fatty acid composition were assessed in deep-sea mussel gills. The results revealed significant metal accumulation in deep-sea mussel gills in both laboratory and in situ experiments. Metal exposure could induce oxidative stress, neurotoxicity, an immune response, altered energy metabolism, and changes to fatty acid composition in mussel gills. Interestingly, the metal accumulating capability, biochemical response patterns, and fatty acid composition each varied under differing experimental systems. In the laboratory setting, Cd-exposed mussels exhibited a higher value for integrated biomarker response (IBR) while in situ the Cu-exposed mussels instead displayed a higher IBR value. This study emphasizes the importance of performing deep-sea toxicology experiments in situ and contributes valuable data to a standardized workflow for deep-sea toxicology assessment.
Collapse
Affiliation(s)
- Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yameng He
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xupeng Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
5
|
Bultelle F, Le Saux A, David E, Tanguy A, Devin S, Olivier S, Poret A, Chan P, Louis F, Delahaut L, Pain-Devin S, Péden R, Vaudry D, Le Foll F, Rocher B. Cadmium Highlights Common and Specific Responses of Two Freshwater Sentinel Species, Dreissena polymorpha and Dreissena rostriformis bugensis. Proteomes 2024; 12:10. [PMID: 38651369 PMCID: PMC11036304 DOI: 10.3390/proteomes12020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Zebra mussel (ZM), Dreissena polymorpha, commonly used as a sentinel species in freshwater biomonitoring, is now in competition for habitat with quagga mussel (QM), Dreissena rostriformis bugensis. This raises the question of the quagga mussel's use in environmental survey. To better characterise QM response to stress compared with ZM, both species were exposed to cadmium (100 µg·L-1), a classic pollutant, for 7 days under controlled conditions. The gill proteomes were analysed using two-dimensional electrophoresis coupled with mass spectrometry. For ZM, 81 out of 88 proteoforms of variable abundance were identified using mass spectrometry, and for QM, 105 out of 134. Interestingly, the proteomic response amplitude varied drastically, with 5.6% of proteoforms of variable abundance (DAPs) in ZM versus 9.4% in QM. QM also exhibited greater cadmium accumulation. Only 12 common DAPs were observed. Several short proteoforms were detected, suggesting proteolysis. Functional analysis is consistent with the pleiotropic effects of the toxic metal ion cadmium, with alterations in sulphur and glutathione metabolisms, cellular calcium signalling, cytoskeletal dynamics, energy production, chaperone activation, and membrane events with numerous proteins involved in trafficking and endocytosis/exocytosis processes. Beyond common responses, the sister species display distinct reactions, with cellular response to stress being the main category involved in ZM as opposed to calcium and cytoskeleton alterations in QM. Moreover, QM exhibited greater evidence of proteolysis and cell death. Overall, these results suggest that QM has a weaker stress response capacity than ZM.
Collapse
Affiliation(s)
- Florence Bultelle
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Aimie Le Saux
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Elise David
- UMR-I 02 INERIS-SEBIO, UFR SEN, Reims Champagne-Ardenne University, 51100 Reims, France; (E.D.)
| | - Arnaud Tanguy
- UMR 7144, CNRS, Station Biologique de Roscoff, Sorbonne University, 29680 Roscoff, France;
| | - Simon Devin
- LIEC, CNRS, UFR SCIFA, Lorraine University, 57000 Metz, France; (S.D.)
| | - Stéphanie Olivier
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Agnès Poret
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Philippe Chan
- INSERM US 51, CNRS UAR 2026, HeRacLeS, Rouen Normandie University, 76821 Mont-Saint-Aignan, France
- PISSARO IRIB, Rouen Normandie University, 76821 Mont-Saint-Aignan, France
| | - Fanny Louis
- UMR-I 02 INERIS-SEBIO, UFR SEN, Reims Champagne-Ardenne University, 51100 Reims, France; (E.D.)
- LIEC, CNRS, UFR SCIFA, Lorraine University, 57000 Metz, France; (S.D.)
| | - Laurence Delahaut
- UMR-I 02 INERIS-SEBIO, UFR SEN, Reims Champagne-Ardenne University, 51100 Reims, France; (E.D.)
| | | | - Romain Péden
- UMR-I 02 INERIS-SEBIO, UFR SEN, Reims Champagne-Ardenne University, 51100 Reims, France; (E.D.)
| | - David Vaudry
- INSERM U982 DC2N, Rouen Normandie University, 76821 Mont-Saint-Aignan, France
| | - Frank Le Foll
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| | - Béatrice Rocher
- UMR-I 02 INERIS-SEBIO, UFR ST, Scale FR-CNRS 3730, Le Havre Normandie University, 76063 Le Havre, France (B.R.)
| |
Collapse
|
6
|
Li Y, Shi X, Chen Y, Luo S, Qin Z, Chen S, Wu Y, Yu F. Quantitative proteomic analysis of the mechanism of Cd toxicity in Enterobacter sp. FM-1: Comparison of different growth stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122513. [PMID: 37673320 DOI: 10.1016/j.envpol.2023.122513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Enterobacter sp. are widely used in bioremediation, but the mechanism of Cadmium (Cd) toxicity in Enterobacter sp. has been poorly studied. In the present study, we determined the tolerance of Enterobacter sp. FM-1 to Cd by analyzing the physiological and biochemical responses of FM-1 induced under Cd stress. Differentially expressed proteins (DEPs) under exposure to different Cd environments were analyzed by 4D-label-free proteomics to provide a comprehensive understanding of Cd toxicity in FM-1. The greatest total number of DEPs, 1148, was found in the High concentration vs. Control comparison group at 10 h. When protein expression was compared after different incubation times, FM-1 showed the highest Cd tolerance at 48 h. Additionally, with an increasing incubation time, different comparison groups gradually began to show similar growth patterns, which was reflected in the GO enrichment analysis. Notably, only 815 proteins were identified in the High concentration vs. Control group, and KEGG enrichment analysis revealed that these proteins were significantly enriched in the pyruvate metabolism, oxidative phosphorylation, peroxisome, glyoxylate and dicarboxylate metabolism, and citrate cycle pathways. These results suggested that an increased incubation time allows FM-1 adapt and survive in an environment with Cd toxicity, and protein expression significantly increased in response to oxidative stress in a Cd-contaminated environment during the pre-growth period. This study provides new perspectives on bacterial participation in bioremediation and expands our understanding of the mechanism of bacterial resistance under Cd exposure.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Xinwei Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yuyuan Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Zhongkai Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shuairen Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yamei Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
7
|
Meng C, Wang K, Zhang X, Zhu X. Effect of cadmium in the gonads of mussel (Mytilus coruscus): an ionomics and proteomics study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68373-68386. [PMID: 37120503 DOI: 10.1007/s11356-023-27208-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
The mussel Mytilus coruscus is an important and very popular seafood in China and widespread along the eastern coast of China. In this study, we investigated the molecular response of mussel gonads to cadmium accumulation at two concentrations (80 and 200 µg/L) for 30 days using ionomics and proteomics techniques. The shrinkage of the cells and moderate hemocytic infiltration were observed in the Cd-treated groups. The strontium, selenium (Se), and zinc contents were significantly altered, and the relationships between iron, copper, Se, manganese, calcium, sodium, and magnesium were also significantly altered. Label-free quantitative proteomics analysis revealed a total of 227 differentially expressed proteins. These proteins were associated with multiple biological processes, including the tricarboxylic acid cycle, structural reorganization of cells, biosynthesis of amino acids, inflammatory response of cells, and tumorigenesis. Nonetheless, our ionomics and proteomics analysis revealed that mussels could partly alleviate the adverse effects of Cd by altering the metal contents and correlations between minerals, thereby enhancing the biosynthesis of some amino acids and activity of antioxidant enzymes. Overall, this study provides an insight into the mechanism underlying Cd toxicity in mussel gonads from a metal and protein perspective.
Collapse
Affiliation(s)
- Chunying Meng
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316100, People's Republic of China.
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China.
| | - Kuiwu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Xiaojun Zhang
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316100, People's Republic of China
| | - Xinyue Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
8
|
Wiśniewska K, Siatkowska M, Komorowski P, Napieralska K, Kasperkiewicz K, Surmiak-Stalmach K, Wilczek G. Effects of chronic exposure to cadmium and copper on the proteome profile of hemolymph in false widow spider Steatoda grossa (Theridiidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114448. [PMID: 38321667 DOI: 10.1016/j.ecoenv.2022.114448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
The aim of this study was to evaluate the quantitative and qualitative changes in the proteome of the hemolymph of female Steatoda grossa spiders (Theridiidae) that were chronically exposed to cadmium and copper in food and were additionally immunostimulated (phorbol 12-myristate 13-acetate (PMA); bacterial suspensions: Staphylococcus aureus (G+), Pseudomonas fluorescens (G-). It was found that the expression of nearly 90 proteins was altered in cadmium-intoxicated spiders and more than 60 in copper-exposed individuals. Regardless of the type of metal used, these proteins were mainly overexpressed in the hemolymph of the exposed spiders. On the other hand, immunostimulation did not significantly change the number of proteins with altered expression in metal-intoxicated individuals. Hemocyanin (Hc) was found to be the most abundant of the proteins identified with altered expression. In copper-intoxicated spiders, immunostimulation increased the expression of A-, E-, F-, and G-chain-containing proteins, while in the case of cadmium-intoxicates spiders, it decreased the expression of E- and A-chain-containing Hc and increased the expression of G-chain-containing Hc. Regardless of the type of metal and immunostimulant used, there was an increase in the expression of actin. In addition, cadmium increased the expression of cullin, vimentin, and ceruloplasmin. The changes observed in the expression of hemolymph proteins indicate their protective function in S. grossa (Theridiidae) spiders under conditions of metal exposure.
Collapse
Affiliation(s)
- Kamila Wiśniewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Małgorzata Siatkowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland; Laboratory of Molecular and Nanostructural Biophysics, Bionanopark Ltd. Dubois 114/116, 93-465 Łódź, Poland
| | - Piotr Komorowski
- Laboratory of Molecular and Nanostructural Biophysics, Bionanopark Ltd. Dubois 114/116, 93-465 Łódź, Poland; Department of Biophysics, Institute of Materials Science, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Kinga Napieralska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland; Laboratory of Molecular and Nanostructural Biophysics, Bionanopark Ltd. Dubois 114/116, 93-465 Łódź, Poland
| | - Katarzyna Kasperkiewicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Kinga Surmiak-Stalmach
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Grażyna Wilczek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
9
|
Sun X, Wang Y, Jiang T, Yuan X, Ren Z, Tuffour A, Liu H, Zhou Y, Gu J, Shi H. Nephrotoxicity Profile of Cadmium Revealed by Proteomics in Mouse Kidney. Biol Trace Elem Res 2021; 199:1929-1940. [PMID: 32803525 DOI: 10.1007/s12011-020-02312-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a highly toxic metal and kidney is its main target. However, the molecular effects and associated potential impacts of Cd-accumulated kidney have not been well investigated. In this study, mouse was used as a model to investigate the Cd-induced proteomic profile change in kidney, and a total of 34 differentially expressed proteins were detected by two-dimensional gel electrophoresis (2-DE) and further identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Through Gene Ontology analysis and KEGG pathway annotation, it showed that Cd-regulated kidney metabolism and promoted renal damage and cell migration. By validation of Western blotting and RT-qPCR, metastasis-related proteins LIM and SH3 domain protein 1 (LASP1) and phosphoenolpyruvate carboxykinase/cytosolic [GTP] (PEPCK1) were confirmed to be upregulated; Acyl-CoA synthetase medium-chain family member 3 (ACSM3) was downregulated. Furthermore, carcinoma development-related proteins initiation factor 4A (eIF4A) and pyridoxine-5'-phosphate oxidase (PNPO) were upregulated, and pyridoxal kinase (PK) was downregulated. The downregulation of Na(+)/H(+) exchange regulatory cofactor (NHERF3) might promote renal damage which associated with decrease of transferrin (TRF) in kidney. Taken together, our results revealed proteomic profile of Cd-induced nephrotoxicity and provided data for further insights into the mechanisms of Cd toxicity.
Collapse
Affiliation(s)
- Xi Sun
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yanwei Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Tingya Jiang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiao Yuan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zhen Ren
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Alex Tuffour
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Haitao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
10
|
Trincone A. Application-Oriented Marine Isomerases in Biocatalysis. Mar Drugs 2020; 18:md18110580. [PMID: 33233366 PMCID: PMC7700177 DOI: 10.3390/md18110580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
The class EC 5.xx, a group of enzymes that interconvert optical, geometric, or positional isomers are interesting biocatalysts for the synthesis of pharmaceuticals and pharmaceutical intermediates. This class, named “isomerases,” can transform cheap biomolecules into expensive isomers with suitable stereochemistry useful in synthetic medicinal chemistry, and interesting cases of production of l-ribose, d-psicose, lactulose, and d-phenylalanine are known. However, in two published reports about potential biocatalysts of marine origin, isomerases are hardly mentioned. Therefore, it is of interest to deepen the knowledge of these biocatalysts from the marine environment with this specialized in-depth analysis conducted using a literature search without time limit constraints. In this review, the focus is dedicated mainly to example applications in biocatalysis that are not numerous confirming the general view previously reported. However, from this overall literature analysis, curiosity-driven scientific interest for marine isomerases seems to have been long-standing. However, the major fields in which application examples are framed are placed at the cutting edge of current biotechnological development. Since these enzymes can offer properties of industrial interest, this will act as a promoter for future studies of marine-originating isomerases in applied biocatalysis.
Collapse
Affiliation(s)
- Antonio Trincone
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|
11
|
Zhou L, Cao L, Wang X, Wang M, Wang H, Zhong Z, Xu Z, Chen H, Li L, Li M, Wang H, Zhang H, Lian C, Sun Y, Li C. Metal adaptation strategies of deep-sea Bathymodiolus mussels from a cold seep and three hydrothermal vents in the West Pacific. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136046. [PMID: 31863974 DOI: 10.1016/j.scitotenv.2019.136046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Deep-sea Bathymodiolus mussels are ubiquitous in most cold seeps and hydrothermal fields, where they have adapted to various toxic environments including high metal exposure. However, there is scarce knowledge of metal accumulation and metal-related biomarkers in B. mussels. Here, we present data for metal concentrations (Ag, Cd, Cr, Cu, Fe, Mn, Pb, and Zn) and metal related biomarkers (superoxide dismutase-SOD, catalase-CAT, glutathione peroxidase-GPX, glutathione-GSH, metallothioneins-MTs, and lipid peroxidation-LPO) in different tissues of B. mussels from four different deep-sea geochemical settings: one cold seep and three vent fields in the West Pacific Ocean. Results showed that mussel gills generally exhibited higher metal enrichment than the mantle. Mussels from hydrothermal vents usually had higher metal concentrations (Fe, Cr, Cd, and Pb) than those from cold seep, which could be related to their higher contents in fluids or sediments. However, despite quite different metals loads among the geochemical environment settings, Mn, Zn, and Cu concentrations varied over a smaller range across the sampling sites, implying biological regulation by deep-sea mussels for these elements. Several statistically significant correlations were observed between SOD, CAT, GSH, MTs, and metal levels in analyzed tissues. Although the vent ecosystem is harsher than the cold seep ecosystem, according to our results their mussels' biomarker levels were not so different. This finding suggests that some adaptive or compensatory mechanisms may occur in chronically polluted deep-sea mussels. Principal component analysis allowed for distinguishing different deep-sea settings, indicating that B. mussels are robust indicators of their living environments. We also compared our results with those reported for coastal mussels. To our best knowledge, this is the first integrated study to report metal accumulation and metal-related biomarkers in the deep-sea B. mussels from the West Pacific.
Collapse
Affiliation(s)
- Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaocheng Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haining Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zheng Xu
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Leilei Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengna Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yan Sun
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
12
|
Kwan YH, Zhang D, Mestre NC, Wong WC, Wang X, Lu B, Wang C, Qian PY, Sun J. Comparative Proteomics on Deep-Sea Amphipods after in Situ Copper Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13981-13991. [PMID: 31638389 DOI: 10.1021/acs.est.9b04503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interest in deep-sea mining increased along with the environmental concerns of these activities to the deep-sea fauna. The discovery of optimal biomarkers of deep-sea mining activities in deep-sea species is a crucial step toward the supply of important ecological information for environmental impact assessment. In this study, an in situ copper exposure experiment was performed on deep-sea scavenging amphipods. Abyssorchomene distinctus individuals were selected among all the exposed amphipods for molecular characterization. Copper concentration within the gut was assessed, followed by a tandem mass tag-based coupled with two-dimensional liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) applied to identify and quantify the protein expression changes after 48 h of exposure. 2937 proteins were identified and annotated, and 1918 proteins among all identified proteins were assigned by at least two nonambiguous peptides. The screening process was performed based on the differences in protein abundance and the specific correlation between the proteins and copper in previous studies. These differentially produced proteins include Na+/K+ ATPase, cuticle, chitinase, and proteins with unknown function. Their abundances showed correlation with copper and had high sensitivity to indicate the copper level, being here proposed as biomarker candidates for deep-sea mining activities in the future. This is a key step in the development of environmental impact assessment of deep-sea mining activities integrating ecotoxicological data.
Collapse
Affiliation(s)
- Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Dongsheng Zhang
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Nélia C Mestre
- CIMA - Centro de Investigação Marinha e Ambiental , Universidade do Algarve , Campus de Gambelas, 8005-139 Faro , Portugal
| | - Wai Chuen Wong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Xiaogu Wang
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Bo Lu
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Chunsheng Wang
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| |
Collapse
|