1
|
Raheja Y, Sharma P, Gaur P, Gaur VK, Srivastava JK. Advancing bioremediation: biosurfactants as catalysts for sustainable remediation. Biodegradation 2025; 36:33. [PMID: 40237836 DOI: 10.1007/s10532-025-10128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Emerging contaminants such as persistent organic pollutants, perfluorinated compounds, and microplastics pose unparallel challenges to environmental health and current remediation techniques. Microbial biosurfactants, biodegradable compounds produced by microorganisms, have gained attention as eco-friendly alternatives for degrading recalcitrant pollutants. Unlike traditional chemical surfactants, biosurfactants offer the dual benefit of being derived from renewable resources while enhancing the solubility and bioavailability of hydrophobic contaminants. This review is novel in its comprehensive exploration of microbial biosurfactants as a one-step solution for tackling the most persistent environmental pollutants. It introduces recent advancements in metabolic engineering and alternative fermentation strategies that have significantly improved biosurfactant production. Furthermore, the review critically examines the current limitations, including high production costs and complex downstream processing, and proposes cutting-edge approaches to overcome these barriers, such as the use of low-cost feedstocks and integrated bioprocessing techniques. Beyond their established uses, this review also sheds light on their untapped potential in heavy metal removal and microplastic degradation areas that have received little attention. By emphasizing these novel applications and outlining pathways for large-scale production, this review offers valuable insights into how biosurfactants could play a transformative role in sustainable environmental remediation.
Collapse
Affiliation(s)
- Yashika Raheja
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Prachi Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Vivek Kumar Gaur
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India.
| | | |
Collapse
|
2
|
Xie G, Chen G, Yuan M, Song Y, Xiao Y, Qu Y, Cui T, Ren Y. Mechanisms and potential applications of different stimulants enhancing benzo[a]pyrene degradation based on cellular characteristics and transcriptomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125788. [PMID: 39914567 DOI: 10.1016/j.envpol.2025.125788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/24/2025]
Abstract
Benzo[a]pyrene (BaP) is a highly carcinogenic persistent organic pollutant, and biostimulation is an effective strategy to enhance its degradation. This study utilized Bacillus subtilis MSC4 as a BaP-degrading bacterium to investigate the effects of two different fermentation waste liquids as stimulants on BaP degradation. The mechanisms were analyzed and compared at both the cellular and molecular levels. The results showed that the stimulation percentages of yeast Yarrowia lipolytica extracellular metabolites (YEMs) and Lactobacillus plantarum fermentation waste solution (LPS) on the biodegradation of BaP reached 52.8% and 63.4%, respectively, compared to B treatment without biostimulant. Physiological analyses showed that both stimulants repaired cell morphology, more than doubled bacterial biomass, increased EPS secretion, enhanced bacterial activity, and significantly reduced oxidative stress by lowering ROS levels to 75-78% of those in the BaP-stressed group, allowing for repair of oxidative damage. Transcriptomic analysis indicated that both stimulants upregulated pathways related to central carbon metabolism, enhancing cell proliferation and energy supply. Additionally, YEMs promoted electron transport and BaP transmembrane transport and upregulated the synthesis of various monooxygenases, while LPS induced the upregulation of genes encoding quercetin dioxygenase and played a more active role in biofilm formation and enhancing BaP bioavailability. This study reveals the shared and distinct mechanisms by which YEMs and LPS enhance BaP biodegradation, providing theoretical guidance for the application of YEMs and LPS in the bioremediation of BaP-contaminated environments.
Collapse
Affiliation(s)
- Guanghong Xie
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Guotao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Meng Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuxin Song
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yibo Xiao
- Protoga Biotechnology Co., Ltd., Shenzhen, 518000, PR China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, PR China
| | - Yujiao Qu
- Protoga Biotechnology Co., Ltd., Shenzhen, 518000, PR China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, PR China
| | - Tangbing Cui
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Wu CY, Huang HT, Chiang YT, Lee KT. Surfactin inhibits enterococcal biofilm formation via interference with pilus and exopolysaccharide biosynthesis. BMC Microbiol 2025; 25:85. [PMID: 39994536 PMCID: PMC11852883 DOI: 10.1186/s12866-025-03786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
Enterococcus faecalis is a significant pathogen in healthcare settings and is frequently resistant to multiple antibiotics. This resistance is compounded by its ability to form biofilms, dense bacterial communities that are challenging to eliminate via standard antibiotic therapies. As such, targeting biofilm formation is considered a viable strategy for addressing these infections. This study assessed the effectiveness of surfactin, a cyclic lipopeptide biosurfactant synthesized by Bacillus subtilis natto NTU-18, in preventing biofilm formation by E. faecalis. Analytical characterization of surfactin was performed via liquid chromatography‒mass spectrometry (LC‒MS). Additionally, transcriptomic sequencing and quantitative PCR (qPCR) were used to investigate alterations in E. faecalis gene expression following treatment with surfactin. The data revealed notable suppression of crucial virulence-related genes responsible for pilus construction and exopolysaccharide synthesis, both of which are vital for E. faecalis adhesion and biofilm structure. Functional tests confirmed that surfactin treatment substantially reduced E. faecalis attachment to Caco-2 cell monolayers and curtailed exopolysaccharide production. Moreover, confocal laser scanning microscopy revealed significant thinning of the biofilms. These observations support the potential utility of surfactin as a therapeutic agent to manage biofilm-associated infections caused by E. faecalis.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Hung-Tse Huang
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Yu-Ting Chiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kung-Ta Lee
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Wen X, Xiang L, Harindintwali JD, Wang Y, He C, Fu Y, Wei S, Hashsham SA, Jiang J, Jiang X, Wang F. Mitigating risks from atrazine drift to soybeans through foliar pre-spraying with a degrading bacterium. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136224. [PMID: 39442306 DOI: 10.1016/j.jhazmat.2024.136224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Herbicides play a crucial role in managing weeds in agriculture, ensuring the productivity and quality of crops. However, herbicide drift poses a significant threat to sensitive plants, necessitating the consideration of ecosystem-based solutions to address this issue. In this study, foliar pre-spraying of atrazine-degrading Paenarthrobacter sp. AT5 was proposed as a new approach to mitigate the risks associated with atrazine drift on soybeans. Exposure to atrazine reduced chlorophyll levels and disturbed the antioxidant system and metabolic processes in soybean leaves, ultimately causing leaves to turn yellow. However, by pre-spraying, strain AT5 successfully colonized the surface of soybean leaves and mitigated the harmful effects of atrazine. This was achieved by slowing down atrazine absorption, expediting its reduction (half-life decreased from 2.22 d to 0.86 d), altering its degradation pathway (enhancing hydroxylation while weakening alkylation), and enhancing the interaction within phyllosphere bacteria communities. This study introduces a new approach that is both eco-friendly and user-friendly for reducing the risks of herbicide drift to sensitive crops, hence promoting the development of mixed cropping.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuhao Fu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Wei
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Syed A Hashsham
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xin Jiang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Qazi MA, Phulpoto IA, Wang Q, Dai Z. Advances in high-throughput screening approaches for biosurfactants: current trends, bottlenecks and perspectives. Crit Rev Biotechnol 2024; 44:1403-1421. [PMID: 38232958 DOI: 10.1080/07388551.2023.2290981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 07/27/2023] [Indexed: 01/19/2024]
Abstract
The market size of biosurfactants (BSs) has been expanding at an extremely fast pace due to their broad application scope. Therefore, the re-construction of cell factories with modified genomic and metabolic profiles for desired industrial performance has been an intriguing aspect. Typical mutagenesis approaches generate huge mutant libraries, whereas a battery of specific, robust, and cost-effective high-throughput screening (HTS) methods is requisite to screen target strains for desired phenotypes. So far, only a few specialized HTS assays have been developed for BSs that were successfully applied to obtain anticipated mutants. The most important milestones to reach, however, continue to be: specificity, sensitivity, throughput, and the potential for automation. Here, we discuss important colorimetric and fluorometric HTS approaches for possible intervention on automated HTS platforms. Moreover, we explain current bottlenecks in developing specialized HTS platforms for screening high-yielding producers and discuss possible perspectives for addressing such challenges.
Collapse
Affiliation(s)
- Muneer Ahmed Qazi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Pakistan
| | - Irfan Ali Phulpoto
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Pakistan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
6
|
Gajendra G, Pulimi M, Natarajan C, Mukherjee A. Occurrence, Toxicodynamics, and Mechanistic Insights for Atrazine Degradation in the Environment. WATER, AIR, & SOIL POLLUTION 2024; 235:649. [DOI: 10.1007/s11270-024-07439-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/11/2024] [Indexed: 01/12/2025]
|
7
|
Brito HA, Napp AP, Pereira E, Bach E, Borowski JVB, Passaglia LMP, Melo VMM, Moreira R, Foster EJ, Lopes FC, Vainstein MH. Enhanced low-cost lipopeptide biosurfactant production by Bacillus velezensis from residual glycerin. Bioprocess Biosyst Eng 2024; 47:1555-1570. [PMID: 38916653 DOI: 10.1007/s00449-024-03051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Biosurfactants (BSFs) are molecules produced by microorganisms from various carbon sources, with applications in bioremediation and petroleum recovery. However, the production cost limits large-scale applications. This study optimized BSFs production by Bacillus velezensis (strain MO13) using residual glycerin as a substrate. The spherical quadratic central composite design (CCD) model was used to standardize carbon source concentration (30 g/L), temperature (34 °C), pH (7.2), stirring (239 rpm), and aeration (0.775 vvm) in a 5-L bioreactor. Maximum BSFs production reached 1527.6 mg/L of surfactins and 176.88 mg/L of iturins, a threefold increase through optimization. Microbial development, substrate consumption, concentration of BSFs, and surface tension were also evaluated on the bioprocess dynamics. Mass spectrometry Q-TOF-MS identified five surfactin and two iturin isoforms produced by B. velezensis MO13. This study demonstrates significant progress on BSF production using industrial waste as a microbial substrate, surpassing reported concentrations in the literature.
Collapse
Affiliation(s)
- Henrique A Brito
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Amanda P Napp
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Evandro Pereira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Evelise Bach
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - João V B Borowski
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Luciane M P Passaglia
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Vania M M Melo
- Laboratório de Ecologia Microbiana e Biotecnologia, Departamento de Biologia, Universidade Federal Do Ceará, Fortaleza, Brasil
| | - Raphael Moreira
- Institute for Applied and Physical Chemistry, University of Bremen, 28359, Bremen, Germany
| | - E Johan Foster
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, Canada
| | - Fernanda C Lopes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Marilene H Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil.
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
8
|
Kenfaoui J, Dutilloy E, Benchlih S, Lahlali R, Ait-Barka E, Esmaeel Q. Bacillus velezensis: a versatile ally in the battle against phytopathogens-insights and prospects. Appl Microbiol Biotechnol 2024; 108:439. [PMID: 39145847 PMCID: PMC11327198 DOI: 10.1007/s00253-024-13255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
The escalating interest in Bacillus velezensis as a biocontrol agent arises from its demonstrated efficacy in inhibiting both phytopathogenic fungi and bacteria, positioning it as a promising candidate for biotechnological applications. This mini review aims to offer a comprehensive exploration of the multifaceted properties of B. velezensis, with particular focus on its beneficial interactions with plants and its potential for controlling phytopathogenic fungi. The molecular dialogues involving B. velezensis, plants, and phytopathogens are scrutinized to underscore the intricate mechanisms orchestrating these interactions. Additionally, the review elucidates the mode of action of B. velezensis, particularly through cyclic lipopeptides, highlighting their importance in biocontrol and promoting plant growth. The agricultural applications of B. velezensis are detailed, showcasing its role in enhancing crop health and productivity while reducing reliance on chemical pesticides. Furthermore, the review extends its purview in the industrial and environmental arenas, highlighting its versatility across various sectors. By addressing challenges such as formulation optimization and regulatory frameworks, the review aims to chart a course for the effective utilization of B. velezensis. KEY POINTS: • B. velezensis fights phytopathogens, boosting biotech potential • B. velezensis shapes agri-biotech future, offers sustainable solutions • Explores plant-B. velezensis dialogue, lipopeptide potential showcased.
Collapse
Affiliation(s)
- Jihane Kenfaoui
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Emma Dutilloy
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Salma Benchlih
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Rachid Lahlali
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - Essaid Ait-Barka
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France.
| |
Collapse
|
9
|
Wang J, Wang Z, Liu C, Song M, Xu Q, Liu Y, Yan H. Genome analysis of a newly isolated Bacillus velezensis-YW01 for biodegrading acetaldehyde. Biodegradation 2024; 35:539-549. [PMID: 38573500 DOI: 10.1007/s10532-024-10075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Acetaldehyde (AL), a primary carcinogen, not only pollutes the environment, but also endangers human health after drinking alcohol. Here a promising bacterial strain was successfully isolated from a white wine cellar pool in the province of Shandong, China, and identified as Bacillus velezensis-YW01 with 16 S rDNA sequence. Using AL as sole carbon source, initial AL of 1 g/L could be completely biodegraded by YW01 within 84 h and the cell-free extracts of YW01 has also been detected to biodegrade the AL, which indicate that YW01 is a high-potential strain for the biodegradation of AL. The optimal culture conditions and the biodegradation of AL of YW01 are at pH 7.0 and 38 °C, respectively. To further analyze the biodegradation mechanism of AL, the whole genome of YW01 was sequenced. Genes ORF1040, ORF1814 and ORF0127 were revealed in KEGG, which encode for acetaldehyde dehydrogenase. Furthermore, ORF0881 and ORF052 encode for ethanol dehydrogenase. This work provides valuable information for exploring metabolic pathway of converting ethanol to AL and subsequently converting AL to carboxylic acid compounds, which opened up potential pathways for the development of microbial catalyst against AL.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhihao Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chao Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Meijie Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
10
|
Carvalho FS, Tarabal VS, Livio DF, Cruz LF, Monteiro APF, Parreira AG, Guimarães PPG, Scheuerman K, Chagas RCR, da Silva JA, Gonçalves DB, Granjeiro JM, Sinisterra RD, Segura MEC, Granjeiro PA. Production and characterization of the lipopeptide with anti-adhesion for oral biofilm on the surface of titanium for dental implants. Arch Microbiol 2024; 206:354. [PMID: 39017726 DOI: 10.1007/s00203-024-04078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Titanium implants are subject to bacterial adhesion and peri-implantitis induction, and biosurfactants bring a new alternative to the fight against infections. This work aimed to produce and characterize the biosurfactant from Bacillus subtilis ATCC 19,659, its anti-adhesion and antimicrobial activity, and cell viability. Anti-adhesion studies were carried out against Streptococcus sanguinis, Staphylococcus aureus, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Proteus mirabilis as the minimum inhibitory concentration and the minimum bactericidal concentration. Cell viability was measured against osteoblast and fibroblast cells. The biosurfactant was classified as lipopeptide, with critical micelle concentration at 40 µg mL- 1, and made the titanium surface less hydrophobic. The anti-adhesion effect was observed for Staphylococcus aureus and Streptococcus sanguinis with 54% growth inhibition and presented a minimum inhibitory concentration of 15.7 µg mL- 1 for Streptococcus sanguinis and Aggregatibacter actinomycetemcomitans. The lipopeptide had no cytotoxic effect and demonstrated high potential application against bacterial biofilms.
Collapse
Affiliation(s)
- Fernanda Souza Carvalho
- Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of São João del-Rei, Divinópolis, MG, 35501-296, Brazil
| | - Vinícius Souza Tarabal
- Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of São João del-Rei, Divinópolis, MG, 35501-296, Brazil
| | - Diego Fernandes Livio
- Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of São João del-Rei, Divinópolis, MG, 35501-296, Brazil
| | - Luísa F Cruz
- Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of São João del-Rei, Divinópolis, MG, 35501-296, Brazil
| | - Ana P F Monteiro
- Chemistry Department, Federal University of Minas Gerais, Presidente Antônio Carlos Ave., 6627, Belo Horizonte, MG, 31270901, Brazil
| | - Adriano Guimarães Parreira
- Microbiology Laboratory, State University of Minas Gerais, Paraná Ave., 3001, Divinópolis, MG, 35501-179, Brazil
| | - Pedro P G Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Presidente Antônio Carlos Ave., 6627, Belo Horizonte, MG, 31270901, Brazil
| | - Karina Scheuerman
- Restorative Dentistry Department, Faculty of Dentistry, Federal University of Minas Gerais, Presidente Antônio Carlos Ave., 6627, Belo Horizonte, MG, 31270901, Brazil
| | - Rafael Cesar Russo Chagas
- Laboratory of Bioactive and Catalytic Compounds, Federal University of São João Del-Rei, Campus Centro Oeste, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - José Antônio da Silva
- Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of São João del-Rei, Divinópolis, MG, 35501-296, Brazil
| | - Daniel Bonoto Gonçalves
- Department of Biosystems Engineering, Federal University of São João del-Rei, Campus Dom Bosco, Padre João Pimentel St., 80, São João del Rei, MG, 36301-158, Brazil
| | - José Mauro Granjeiro
- Bioengineering Laboratory, National Institute of Metrology, Quality and Technology, Nossa Senhora das Graças Ave., 50, Duque de Caxias, RJ, 25250020, Brazil
- Dental Clinical Research, Dentistry School, Fluminense Federal University, Mario Santos Braga St., 28, Niterói, RJ, 24020140, Brazil
| | - Ruben Dario Sinisterra
- Chemistry Department, Federal University of Minas Gerais, Presidente Antônio Carlos Ave., 6627, Belo Horizonte, MG, 31270901, Brazil
| | - Maria E C Segura
- Restorative Dentistry Department, Faculty of Dentistry, Federal University of Minas Gerais, Presidente Antônio Carlos Ave., 6627, Belo Horizonte, MG, 31270901, Brazil
| | - Paulo Afonso Granjeiro
- Biotechnological Processes and Macromolecules Purification Laboratory, Campus Centro Oeste, Federal University of São João del-Rei, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
11
|
Zhang X, Xin Y, Wang J, Dhanasekaran S, Yue Q, Feng F, Gu X, Li B, Zhao L, Zhang H. Characterization of a Bacillus velezensis strain as a potential biocontrol agent against soft rot of eggplant fruits. Int J Food Microbiol 2024; 410:110480. [PMID: 37977077 DOI: 10.1016/j.ijfoodmicro.2023.110480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/24/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Postharvest soft rot of eggplant fruits caused by Pectobacterium carotovorum is a bacterial disease with a high disease incidence and produces substantial economic losses. This study aimed to control postharvest soft rot of eggplant fruits by Bacillus velezensis and investigate the possible control mechanisms based on the effects of B. velezensis on P. carotovorum subsp. carotovorum (Pcc) and eggplant fruits, respectively. B. velezensis effectively controlled postharvest soft rot of eggplant fruits and directly inhibited Pcc growth in vitro. The volatile metabolites produced by B. velezensis showed no inhibition on Pcc. Whereas the cell-free filtrate of B. velezensis significantly inhibited the growth of Pcc in vitro and in vivo. Notably, methanol-soluble precipitates obtained from cell-free filtrate showed significant inhibition on Pcc, and the primary inhibitory substances were identified as surfactin isoforms. Besides, iturin and fengycin isoforms with much lower relative abundance were also detected in the methanol-soluble precipitates. Furthermore, B. velezensis enhanced the activities of reactive oxygen species (ROS) scavenging enzymes in eggplant fruits that alleviated ROS and oxidative damage; thereby, B. velezensis enhanced the fruits' disease resistance.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yu Xin
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Junyi Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qingrong Yue
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Faping Feng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiangyu Gu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212003, China
| | - Bo Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212003, China
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
12
|
Harindintwali JD, Dou Q, Wen X, Xiang L, Fu Y, Xia L, Jia Z, Jiang X, Jiang J, Wang F. Physiological and transcriptomic changes drive robust responses in Paenarthrobacter sp. AT5 to co-exposure of sulfamethoxazole and atrazine. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132795. [PMID: 37865076 DOI: 10.1016/j.jhazmat.2023.132795] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
Agricultural waterways are often contaminated with herbicide and antibiotic residues due to the widespread use of these chemicals in modern agriculture. The search for resistant bacterial strains that can adapt to and degrade these mixed contaminants is essential for effective in situ bioremediation. Herein, by integrating chemical and transcriptomic analyses, we shed light on mechanisms through which Paenarthrobacter sp. AT5, a well-known atrazine-degrading bacterial strain, can adapt to sulfamethoxazole (SMX) while degrading atrazine. When exposed to SMX and/or atrazine, strain AT5 increased the production of extracellular polymeric substances and reactive oxygen species, as well as the rate of activity of antioxidant enzymes. Atrazine and SMX, either alone or combined, increased the expression of genes involved in antioxidant responses, multidrug resistance, DNA repair, and membrane transport of lipopolysaccharides. Unlike atrazine alone, co-exposure with SMX reduced the expression of genes encoding enzymes involved in the lower part of the atrazine degradation pathway. Overall, these findings emphasize the complexity of bacterial adaptation to mixed herbicide and antibiotic residues and highlight the potential of strain AT5 in bioremediation efforts.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Xia
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich 52428, Germany; RWTH Aachen University, Institute for Environmental Research, WorringerWeg 1, 52074 Aachen, Germany.
| |
Collapse
|
13
|
Sar P, Kundu S, Ghosh A, Saha B. Natural surfactant mediated bioremediation approaches for contaminated soil. RSC Adv 2023; 13:30586-30605. [PMID: 37859781 PMCID: PMC10583161 DOI: 10.1039/d3ra05062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
The treatment of environmental pollution by employing microorganisms is a promising technology, termed bioremediation, which has several advantages over the other established conventional remediation techniques. Consequently, there is an urgent inevitability to develop pragmatic techniques for bioremediation, accompanied by the potency of detoxifying soil environments completely. The bioremediation of contaminated soils has been shown to be an alternative that could be an economically viable way to restore polluted soil. The soil environments have long been extremely polluted by a number of contaminants, like agrochemicals, polyaromatic hydrocarbons, heavy metals, emerging pollutants, etc. In order to achieve a quick remediation overcoming several difficulties the utility of biosurfactants became an excellent advancement and that is why, nowadays, the biosurfactant mediated recovery of soil is a focus of interest to the researcher of the environmental science field specifically. This review provides an outline of the present scenario of soil bioremediation by employing a microbial biosurfactant. In addition to this, a brief account of the pollutants is highlighted along with how they contaminate the soil. Finally, we address the future outlook for bioremediation technologies that can be executed with a superior efficiency to restore a polluted area, even though its practical applicability has been cultivated tremendously over the few decades.
Collapse
Affiliation(s)
- Pintu Sar
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur - 741246 West Bengal India
| | - Sandip Kundu
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Aniruddha Ghosh
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| |
Collapse
|
14
|
Ganesh Kumar A, Manisha D, Nivedha Rajan N, Sujitha K, Magesh Peter D, Kirubagaran R, Dharani G. Biodegradation of phenanthrene by piezotolerant Bacillus subtilis EB1 and genomic insights for bioremediation. MARINE POLLUTION BULLETIN 2023; 194:115151. [PMID: 37453166 DOI: 10.1016/j.marpolbul.2023.115151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/28/2023] [Accepted: 06/04/2023] [Indexed: 07/18/2023]
Abstract
A marine strain B. subtilis EB1, isolated from Equator water, showed excellent degradation towards a wide range of hydrocarbons. Degradation studies revealed dense growth with 93 % and 83 % removal of phenanthrene within 72 h at 0.1 and 20 MPa, respectively. The identification of phenanthrene degradation metabolites by GC-MS combined with its whole genome analysis provided the pathway involved in the degradation process. Whole genome sequencing indicated a genome size of 3,983,989 bp with 4331 annotated genes. The genome provided the genetic compartments, which includes monooxygenase, dioxygenase, dehydrogenase, biosurfactant synthesis catabolic genes for the biodegradation of aromatic compounds. Detailed COG and KEGG pathway analysis confirmed the genes involved in the oxygenation reaction of hydrocarbons, piezotolerance, siderophores, chemotaxis and transporter systems which were specific to adaptation for survival in extreme marine habitat. The results of this study will be a key to design an optimal bioremediation strategy for oil contaminated extreme marine environment.
Collapse
Affiliation(s)
- A Ganesh Kumar
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India.
| | - D Manisha
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - N Nivedha Rajan
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - K Sujitha
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - D Magesh Peter
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - R Kirubagaran
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - G Dharani
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| |
Collapse
|
15
|
Pan H, Zhang K, Chen S, Wu R, Song F, Chang W, Fan X. Performance of atrazine adsorption behavior and microbial community structure in Mollisol aggregate fraction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115143. [PMID: 37336091 DOI: 10.1016/j.ecoenv.2023.115143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Owing to complex pore systems and chemical substances, soil aggregates provide a spatially heterogeneous microenvironment for adsorption capacity and microbial survival. As the widely used pesticide in farmlands, atrazine environmental behavior is not well known at the aggregate scale. In this study, Mollisol soil samples were sieved into four aggregate-size classes: large macroaggregates (>2 mm, LMa), small macroaggregates (1-2 mm, SMa), microaggregates (0.25-1 mm, Mia) and primary particles (<0.25 mm, P). The pore characteristics of each aggregate fraction was visualized by non-invasive X-ray three-dimensional microscopic computed tomography (3D-CT) combined with pore network extraction. The adsorption kinetics of atrazine in each aggregate-size fraction can be described well by a pseudo-second-order kinetic model. The adsorption isothermal process of atrazine can be better fitted by the Langmuir isotherm model than Freundlich isotherm model. There was an obvious linear correlation between the maximum atrazine adsorption capacity and aggregate SOC content as well as TN. In addition, the abundance of bacteria, actinomycetes and anaerobic bacteria in P was totally higher than those in SMa and Mia. Although pH is strongly linked to the bacterial community in the aggregate fraction, aggregate particle size explained 18 % for shaping the microbial community. Therefore, chemical properties and pore characteristics of each soil aggregate fraction both contributed to performance of atrazine adsorption behavior and microbial community.
Collapse
Affiliation(s)
- Hongyang Pan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Kai Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Sisi Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Ruotong Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jinan 272400, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jinan 272400, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jinan 272400, China
| | - Xiaoxu Fan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
16
|
Kang Z, Yang Y, Wang C, Kang Y, Wang T, Zhu G, Han X, Yu H. Atrazine decontamination by a newly screened psychrotroph Paenarthrobacter sp. KN0901 in an aquatic system: Metabolic pathway, kinetics, and hydroponics experiment. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131764. [PMID: 37320906 DOI: 10.1016/j.jhazmat.2023.131764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Atrazine residues running off the fields and entering water resources are a major threat to food security and the ecosystem. In this study, a psychrotrophic functional strain named KN0901 to remove atrazine residues was screened. KN0901 could degrade 30 mg·L-1 atrazine in 4 days at 15ºC with 105 CFU·mL-1 incubation. The phylogenetic results showed KN0901 belonged to Paenarthrobacter sp. PCR results showed that the functional genes consist of trzN, atzB, and atzC, suggesting atrazine was transformed to cyanuric acid by KN0901. KN0901 could degrade atrazine without adding exogenous carbon and nitrogen sources. What's more, KN0901 could tolerate extreme low temperature (5ºC) and high atrazine concentration (100 mg·L-1). When growth and degradation curves were compared, the results indicated the length of lag time showed significant correlation to atrazine degradation rate. The hydroponic experiments showed that the toxicity of atrazine was significantly reduced with KN0901 treatment. The study provided an effective, economic, and eco-friendly bioremediation measure to address atrazine contamination.
Collapse
Affiliation(s)
- Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Resources and Environment, University of Chinese Academy of Science, Beijing 101400, China
| | - Yang Yang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Resources and Environment, University of Chinese Academy of Science, Beijing 101400, China
| | - Chenxu Wang
- Public Technical Service Center, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yuanyuan Kang
- Shenzhen CAPCHEM Technology Co. Ltd., Shabo Tongfuyu Industry Zone, Pingshan New District, Shenzhen 518118, China
| | - Tianye Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guopeng Zhu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Resources and Environment, University of Chinese Academy of Science, Beijing 101400, China
| | - Xuerong Han
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
17
|
Cui Z, Hu L, Zeng L, Meng W, Guo D, Sun L. Isolation and characterization of Priestia megaterium KD7 for the biological control of pear fire blight. Front Microbiol 2023; 14:1099664. [PMID: 36970697 PMCID: PMC10033528 DOI: 10.3389/fmicb.2023.1099664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Erwinia amylovora is a plant pathogen that causes fire blight disease in Rosaceous plants, such as pear and apple. To develop an effective biocontrol method to suppress E. amylovora, a total of 16 bacteria were isolated from pear orchard soil in China and screened for antagonistic activity in vitro. Among them, 9 isolates that exhibited antagonistic activity against E. amylovora were identified, including Bacillus atrophaeus, Priestia megaterium (previously known as Bacillus megaterium) and Serratia marcescens based on the partial 16S rDNA sequence analysis and similarity search. The plate confrontation experiments showed that strain 8 (P. megaterium strain KD7) had strong antagonistic activity against E. amylovora. The methanolic extract from cell-free supernatant of strain KD7 displayed high antibacterial activities against E. amylovora. Furthermore, the active compounds of strain KD7 were separated by thin layer chromatography (TLC) and the amino acids were detected by the presence of a spot with retention factor (Rf) of 0.71. Next, three lipopeptides were identified with high-resolution mass spectrometry (HRMS), including C13-surfactin [M+H]+ at m/z 1008.14, C15-surfactin [M+H]+ at m/z 1036.50, and C14-iturin A [M+H]+ at m/z 1043.17. Strain KD7 showed multiple antibiotic resistance, such as ampicillin, erythromycin, penicillin and tetracycline. The detached pear leaves, twigs and fruits assay showed that both protective and curative action with strain KD7 had the ability to decrease the development of fire blight. Taken together, P. megaterium strain KD7 is a potential effective biocontrol agent against fire blight.
Collapse
|
18
|
Dias MAM, Nitschke M. Bacterial-derived surfactants: an update on general aspects and forthcoming applications. Braz J Microbiol 2023; 54:103-123. [PMID: 36662441 PMCID: PMC9857925 DOI: 10.1007/s42770-023-00905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
The search for sustainable alternatives to the production of chemicals using renewable substrates and natural processes has been widely encouraged. Microbial surfactants or biosurfactants are surface-active compounds synthesized by fungi, yeasts, and bacteria. Due to their great metabolic versatility, bacteria are the most traditional and well-known microbial surfactant producers, being Bacillus and Pseudomonas species their typical representatives. To be successfully applied in industry, surfactants need to maintain stability under the harsh environmental conditions present in manufacturing processes; thus, the prospection of biosurfactants derived from extremophiles is a promising strategy to the discovery of novel and useful molecules. Bacterial surfactants show interesting properties suitable for a range of applications in the oil industry, food, agriculture, pharmaceuticals, cosmetics, bioremediation, and more recently, nanotechnology. In addition, they can be synthesized using renewable resources as substrates, contributing to the circular economy and sustainability. The article presents a general and updated review of bacterial-derived biosurfactants, focusing on the potential of some groups that are still underexploited, as well as, recent trends and contributions of these versatile biomolecules to circular bioeconomy and nanotechnology.
Collapse
Affiliation(s)
- Marcos André Moura Dias
- grid.11899.380000 0004 1937 0722Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970 São Carlos, SP Brasil
| | - Marcia Nitschke
- Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970, São Carlos, SP, Brasil.
| |
Collapse
|
19
|
Zhao Y, Li X, Li Y, Bao H, Nan J, Xu G. Rapid biodegradation of atrazine by a novel Paenarthrobacter ureafaciens ZY and its effects on soil native microbial community dynamic. Front Microbiol 2023; 13:1103168. [PMID: 36687626 PMCID: PMC9846760 DOI: 10.3389/fmicb.2022.1103168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
An atrazine-utilizing bacterium, designated as ZY, was isolated from agricultural soil and identified as Paenarthrobacter ureafaciens. The P. ureafaciens ZY demonstrated a significant degradation capacity of atrazine, with the degradation efficiency of 12.5 mg L-1 h-1 in liquid media (at pH 7, 30°C, and the atrazine level of 100 mg L-1). The P. ureafaciens ZY contained three atrazine-degrading genes (i.e., trzN, atzB, and atzC) could metabolize atrazine to form cyanuric acid, which showed lower biotoxicity than the parent atrazine as predicted by Ecological Structure Activity Relationships model. A laboratory-scale pot experiment was performed to examine the degradation of atrazine by P. ureafaciens ZY inoculation and investigate its effects on the native microbial communities. The results exhibited that the P. ureafaciens ZY was conductive to the degradation of atrazine, increased the total soil phospholipid fatty acids at the atrazine level of 50, 70, and 100 mg kg-1. By using high-throughput sequencing analysis, Frateuria, Dyella, Burkholderia-Caballeronia-Paraburkholderia were considered as the most important indigenous atrazine-degrading microorganisms due to their relative abundances were positively correlated with the atrazine degradation rate. In addition, P. ureafaciens ZY also increased the abundance of atrazine-degrading genus Streptomyces and Bacillus, indicating that there may be a synergic relationship between them in the process of atrazine degradation. Our work provides a new insight between inoculums and native microorganisms on the degradation of atrazine.
Collapse
Affiliation(s)
- Yue Zhao
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xin Li
- School of Environment, Harbin Institute of Technology, Harbin, China,*Correspondence: Xin Li,
| | - Yunyang Li
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Huanyu Bao
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, Harbin, China,College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing, China
| |
Collapse
|
20
|
Li Y, Yang X, Wong M, Geng B. Atrazine biodegradation in water by co-immobilized Citricoccus sp. strain TT3 with Chlorella vulgaris under a harsh environment. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Biodegradation of Crystalline and Nonaqueous Phase Liquid-Dissolved ATRAZINE by Arthrobacter sp. ST11 with Cd2+ Resistance. Catalysts 2022. [DOI: 10.3390/catal12121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A newly isolated cadmium (Cd)-resistant bacterial strain from herbicides-polluted soil in China could use atrazine as the sole carbon, nitrogen, and energy source for growth in a mineral salt medium (MSM). Based on 16S rRNA gene sequence analysis and physiochemical tests, the bacterium was identified as Arthrobacter sp. and named ST11. The biodegradation of atrazine by ST11 was investigated in experiments, with the compound present either as crystals or dissolved in di(2-ethylhexyl) phthalate (DEHP) as a non-aqueous phase liquid (NAPL). After 48 h, ST11 consumed 68% of the crystalline atrazine in MSM. After being dissolved in DEHP, the degradation ratio of atrazine was reduced to 55% under the same conditions. Obviously, the NAPL-dissolved atrazine has lower bioavailability than the crystalline atrazine. Cd2+ at concentrations of 0.05–1.5 mmol/L either had no effect (<0.3 mmol/L), slight effects (0.5–1.0 mmol/L), or significantly (1.5 mmol/L) inhibited the growth of ST11 in Luria-Bertani medium. Correspondingly, in the whole concentration range (0.05–1.5 mmol/L), Cd2+ promoted ST11 to degrade atrazine, whether crystalline or dissolved in DEHP. Refusal to adsorb Cd2+ may be the main mechanism of high Cd resistance in ST11 cells. These results may provide valuable insights for the microbial treatment of arable soil co-polluted by atrazine and Cd.
Collapse
|
22
|
Sánchez C. A review of the role of biosurfactants in the biodegradation of hydrophobic organopollutants: production, mode of action, biosynthesis and applications. World J Microbiol Biotechnol 2022; 38:216. [PMID: 36056983 DOI: 10.1007/s11274-022-03401-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
The increasing influence of human activity and industrialization has adversely impacted the environment via pollution with organic contaminants, which are minimally soluble in water. These hydrophobic organopollutants may be present in sediment, water or biota and have created concern due to their toxic effects in mammals. The ability of microorganisms to degrade pollutants makes their use the most effective, inexpensive and ecofriendly method for environmental remediation. Microorganisms have the ability to produce natural surfactants (biosurfactants) that increase the bioavailability of hydrophobic organopollutants, which enables their use as carbon and energy sources. Due to microbial diversity in production, and the biodegradability, nontoxicity, stability and specific activity of the surfactants, the use of microbial surfactants has the potential to overcome problems associated with contamination by hydrophobic organopollutants.This review provides an overview of the current state of knowledge regarding microbial surfactant production, mode of action in the biodegradation of hydrophobic organopollutants and biosynthetic pathways as well as their applications using emergent strategy tools to remove organopollutants from the environment. It is also specified for the first time that biosurfactants are produced either as growth-associated products or secondary metabolites, and are produced in different amounts by a wide range of microorganisms.
Collapse
Affiliation(s)
- Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, C.P. 90120, Ixtacuixtla, Tlaxcala, Mexico.
| |
Collapse
|
23
|
Ru Y, Liu J, Xu P, Gao W, Sun D, Zhu J, Liu C, Liu W. Application of the biosurfactant produced by
Bacillus velezensis
MMB
‐51 as an efficient synergist of sweet potato foliar fertilizer. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yunrui Ru
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Peijing Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Wenhui Gao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Cong Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science Jiangsu Normal University Xuzhou Jiangsu Province China
| |
Collapse
|
24
|
Ali SAM, Sayyed RZ, Mir MI, Khan MY, Hameeda B, Alkhanani MF, Haque S, Mohammad Al Tawaha AR, Poczai P. Induction of Systemic Resistance in Maize and Antibiofilm Activity of Surfactin From Bacillus velezensis MS20. Front Microbiol 2022; 13:879739. [PMID: 35615505 PMCID: PMC9126211 DOI: 10.3389/fmicb.2022.879739] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Surfactin lipopeptide is an eco-friendly microbially synthesized bioproduct that holds considerable potential in therapeutics (antibiofilm) as well as in agriculture (antifungal). In the present study, production of surfactin by a marine strain Bacillus velezensis MS20 was carried out, followed by physico-chemical characterization, anti-biofilm activity, plant growth promotion, and quantitative Reverse Transcriptase-Polymerase Chain Reaction (q RT-PCR) studies. From the results, it was inferred that MS20 was found to produce biosurfactant (3,300 mg L-1) under optimized conditions. From the physicochemical characterization [Thin layer chromatography (TLC), Fourier Transform Infrared (FTIR) Spectroscopy, Liquid Chromatography/Mass Spectroscopy (LC/MS), and Polymerase Chain Reaction (PCR) amplification] it was revealed to be surfactin. From bio-assay and scanning electron microscope (SEM) images, it was observed that surfactin (MIC 50 μg Ml-1) has appreciable bacterial aggregation against clinical pathogens Pseudomonas aeruginosa MTCC424, Escherichia coli MTCC43, Klebsiella pneumoniae MTCC9751, and Methicillin resistant Staphylococcus aureus (MRSA) and mycelial condensation property against a fungal phytopathogen Rhizoctonia solani. In addition, the q-RTPCR studies revealed 8-fold upregulation (9.34 ± 0.11-fold) of srfA-A gene compared to controls. Further, treatment of maize crop (infected with R. solani) with surfactin and MS20 led to the production of defense enzymes. In conclusion, concentration and synergy of a carbon source with inorganic/mineral salts can ameliorate surfactin yield and, application wise, it has antibiofilm and antifungal activities. In addition, it induced systemic resistance in maize crop, which makes it a good candidate to be employed in sustainable agricultural practices.
Collapse
Affiliation(s)
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s Arts, Science, and Commerce College, Shahada, India
| | - Mohammad I. Mir
- Department of Botany, University College of Science, Osmania University, Hyderabad, India
| | - M. Y. Khan
- Kalam Biotech Pvt Ltd., Hyderabad, India
| | - Bee Hameeda
- Department of Microbiology, University College of Science, Osmania University, Hyderabad, India
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, Al-Maarefa University, Riyadh, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Péter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Eras-Muñoz E, Farré A, Sánchez A, Font X, Gea T. Microbial biosurfactants: a review of recent environmental applications. Bioengineered 2022; 13:12365-12391. [PMID: 35674010 PMCID: PMC9275870 DOI: 10.1080/21655979.2022.2074621] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microbial biosurfactants are low-molecular-weight surface-active compounds of high industrial interest owing to their chemical properties and stability under several environmental conditions. The chemistry of a biosurfactant and its production cost are defined by the selection of the producer microorganism, type of substrate, and purification strategy. Recently, biosurfactants have been applied to solve or contribute to solving some environmental problems, with this being their main field of application. The most referenced studies are based on the bioremediation of contaminated soils with recalcitrant pollutants, such as hydrocarbons or heavy metals. In the case of heavy metals, biosurfactants function as chelating agents owing to their binding capacity. However, the mechanism by which biosurfactants typically act in an environmental field is focused on their ability to reduce the surface tension, thus facilitating the emulsification and solubilization of certain pollutants (in-situ biostimulation and/or bioaugmentation). Moreover, despite the low toxicity of biosurfactants, they can also act as biocidal agents at certain doses, mainly at higher concentrations than their critical micellar concentration. More recently, biosurfactant production using alternative substrates, such as several types of organic waste and solid-state fermentation, has increased its applicability and research interest in a circular economy context. In this review, the most recent research publications on the use of biosurfactants in environmental applications as an alternative to conventional chemical surfactants are summarized and analyzed. Novel strategies using biosurfactants as agricultural and biocidal agents are also presented in this paper.
Collapse
Affiliation(s)
- Estefanía Eras-Muñoz
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Abel Farré
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Xavier Font
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Teresa Gea
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
26
|
Raj A, Kumar A, Dames JF. Tapping the Role of Microbial Biosurfactants in Pesticide Remediation: An Eco-Friendly Approach for Environmental Sustainability. Front Microbiol 2021; 12:791723. [PMID: 35003022 PMCID: PMC8733403 DOI: 10.3389/fmicb.2021.791723] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Pesticides are used indiscriminately all over the world to protect crops from pests and pathogens. If they are used in excess, they contaminate the soil and water bodies and negatively affect human health and the environment. However, bioremediation is the most viable option to deal with these pollutants, but it has certain limitations. Therefore, harnessing the role of microbial biosurfactants in pesticide remediation is a promising approach. Biosurfactants are the amphiphilic compounds that can help to increase the bioavailability of pesticides, and speeds up the bioremediation process. Biosurfactants lower the surface area and interfacial tension of immiscible fluids and boost the solubility and sorption of hydrophobic pesticide contaminants. They have the property of biodegradability, low toxicity, high selectivity, and broad action spectrum under extreme pH, temperature, and salinity conditions, as well as a low critical micelle concentration (CMC). All these factors can augment the process of pesticide remediation. Application of metagenomic and in-silico tools would help by rapidly characterizing pesticide degrading microorganisms at a taxonomic and functional level. A comprehensive review of the literature shows that the role of biosurfactants in the biological remediation of pesticides has received limited attention. Therefore, this article is intended to provide a detailed overview of the role of various biosurfactants in improving pesticide remediation as well as different methods used for the detection of microbial biosurfactants. Additionally, this article covers the role of advanced metagenomics tools in characterizing the biosurfactant producing pesticide degrading microbes from different environments.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, India
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Joanna Felicity Dames
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
27
|
Zhu Z, Zhang B, Cai Q, Cao Y, Ling J, Lee K, Chen B. A critical review on the environmental application of lipopeptide micelles. BIORESOURCE TECHNOLOGY 2021; 339:125602. [PMID: 34311406 DOI: 10.1016/j.biortech.2021.125602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The importance of lipopeptide micelles in environmental applications has been highlighted. These vessels exhibit various sizes, shapes, and surface properties under different environmental conditions. An in-depth understanding of the tunable assembling behavior of biosurfactant micelles is of great importance for their applications. However, a systematic review of such behaviors with assorted micro/nano micellar structures under given environmental conditions, particularly under low temperature and high salinity, remains untapped. Such impacts on their environmental applications have yet to be summarized. This review tried to fill the knowledge gaps by providing a comprehensive summary of the recent knowledge advancement in genetically regulated lipopeptides production, micelles associated decontamination mechanisms in low temperature and high salinity environments, and up-to-date environmental applications. This work is expected to deliver valuable insights to guide lipopeptide design and discovery. The mechanisms concluded in this study could inspire the forthcoming research efforts in the advanced environmental application of lipopeptide micelles.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada.
| | - Qinhong Cai
- Biotechnology Research Institute of the National Research Council of Canada, Montreal, QC, Canada
| | - Yiqi Cao
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Jingjing Ling
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Bing Chen
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| |
Collapse
|
28
|
Bhatt P, Verma A, Gangola S, Bhandari G, Chen S. Microbial glycoconjugates in organic pollutant bioremediation: recent advances and applications. Microb Cell Fact 2021; 20:72. [PMID: 33736647 PMCID: PMC7977309 DOI: 10.1186/s12934-021-01556-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
The large-scale application of organic pollutants (OPs) has contaminated the air, soil, and water. Persistent OPs enter the food supply chain and create several hazardous effects on living systems. Thus, there is a need to manage the environmental levels of these toxicants. Microbial glycoconjugates pave the way for the enhanced degradation of these toxic pollutants from the environment. Microbial glycoconjugates increase the bioavailability of these OPs by reducing surface tension and creating a solvent interface. To date, very little emphasis has been given to the scope of glycoconjugates in the biodegradation of OPs. Glycoconjugates create a bridge between microbes and OPs, which helps to accelerate degradation through microbial metabolism. This review provides an in-depth overview of glycoconjugates, their role in biofilm formation, and their applications in the bioremediation of OP-contaminated environments.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Amit Verma
- Department of Biochemistry, College of Basic Science and Humanities, SD Agricultural University, Gujarat, 385506, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, Dehradun, Uttarakhand, 248002, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, 248161, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
29
|
Silver nanoparticles from insect wing extract: Biosynthesis and evaluation for antioxidant and antimicrobial potential. PLoS One 2021; 16:e0241729. [PMID: 33735177 PMCID: PMC7971846 DOI: 10.1371/journal.pone.0241729] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/17/2021] [Indexed: 11/19/2022] Open
Abstract
Silver nanoparticles (AgNPs) are among the most widely synthesized and used nanoparticles (NPs). AgNPs have been traditionally synthesized from plant extracts, cobwebs, microorganisms, etc. However, their synthesis from wing extracts of common insect; Mang mao which is abundantly available in most of the Asian countries has not been explored yet. We report the synthesis of AgNPs from M. mao wings extract and its antioxidant and antimicrobial activity. The synthesized AgNPs were spherical, 40–60 nm in size and revealed strong absorption plasmon band around at 430 nm. Highly crystalline nature of these particles as determined by Energy-dispersive X-ray analysis and X-ray diffraction further confirmed the presence of AgNPs. Hydrodynamic size and zeta potential of AgNPs were observed to be 43.9 nm and -7.12 mV, respectively. Fourier-transform infrared spectroscopy analysis revealed the presence of characteristic amide proteins and aromatic functional groups. Thin-layer chromatography (TLC) and Gas chromatography-mass spectroscopy (GC-MS) analysis revealed the presence of fatty acids in the wings extract that may be responsible for biosynthesis and stabilization of AgNPs. Further, SDS-PAGE of the insect wing extract protein showed the molecular weight of 49 kDa. M. mao silver nanoparticles (MMAgNPs) exhibit strong antioxidant, broad-range antibacterial and antifungal activities, (66.8 to 87.0%), broad-range antibacterial and antifungal activities was found with maximum zone of inhibition against Staphylococcus aureus MTCC 96 (35±0.4 mm) and Fusarium oxysporum f. sp. ricini (86.6±0.4) which signifies their biomedical and agricultural potential.
Collapse
|
30
|
Bhatt P, Sethi K, Gangola S, Bhandari G, Verma A, Adnan M, Singh Y, Chaube S. Modeling and simulation of atrazine biodegradation in bacteria and its effect in other living systems. J Biomol Struct Dyn 2020; 40:3285-3295. [PMID: 33179575 DOI: 10.1080/07391102.2020.1846623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Atrazine is the most commonly used herbicide worldwide in the agricultural system. The increased environmental concentration of the atrazine showed the toxic effects on the non-target living species. Biodegradation of the atrazine is possible with the bacterial systems. The present study investigated biodegradation potential of atrazine degrading bacteria and the impact of atrazine on environmental systems. Model of atrazine fate in ecological systems constructed using the cell designer. The used model further analyzed and simulated to know the biochemistry and physiology of the atrazine in different cellular networks. Topological analysis of the atrazine degradation confirmed the 289 nodes and 300 edges. Our results showed that the overall biomagnification of the atrazine in the different environmental systems. Atrazine is showing toxic effects on humans and plants, whereas degraded by the bacterial systems. To date, no one has analyzed the complete degradation and poisonous effects of the atrazine in the environment. Therefore, this study is useful for overall system biology based modeling and simulation analysis of atrazine in living systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Kanika Sethi
- Department of Microbiology, Dolphin (P.G) Institute of Biomedical and Natural Sciences, Dehradun, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University Bhimtal Campus, Uttarakhand, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Amit Verma
- Department of Biochemistry, College of Basic Science and Humanities, SD Agricultural University, Gujarat, India
| | - Muhammad Adnan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yashpal Singh
- Department of Veterinary Physiology and Biochemistry, G.B Pant University of Agriculture and Technology, Pantnagar, India
| | - Shshank Chaube
- Department of Mathematics, University of Petrolium and Energy Studies, Dehradun, India
| |
Collapse
|