1
|
Kwak JI, Kim D, An YJ. Evidence of soil particle-induced ecotoxicity in old abandoned mining area. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134163. [PMID: 38554518 DOI: 10.1016/j.jhazmat.2024.134163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Ecotoxicity of heavy metals in soil is primarily associated with their bioaccessibility and bioavailability in the soil media. However, in some exceptional cases, soil ecotoxicity has been observed despite high total metal concentrations and low extractable metal concentrations in contaminated field sites; therefore, other exposure pathways must be considered. Therefore, the aim of this study was to evaluate the soil-particle induced ecotoxicity in an old mining area. We hypothesized that heavy metals, strongly adsorbed onto soil particles of consumable size for soil organisms, exhibit ecotoxicity, especially on soil particles ∼1 µm to 300 µm in size. A plant seedling assay, in vivo cytotoxicity assay using earthworm immune cells, and a metal bioconcentration assessment were performed. The results of soil particle toxicity revealed that the soil from the study area (A1-A4) had a low contribution to the soil ecotoxicity of extractable metals. For instance, the concentration of extractable arsenic was only 1.9 mg/kg soil, despite the total arsenic concentration reaching 36,982 mg/kg soil at the A1 site. The qualitative and quantitative analyses using SEM-EDX and ICP-OES, as well as principal component analyses, supported the hypothesis of the present study. Overall, the study results emphasize the importance of soil particle-induced ecotoxicity in long-term contaminated field soils. Our study results can inform on effective site-specific soil ecological risk assessment as they suggest the inclusion of soil particle-induced ecotoxicity as an important criterion in old, contaminated field sites, even when the extractable metal fraction in the field soil is low. ENVIRONMENTAL IMPLICATION: Bioaccessibility and bioavailability are primary factors contributing to the soil ecotoxicity of heavy metals. However, in some cases, such as long-term contaminated field sites, soil ecotoxicity has been confirmed even when low extractable metal concentrations were detected alongside high total metal concentrations. The findings of this study reveal that soil particles of edible size could be sources of soil ecotoxicity in the case of long-term contaminated fields with low extractable metal concentrations. The results of this study would contribute to the area of site-specific soil ecological risk assessment.
Collapse
Affiliation(s)
- Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, Seoul 05029, South Korea
| | - Dokyung Kim
- Department of Environmental Health Science, Konkuk University, Seoul 05029, South Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
2
|
Joseph J, Ray JG. A critical review of soil algae as a crucial soil biological component of high ecological and economic significance. JOURNAL OF PHYCOLOGY 2024; 60:229-253. [PMID: 38502571 DOI: 10.1111/jpy.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024]
Abstract
Aero-terrestrial algae are ecologically and economically valuable bioresources contributing to carbon sequestration, sustenance of soil health, and fertility. Compared to aquatic algae, the literature on subaerial algae is minimal, including studies of distinctive habitats such as forest soils, agricultural fields, deserts, polar regions, specific subaerial zones, artificial structures, and tropical soils. The primary goal here was to identify the gaps and scope of research on such algae. Accordingly, the literature was analyzed per sub-themes, such as the "nature of current research data on terrestrial algae," "methodological approaches," "diversity," "environmental relationships," "ecological roles," and "economic significance." The review showed there is a high diversity of algae in soils, especially members belonging to the Cyanophyta (Cyanobacteria) and Chlorophyta. Algal distributions in terrestrial environments depend on the microhabitat conditions, and many species of soil algae are sensitive to specific soil conditions. The ecological significance of soil algae includes primary production, the release of biochemical stimulants and plant growth promoters into soils, nitrogen fixation, solubilization of minerals, and the enhancement and maintenance of soil fertility. Since aero-terrestrial habitats are generally stressed environments, algae of such environments can be rich in rare metabolites and natural products. For example, epilithic soil algae use wet adhesive molecules to fix them firmly on the substratum. Exploring the ecological roles and economic utility of soil and other subaerial algae could be helpful for the development of algae-based industries and for achieving sustainable soil management.
Collapse
Affiliation(s)
- Jebin Joseph
- Department of Botany, St Berchmans College, Changanacherry, Kerala, India
- Laboratory of Ecology and Plant Science, School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Joseph George Ray
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
3
|
Kim D, Kwak JI, Lee TY, Kim L, Kim H, Nam SH, Hwang W, Wee J, Lee YH, Kim S, Kim JI, Hong S, Hyun S, Jeong SW, An YJ. TRIAD method to assess ecological risks of contaminated soils in abandoned mine sites. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132535. [PMID: 37714001 DOI: 10.1016/j.jhazmat.2023.132535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Site-specific soil ecological risk assessment is important for protecting soil ecosystems because it reflects the environmental factors at the site to detect ecological risks and develop risk management measures. This study assessed the ecological risks from chemical pollutants in abandoned mine sites using the TRIAD approach, evaluating its overall applicability, including the tiered system of assessment. A site-specific soil ecological risk assessment was conducted for five abandoned mine sites (Sites 1-4 and R, the reference site); integrated risks (IRs) for each site were calculated. Our results of the Tier 2 assessment showed that IRs at Sites 1-4 were 0.701, 0.758, 0.840, and 0.429, respectively. The IR classification was moderate, high, high, and low risk, in that order for Sites 1-4, the same as that for Tier 1. The IR had more varied analyses, emphasizing the significance of conducting higher tiered analyses under TRIAD while maintaining a balance between soil ecosystem protection and socioeconomic costs. Multiple analyses reduced the uncertainty of IR, thus enabling efficient risk management decision-making to protect soil ecosystems. Our study provides a basis for using the TRIAD for soil assessment and establishing policies for site-specific soil ecological risk assessments.
Collapse
Affiliation(s)
- Dokyung Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae-Yang Lee
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Haemi Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sun Hwa Nam
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Wonjae Hwang
- Ojeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - June Wee
- Ojeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Yong Ho Lee
- Humanities and Ecology Consensus Resilience Laboratory, Hankyong National University, Anseong 17579, Republic of Korea
| | - Songhee Kim
- Department of Environmental Engineering, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Ji-In Kim
- Soil and Groundwater Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Sunhee Hong
- Department of Plant Resources and Landscape, Hankyong National University, Anseong 17579, Republic of Korea
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Seung-Woo Jeong
- Department of Environmental Engineering, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Nam SH, Lee J, An YJ. The potential of Euglena species as a bioindicator for soil ecotoxicity assessment. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109586. [PMID: 36858138 DOI: 10.1016/j.cbpc.2023.109586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Currently, there are no standard international test methods for assessing aquatic and soil toxicity, with aquatic toxicity tests based on limited Euglena species. Here, we proposed Euglena species as extended test species, especially as new soil test species for a paper-disc soil method, considering its ecologically important roles in providing highly bioavailable in-vivo nutrients to upper trophic level organisms. We conducted experiments to identify the optimal exposure duration for two Euglena species (Euglena viridis and Euglena geniculata). We demonstrated the toxic effects of nickel (model contaminant) on their photosynthetic parameters and growth in freshwater. The growth and photosynthetic activity of three Euglena species were significantly inhibited in nickel-contaminated soil during paper-disc soil tests, especially the test species adsorbed onto paper-disc soil. Euglena gracilis was more sensitive to nickel than E. viridis and E. geniculata in freshwater and soil. Thus, E. viridis and E. geniculata have potential as additional test species for improving test species diversity, while all three species have potential as new soil test species for soil toxicity assessment. Thus, results these species may be suitable for routine aquatic toxicity testing and new soil toxicity testing, addressing the current paucity of test species in freshwater and soil toxicity assessment.
Collapse
Affiliation(s)
- Sun-Hwa Nam
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Jieun Lee
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Xu Z, Zhang Z, Peng S, Yuan Y, Wang X. Influences of lithium on soil properties and enzyme activities. CHEMOSPHERE 2023; 313:137458. [PMID: 36470353 DOI: 10.1016/j.chemosphere.2022.137458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Lithium is an emerging environmental contaminant under the current sustainable energy strategy, but little is known about its contamination characteristic in soil. In this study, soil properties and enzyme activities in soils treated with 10-1280 mg kg-1 lithium were measured. The results showed that the content of ammonium nitrogen, total nitrogen, and exchangeable potassium significantly increased by 64.39%-217.73%, 23.06%-131.86%, and 4.76%-16.10%, while electric conductivity and available phosphorus content in lithium treated soils was respectively as 1.10-fold-13.44-fold and 1.27-fold-6.66-fold comparing to CK value. Soil pH and cation exchange capacity slightly declined and increased, respectively, and there was no significant variation in total organic carbon. However, nitrate nitrogen and sulfate content significantly decreased under higher lithium stress. On the other hand, lower lithium treatment level of 10, 20, 40, or 80 mg kg-1 selectively promoted the activities of sucrase, urease, aryl sulfatase, and peroxidase, while the protease, neutral phosphatase, phytase, and lipase were significantly inhibited under all lithium levels, indicating a weaken geochemical cycling of carbon, nitrogen, phosphorus, and sulfur. Then, lithium's 10% and 50% ecological dose (ED10 and ED50) was respectively fitted as 21.18 and 1408.67 mg kg-1 basing on Geometric Mean Index. The influences of lithium on soil were adverse. This study provided important insights into understanding the characteristics of lithium contamination, informing risk assessment and guiding remediation.
Collapse
Affiliation(s)
- Zhinan Xu
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Ziqi Zhang
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Si Peng
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Yuan Yuan
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Xiangrong Wang
- Center for Urban Eco-planning and Design, Department of Environmental Science and Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Kim D, Kwak JI, Hwang W, Lee YH, Lee YS, Kim JI, Hong S, Hyun S, An YJ. Site-specific ecological risk assessment of metal-contaminated soils based on the TRIAD approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128883. [PMID: 35427964 DOI: 10.1016/j.jhazmat.2022.128883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Ecological risk assessment based on scientific data is crucial for understanding causal relationships between chemical pollution and environmental risks. Simultaneously, a balance is required between socioeconomic factors and scientific evidence. The TRIAD approach, which incorporates three lines of evidence (LoE)-chemical (Chem-LoE), ecotoxicological (Ecotox-LoE), and ecological (Eco-LoE)-was applied in five sites of an abandoned mine for site-specific soil ecological risk assessment (SERA). In combination, the three LoEs showed that two sites had extremely high risks, one site had moderate risk, and the other site had low risk. At all sites, Chem-LoE exhibited high-integrated risk values. In Ecotox-LoE and Eco-LoE, some species were not affected despite high metal concentrations in the soil samples collected from the sites, indicating that the bioavailability of metals differed according to the physiochemical properties of the soil medium. This study is significant as multiple analyses were performed considering ecosystem structure to reduce uncertainty in SERA. The results provide information to support effective decision-making risk management to protect the soil ecosystem. Moreover, these findings will be useful in establishing policies and priorities for soil risk management.
Collapse
Affiliation(s)
- Dokyung Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Wonjae Hwang
- Department of Environmental Science and Ecological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea; Ojeong Eco-Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Yong-Ho Lee
- Institute of Ecological Phytochemistry, Hankyong National University, Anseong 17579, Republic of Korea
| | - Yun-Sik Lee
- Ojeong Eco-Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Ji-In Kim
- Soil and Groundwater Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Sunhee Hong
- Institute of Ecological Phytochemistry, Hankyong National University, Anseong 17579, Republic of Korea
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Application of Soil Washing and Thermal Desorption for Sustainable Remediation and Reuse of Remediated Soil. SUSTAINABILITY 2021. [DOI: 10.3390/su132212523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global governance of soil resources as well as revitalizations and remediation of degraded areas seem to be necessary actions for sustainable development. A great deal of effort has gone into developing remediation technologies to remove or reduce the impact of these contaminants in the environment. However, contaminated soil remediations in stringent conditions deteriorate soil properties and functions and create the need for efficient soil revitalization measures. Soil washing (SW) and thermal desorption (TD) are commonly used to remediate contaminated soil and can significantly reduce the contaminant, sometimes to safe levels where reuse can be considered; however, the effects of treatment on soil quality must be understood in order to support redevelopment after remediation. In this review, we discussed the effects of SW and TD on soil properties, including subsequent soil quality and health. Furthermore, the importance of these techniques for remediation and reclamation strategies was discussed. Some restoration strategies were also proposed for the recovery of soil quality. In addition, remediated and revitalized soil can be reused for various purposes, which can be accepted as an implementation of sustainable remediation. This review concludes with an outlook of future research efforts that will further shift SW and TD toward sustainable remediation.
Collapse
|
8
|
Nam SH, An YJ. Perspectives on microalgae as model organisms toward the standardization of soil algal toxicity test methods. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109144. [PMID: 34302981 DOI: 10.1016/j.cbpc.2021.109144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
When considering test species for soil ecotoxicity, the development of new model organisms is often suggested to increase the reliability of ecological risk assessments. Ubiquitous soil algae could offer potential test species for assessing various soil pollution levels. Currently, there are few reviews offering comprehensive perspectives on stressors-based toxicological studies using microalgae in soil media, with the majority of scholarly attention paid to the toxicological effects of freshwater algae or marine algae in aquatic ecosystems. In this review, we focus on current toxicological studies of microalgae assessed in soil-related media and suggest considerations for using microalgae in soil toxicity tests based on 22 publications (1998-2021). In addition, we analyzed characteristics of soil algae based on criteria for selecting test species and suggest that future research should be directed toward the standardization of soil algal toxicity test methods. This review discusses a promising method using soil algae as new test species for soil toxicity assessment as cost-effective and environmentally sound soil quality bioindicators. The review also addresses the lack of understanding behind how soil algae can serve as important test species for soil ecotoxicity.
Collapse
Affiliation(s)
- Sun-Hwa Nam
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
9
|
Xu Z, Yang Z, Zhu T, Shu W, Geng L. Ecological improvement of antimony and cadmium contaminated soil by earthworm Eisenia fetida: Soil enzyme and microorganism diversity. CHEMOSPHERE 2021; 273:129496. [PMID: 33524758 DOI: 10.1016/j.chemosphere.2020.129496] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 05/28/2023]
Abstract
Vermiremediation on improvement of antimony (Sb) and cadmium (Cd) contaminated soil was less reported. In this study, earthworm Eisenia fetida was exposed into soil spiked with Sb and Cd and their mixture for 30 days, and then we measured multiple soil enzyme activities and bacteria communities via enzymatic reaction and high-throughput sequencing of 16 S rRNA genes. The results showed that Sb and Cd at high treatment levels inhibited the activities of urease, neutral phosphatase and protease significantly, but earthworm could promote the activities of urease and neutral phosphatase by 17.75%-121.91% and 1.46%-118.97%, respectively. However, earthworms inhibited catalase and had no effect on protease. The Geometric Mean Index suggested that earthworms led to a higher soil biochemistry function. According to a taxonomic analysis, bacterial community structure predominantly consisted of phylum Proteobacteria, Actinobacteria, Firmicutes, etc. and class Gammaproteobacteria, Actinobacteria, Alphaproteobacteria, etc.; furthermore, Pielou index and Shannon index (Alpha diversity in the habitat) indicated that bacteria diversity and evenness increased in the presence of earthworms. The heating map revealed that earthworms made genus Sphingomonas, Flavobacterium, etc. and species Sphingomonas jaspsi, Conexibacter, etc. dominate. Overall, earthworm is a suitable remediation species to improve the ecological function of heavy metal polluted soil. However, the specific mechanism and causal relationship of how earthworm to control enzyme activity and bacteria community remained to be explored.
Collapse
Affiliation(s)
- Zhinan Xu
- School of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Zaifu Yang
- School of Environmental Science and Engineering, Donghua University, Shanghai, China.
| | - Tong Zhu
- School of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Wenjun Shu
- School of Environmental Science and Engineering, Donghua University, Shanghai, China
| | - Lisha Geng
- School of Environmental Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
10
|
Selecting Bioassay Test Species at the Screening Level of Soil Ecological Risk Assessments. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For site-specific soil ecological risk assessments (SERAs), an integrated chemical, ecotoxicological, and ecological analysis needs to be performed. The SERA guidelines of international institutions and countries recommend that a SERA be initiated at the screening level to save time and social economic cost; however, they provide no unified test species for this screening level. This study performed SERAs for field soils and confirmed the importance of selecting bioassay test species that reflect the ecotoxicity of field soils at the screening level. To confirm test species that reflect the ecological risk of field soils, correlation analysis was performed on the results of each bioassay with the integrated ecotoxicological risk index (EtoxRI). Our results showed that soil algae, nematodes, and plants were the most representative species in soil assays, with high correlation coefficients with EtoxRI. The results imply the importance of selecting test species that represent ecological risk for the screening level of SERAs. Based on these findings, when using SERAs, species sensitivity, ecological relevance, and economic aspects should be considered when selecting the bioassay test species.
Collapse
|
11
|
Rapid In Situ Biomonitoring of Subsoil Contamination by Applying an Algae-Soaked Disc Seeding Assay. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Various pollutants are pervasive in soil environments due to human activities, thereby damaging soil ecosystems. In this study, extension of a previously developed algae-soaked disc seeding assay for periodic evaluation of subsoil contamination over time was described. The assay can be used in different contamination configurations of silver nanoparticles in combination with examination of cell morphology, esterase activity, oxidative stress, and membrane permeability. In addition, we periodically attempted to repeat the algae-soaked disc seeding assay every three weeks. We evaluated applicability of this algae-soaked disc seeding assay using alga Chlamydomonas reinhardtii exposed to heterogeneous silver nanoparticle-contaminated soils. The results demonstrated that this assay is applicable for monitoring a change of subsoil contamination by periodic evaluation over time. The developed assay was identified as a periodically rapid in situ biomonitoring technique to measure subsoil contamination over time.
Collapse
|
12
|
Heavy Metals in Agricultural Soils of the Lihe River Watershed, East China: Spatial Distribution, Ecological Risk, and Pollution Source. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122094. [PMID: 31200492 PMCID: PMC6617031 DOI: 10.3390/ijerph16122094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 11/30/2022]
Abstract
Concentrations of cadmium, chromium, copper, nickel, lead, and zinc in agricultural soils at 32 sites in the Lihe River Watershed of the Taihu region, East China, and their potential ecological risks and possible sources were investigated. Enrichment factor analysis demonstrated enrichment in the order Cd > Pb > Zn > Cu > Ni > Cr. The potential ecological risk index and risk assessment code analyses indicated that, of the metals studied, Cd posed the most significant ecological risk in the study area. Statistical analyses, GIS mapping, and enrichment factor analysis suggested that Cd, Pb, Cu, and Zn were derived mainly from anthropogenic sources, including agricultural, industrial, and vehicular emissions, while Cr and Ni were mainly from natural sources. Positive matrix factorization revealed that Cd, Cr, Cu, Ni, Pb, and Zn were sourced from industrial and vehicular emissions (73.7%, 21.3%, 71.4%, 20.3%, 75.0%, and 62.2%, respectively), the agricultural sector (26.3%, 36.3%, 6.8%, 38.9%, 15.7%, and 6.9%, respectively), and parent materials (0%, 42.4%, 21.8%, 40.8%, 9.2%, and 30.9%, respectively). It was recommended that strategies be implemented to reduce industrial point-source pollution.
Collapse
|