1
|
Room SA, Chen PJ, Chen ZY, Shih YJ, Pan SY, Hsu YC, Hsiao TC, Ting YC, Chou CCK, Wu CH, Chi KH. Chemical Characterization and Oxidative Potential of Persistent Organic Pollutants (POPs) in Size-Resolved Particulate Matter Across Industrial and Traffic Stations. ENVIRONMENTAL RESEARCH 2025:121747. [PMID: 40320031 DOI: 10.1016/j.envres.2025.121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/15/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
This study is the first to investigate polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polychlorinated naphthalenes (PCNs) across multiple particulate matter (PM) sizes (PM1.0, PM2.5, TSP) in Taiwan, focusing on spatio-seasonal variations, chemical composition, sources, and oxidative potential (OP) utilizing Real-time Cell Analysis (RTCA) and the Dithiothreitol (DTT) assay. PM samples were collected from the Northern Industrial Station (NIS: PM) in Taoyuan, and the Central Industrial (CIS: PM2.5) and Traffic (CTS: PM2.5) stations in Taichung (2022-2023). Elevated PCDD/F, PCB, and PCN levels were observed at NIS during winter, with PM2.5 and PM1.0 comprising 90% and 50% of TSP, respectively, driven by local emissions and meteorological influences. PCDD/Fs peaked in winter at CTS (7.16 ± 1.64 fg TEQWHO/m3) and in autumn at CIS (8.29 ± 3.21 fg TEQWHO/m3), while PCBs were highest in summer (CIS: 0.151 ± 0.212 fg TEQWHO/m3; CTS: 0.006 ± 0.013 fg TEQWHO/m3), likely due to temperature-driven volatilization. Notably, PCNs exhibited no clear seasonal trends. Cytotoxicity assays revealed a size-dependent toxicity gradient (PM1.0: 71.8% > PM2.5: 62.1% > TSP: 51.9%), with PM2.5 toxicity consistent across sources (P = 0.58). DTT assays indicated higher OP at northern Taiwan's industrial site on weekdays, whereas central Taiwan's industrial and traffic sites showed no substantial variation (p > 0.05). Markedly, NO3- strongly correlated with OP across all PM sizes, while Cu and Cr were linked to OPv, and Mn and Cr to OPm. These findings highlight seasonal and source-driven PM toxicity, with smaller particles posing greater health risks, requiring targeted mitigation.
Collapse
Affiliation(s)
- Shahzada Amani Room
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po Jui Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Zhi Yu Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu Ju Shih
- Department of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Education, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yuan-Cheng Hsu
- National Environmental Research Academy, Ministry of Environment, Taoyuan, 330, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taiwan
| | - Yu Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taiwan
| | - Charless C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei 115, Taiwan
| | - Chien-Hou Wu
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013 Taiwan
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
2
|
Cui J, Lu J, Huang Q, Yuan Z, Liu W, Kong L, Zhang M, Zhu Y, Zhu Y, Morawska L, Lou Z. New evidence of unequal contribution to health burden reshaping air pollution control in waste-to-energy plants. ENVIRONMENT INTERNATIONAL 2025; 198:109448. [PMID: 40209393 DOI: 10.1016/j.envint.2025.109448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Waste-to-energy (WTE) incineration has been long argued for the emission of hazardous flue gas pollutants (FGPs), while the contribution to health burden of individual components is ambiguous, resulting empirical control measures. We constructed a comprehensive framework to assess the health burden by monetizing premature mortalities, combining nine kinds of regulated FGPs from WTE plants. NOx and SO2 were identified as the main contributors to health risk, accounting for around 88.87 % and 6.97 % respectively in 2020. The annual social cost of mortalities (SCM) increased from USD 6.09 billion in 2010 to USD 13.60 billion in 2015, and to USD 16.71 billion in 2020, related to the surge in WTE capacity, which grew 10-fold over the past decade. The SCM per ton of municipal solid waste, however, significantly decreased from 329 USD/t in 2010 to 213 USD/t in 2015, and to 88 USD/t in 2020, due to updating of the standards and technological advances, pushing the emission factors down by 33.75-98.63 %. SCM will be continuously mitigated by the tightened emission limits, with the greatest benefits seen in a reduction of up to 50 % in NOx to 80 mg/m3 by selective catalytic reduction and selective non-catalytic reduction. Coastal regions were recommended as a high priority for further control, on account of their greater population density, higher economic level, and greater WTE capacity, which made up 60-71 % of total reduction benefits. These findings provide data support and recommendations for policymakers and stakeholders to mitigate FGPs emissions to efficiently reduce the health risk of WTE plants.
Collapse
Affiliation(s)
- Jicui Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; International Laboratory for Air Quality and Heath, Queensland University of Technology, Brisbane 4001, Australia
| | - Jingyi Lu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiujie Huang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhihang Yuan
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minchao Zhang
- Technical Center for Industrial Products and Raw Materials Inspection and Testing of Shanghai Customs District, Shanghai 201210, China
| | - Yue Zhu
- Shanghai Academy of Environmental Sciences, Shanghai 200003, China; School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Zhu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Heath, Queensland University of Technology, Brisbane 4001, Australia.
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource, Shanghai 200240, China.
| |
Collapse
|
3
|
Zhang C, Geng X, Zhu L, Xia D, Li X, Sun Y. Br-to-Cl Transformation Guided the Formation of Polyhalogenated Dibenzo- p-dioxins/Dibenzofurans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39096310 DOI: 10.1021/acs.est.4c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Polyhalogenated dibenzo-p-dioxins/dibenzofurans (PXDD/Fs) are commonly released into the environment as byproducts of combustion processes, accompanied by flue gases. Chlorinated (Cl) and brominated (Br) precursors play crucial roles in forming PXDD/Fs. However, the specific contributions of Cl-precursors and Br-precursors to PXDD/Fs formation have not been fully elucidated. Herein, we demonstrate that the formation of Br-precursors can increase the fraction of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) congeners substituted at specific positions, such as 1,2,3,4,6,7,8-HpCDD, OCDD, 2,3,4,7,8-PeCDF, and 2,3,4,6,7,8-HxCDF. This is attributed to the electrophilic chlorination reaction of the Br-precursors, which includes the Br-to-Cl transformation pathway, following the principle of regioselectivity. The observed formation of polybrominated/chlorinated dibenzo-p-dioxins/benzofurans (PBCDD/Fs) from 1,2-dibromobenzene (1,2-DiBBz) as a Br precursor provides direct evidence supporting the proposed Br-to-Cl transformation. Quantum chemical calculations are employed to discuss the principle of regioselectivity in the Br-to-Cl transformation, clarifying the priority of the position for electrophilic chlorination. Additionally, the concentration of PCDD/Fs formed from 1,2-DiBBz is 1.6 μg/kg, comparable to that of polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) (2.4 μg/kg), highlighting the potential of brominated organic pollutants as precursors for PCDD/Fs formation. This study provides three potential pathways for PCDD/Fs formation from Br-precursors, establishing a theoretical foundation for elucidating the formation mechanism of PXDD/Fs in the coexistence of Cl and Br.
Collapse
Affiliation(s)
- Congcong Zhang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Xuan Geng
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Lingfeng Zhu
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Dan Xia
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
- Research Center for Advanced Energy and Carbon Neutrality, Beihang University, Beijing 100191, PR China
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| |
Collapse
|
4
|
Gülegen B, Noori AA, Tasdemir Y. Urban air PCDD/Fs: Atmospheric concentrations, temporal changes, gas/particle partitioning, possible sources and cancer risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173231. [PMID: 38761941 DOI: 10.1016/j.scitotenv.2024.173231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) are pollutants of concern due to their toxic effects. No active sampling study on PCDD/Fs has been conducted in Bursa. This study aimed to fill this gap by measuring PCDD/F levels in the region. Accordingly, the samples were collected from an urban area in Bursa, covering four seasons between June 2022 and April 2023. The total (gas+particulate) ambient air concentrations were between 312.23 and 829.80 fg/m3 (mean: 555.05 ± 173.62 fg/m3). In terms of toxic equivalents (TEQ), the average concentration was 43.29 ± 9.18 fg WHOTEQ/m3. Based on the concentration values obtained, cancer and non-carcinogenic risk values of PCDD/Fs were calculated for three different age groups. The results indicated negligible health risks for all age groups. In addition, a seasonal assessment was also made and it was observed that PCDD/F concentration values varied with the ambient air temperatures. In general, higher values were measured in colder months compared to warmer months. This was probably due to the additional sources and adverse meteorological conditions. Moreover, the gas/particle partitioning of PCDD/Fs was investigated in detail. The average gas and particulate phase concentrations for PCDD/Fs were 101.81 ± 20.77 and 453.24 ± 172.50, respectively. It was found that an equilibrium state was not reached in the gas/particle partitioning. Two different gas/particle partition models based on adsorption and absorption mechanisms were compared, and the absorption model gave more consistent predictions. The Principal Component Analysis (PCA) was employed to identify the possible PCDD/F sources. The results indicated that the region was influenced by vehicle emissions, residential heating, organized industrial zones and metal recycling facilities. In addition, 72-hour backward air mass trajectory analyses were performed to understand the long-range transported air masses. However, it was found that the transported air masses did not significantly affect the concentration values measured in the sampling site.
Collapse
Affiliation(s)
- Berke Gülegen
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059 Nilüfer/Bursa, Turkey
| | - Abdul Alim Noori
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059 Nilüfer/Bursa, Turkey
| | - Yücel Tasdemir
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059 Nilüfer/Bursa, Turkey.
| |
Collapse
|
5
|
Zhang C, Bai Z, Liu X, Xia D, Li X, Long J, Sun Z, Li Y, Sun Y. Co-incineration of medical waste in municipal solid waste incineration increased emission of chlorine/brominated organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173544. [PMID: 38802016 DOI: 10.1016/j.scitotenv.2024.173544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Co-incineration of medical waste (MW) in municipal solid waste incinerators (MSWIs) is a crucial disposal method for emergency disposal of MW and the management of MW in small and medium-sized towns. This study aims to analyze and compare the levels and distribution patterns of chlorine/brominated dioxins and their precursors in fly ash from MSWIs and medical waste incinerators (MWIs) while also focusing on identifying the new pollution concerns that may arise from the co-incineration of municipal solid waste (MSW) mixed with MW (MSW/MW). The concentration of chlorobenzene (CBzs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) in fly ash from co-incineration of MSW/MW are 887.4, 134.4 and 27.6 μg/kg, respectively, which are 5.1, 2.0 and 2.9 times higher than that from MSWIs. The levels of polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) are about three orders of magnitude lower than that of PCDD/Fs. For the fly ash from MSWIs, the predominant PCDD/Fs congener is OCDD, which prefers synthesis and adsorption on fine-grained fly ash. For fly ash from MWIs, the major PCDD/Fs congeners are 1, 2, 3, 4, 6,7, 8-HpCDF, and OCDF, which prefer synthesis and adsorption on coarse-grained fly ash. Correlation analysis exhibited that both 1,2,3-TriCBz and 1,2,4-TriCBz in fly ash have a markedly linear correlation with PCDD/Fs and PCBs, but PBDD/Fs shows a poor negative correlation with PCDD/Fs.
Collapse
Affiliation(s)
- Congcong Zhang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Ziang Bai
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Xingshuang Liu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Dan Xia
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Jisheng Long
- Shanghai SUS Environment Co., LTD., Shanghai 201703, PR China
| | - Zhongtao Sun
- Shanghai SUS Environment Co., LTD., Shanghai 201703, PR China
| | - Yaojian Li
- Headquarters, China Tianying Inc., Jiangsu 226600, PR China
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
6
|
Amani Room S, Huang KT, Pan SY, Chen PJ, Hsu YC, Chi KH. Health assessment of emerging persistent organic pollutants (POPs) in PM 2.5 in northern and central Taiwan. CHEMOSPHERE 2024; 353:141573. [PMID: 38428532 DOI: 10.1016/j.chemosphere.2024.141573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Over the last two decades, Taiwan has effectively diminished atmospheric concentrations of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) through the adept utilization of advanced technologies and the implementation of air pollution control devices. Despite this success, there exists a dearth of data regarding the levels of other PM2.5-bound organic pollutants and their associated health risks. To address this gap, our study comprehensively investigates the spatial and seasonal variations, potential sources, and health risks of PCDD/Fs, Polychlorinated biphenyls (PCBs), and Polychlorinated naphthalene (PCNs) in Northern and Central Taiwan. Sampling collections were conducted at three specific locations, including six municipal waste incinerators in Northern Taiwan, as well as a traffic and an industrial site in Central Taiwan. As a result, the highest mean values of PM2.5 (20.3-39.6 μg/m3) were observed at traffic sites, followed by industrial sites (14.4-39.3 μg/m3), and the vicinity of the municipal waste incinerator (12.4-29.4 μg/m3). Additionally, PCDD/Fs and PCBs exhibited discernible seasonal fluctuations, displaying higher concentrations in winter (7.53-11.9 and 0.09-0.12 fg I-TEQWHO/m3) and spring (7.02-13.7 and 0.11-0.16 fg I-TEQWHO/m3) compared to summer and autumn. Conversely, PCNs displayed no significant seasonal variations, with peak values observed in winter (0.05-0.10 fg I-TEQWHO/m3) and spring (0.03-0.08 fg I-TEQWHO/m3). Utilizing a Positive Matrix Factorization (PMF) model, sintering plants emerged as the predominant contributors to PCDD/Fs, constituting 77.9% of emissions. Woodchip boilers (68.3%) and municipal waste incinerators (21.0%) were identified as primary contributors to PCBs, while municipal waste incinerators (64.6%) along with a secondary copper and a copper sludge smelter (22.1%) were the principal sources of PCNs. Moreover, the study specified that individuals aged 19-70 in Northern Taiwan and those under the age of 12 years in Central Taiwan were found to have a significantly higher cancer risk, with values ranging from 9.26 x 10-9-1.12 x 10-7 and from 2.50 x 10-8-2.08 x 10-7respectively.
Collapse
Affiliation(s)
- Shahzada Amani Room
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kai Ting Huang
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Shih Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Po Jui Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yuam-Cheng Hsu
- National Environmental Research Academy, Ministry of Environment, Taoyuan, 330, Taiwan
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
7
|
Yu J, Chen C, Wang C, Liu L, Chen H, Li H, Liu Y, Kuang X. Serum PCDD/F levels in metropolitan populations living near a municipal solid waste incinerator in Eastern China. CHEMOSPHERE 2024; 346:140549. [PMID: 37890788 DOI: 10.1016/j.chemosphere.2023.140549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Ambient exposure to polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) is suspected to cause adverse human health outcomes. Herein, serum samples from 40 residents in the neighborhood of a municipal solid waste incinerator (MSWI) in the metropolitan area were measured for PCDD/Fs. The mean toxic equivalent (TEQ) concentration of total PCDD/Fs in human serum samples was 16.8 pg TEQ/g lipid. Serum PCDD/F levels were significantly higher in residents adjacent to the MSWI than in those from areas far from the emission source (p < 0.01). In addition, there were no significant associations between serum PCDD/Fs levels and factors, such as gender, age, and BMI in donors. For non-occupationally exposed populations, OCDD and 1,2,3,7,8-PeCDD in serum are available as indicators of total PCDD/Fs and total TEQ, respectively. The atmospheric PCDD/Fs levels were within a relatively low range in areas upwind and downwind of the MSWI. The results of the principal component analysis showed a distinct difference in PCDD/F congener patterns between air and serum samples, suggesting inhalation exposure could have a limited influence on the human body burden. Our findings will deepen the current knowledge of endogenous PCDD/F exposure in urban populations, and also facilitate public health protection strategies near MSWIs.
Collapse
Affiliation(s)
- Jun Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Chao Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Lvye Liu
- SEP Analytical (Shanghai) Co., Ltd. Shanghai 201100, PR China
| | - Hong Chen
- Yangpu Hospital Affiliated to Tongji University, Shanghai, 200090, PR China
| | - Hui Li
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Yongdi Liu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xingya Kuang
- Yangpu Hospital Affiliated to Tongji University, Shanghai, 200090, PR China.
| |
Collapse
|
8
|
Zhang B, Guo M, Liang M, Gu J, Ding G, Xu J, Shi L, Gu A, Ji G. PCDD/F and DL-PCB exposure among residents upwind and downwind of municipal solid waste incinerators and source identification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121840. [PMID: 37201569 DOI: 10.1016/j.envpol.2023.121840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Understanding the environmental and human impacts associated with polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) exposure from municipal solid waste incinerators (MSWIs) is challenging because information on ambient and dietary exposure levels, spatial characteristics, and potential exposure routes is limited. In this study, 20 households from two villages located on the upwind and downwind sides of a MSWI were selected to characterize the concentration and spatial distribution of PCDD/F and DL-PCB compounds in ambient and food samples, such as dust, air, soil, chicken, egg, and rice samples. The source of exposure was identified using congener profiles and principal component analysis. Overall, the dust and rice samples had the highest and lowest mean dioxin concentrations, respectively. Significant differences were observed (p < 0.01) in PCDD/F concentrations in chicken samples and DL-PCB concentrations in rice and air samples between the upwind and downwind villages. The exposure assessment indicated that the primary risk source was dietary exposure, especially from eggs, which had a PCDD/F toxic equivalency (TEQ) range of 0.31-14.38 pg TEQ/kg body weight (bw)/day, leading to adults in one household and children in two households exceeding the World Health Organization-defined threshold of 4 pg TEQ/kg bw/day. Chicken was the main contributor to the differences between upwind and downwind exposure. Based on the established congener profiles, the exposure routes of PCDD/Fs and DL-PCBs from the environment to food to humans were clarified.
Collapse
Affiliation(s)
- Bing Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Min Guo
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Mengyuan Liang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jie Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Gangdou Ding
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Lili Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, 210029, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
9
|
Xia H, Tang J, Aljerf L, Wang T, Gao B, Xu Q, Wang Q, Ukaogo P. Assessment of PCDD/Fs formation and emission characteristics at a municipal solid waste incinerator for one year. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163705. [PMID: 37105483 DOI: 10.1016/j.scitotenv.2023.163705] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/25/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Municipal solid waste incineration (MSWI) has become a predominant emission source of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs). Research focusing on the impact of operating conditions, environmental changes, and operating time on the generation and emissions of PCDD/Fs has not been resolved. To this end, this study tracked and investigated the PCDD/Fs and 17 congener emissions of a typical grate incinerator (800 t/d) continuously for one year. Results showed that the PCDD/Fs concentration at the boiler outlet, stack inlet, and bag filter, including normal and abnormal operation conditions, ranges from 2.11E-02-41.86 ng I-TEQ/Nm3, 7.00E-04-6.76 ng I-TEQ/Nm3, and 1.12-2.90E+03 ng I-TEQ/Nm3, respectively. The 2,3,4,7,8-P5CDF has the highest contribution in all samples, in which a proportion of TEQ ranged from 30 % to 77.73 %. Moreover, by applying the correlation analysis between PCDD/Fs and operating parameters, the emission characteristic is mainly affected by incinerators and boilers during the normal period, and it is affected by the whole MSWI process under abnormal conditions. In addition, the PCDD/Fs emission from the MSWI plant gradually increases from spring to winter. This study is beneficial for supporting the control of PCDD/Fs emission reduction and assisting the operators to optimize the relevant operating parameters of the MSWI plant to achieve a stable and up-to-substandard emissions during the operation period.
Collapse
Affiliation(s)
- Heng Xia
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; Beijing Laboratory of Smart Environmental Protection, Beijing 100124, China
| | - Jian Tang
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; Beijing Laboratory of Smart Environmental Protection, Beijing 100124, China.
| | - Loai Aljerf
- Key Laboratory of Organic Industries, Department of Chemistry, Faculty of Sciences, Damascus University, Damascus, Syrian Arab Republic.
| | - Tianzheng Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; Beijing Laboratory of Smart Environmental Protection, Beijing 100124, China
| | - Bingyin Gao
- Beijing GaoAnTun Waste to Energy CO., Ltd, China
| | - Qindong Xu
- Jiangsu WEIPU Testing Technology Co., Ltd, China
| | - Qiang Wang
- Jiangsu WEIPU Testing Technology Co., Ltd, China
| | - Prince Ukaogo
- Analytical/Environmental Units, Department of Pure and Industrial Chemistry, Abia State University, Uturu, Nigeria
| |
Collapse
|
10
|
Yu J, Li H, Liu Y, Wang C. PCDD/Fs in indoor environments of residential communities around a municipal solid waste incineration plant in East China: Occurrence, sources, and cancer risks. ENVIRONMENT INTERNATIONAL 2023; 174:107902. [PMID: 37031517 DOI: 10.1016/j.envint.2023.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/04/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Prolonged exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) can pose several adverse outcomes on human health. However, there is limited information on public health associated with indoor PCDD/F exposure in residential environments. Here, we examined PCDD/F concentrations in indoor air and indoor dust samples obtained from households near a municipal solid waste incineration (MSWI) plant. Our measurements revealed that the toxic equivalent (TEQ) concentrations of PCDD/Fs in indoor air ranged from 0.01 to 0.05 pg TEQ/m3, which were below intervention thresholds (0.6 pg TEQ/m3). Additionally, the TEQ concentrations of PCDD/Fs in indoor dust ranged from 0.30 to 11.56 ng TEQ/kg. Higher PCDD/F levels were found in household dust in the town of Taopu compared to those in the town of Changzheng. Principal component analysis (PCA) of PCDD/Fs suggested that waste incineration was the primary source of PCDD/Fs in indoor air, whereas PCDD/Fs in indoor dust came from multiple sources. The results of the health risk assessment showed the carcinogenic risk due to indoor PCDD/F exposure was higher for adults than for nursery children and primary school children. The carcinogenic risks of PCDD/Fs for age groups residing near the MSWI plant were all less than the risk threshold (10-5). Our findings will help to better understand the levels of PCDD/F exposure among urban populations living in residential communities around the MSWI plant and to formulate corresponding control measures to reduce probabilistic risk implications.
Collapse
Affiliation(s)
- Jun Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
11
|
Tian Y, Cheng J, Li S, Geng H, Huang C, Zhou Q, Liu W, Ma J. Recent Progress in the Determination of Polychlorodibenzo- p-Dioxins and Polychlorodibenzofurans by Mass Spectrometry: A Minireview. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Yong Tian
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Jiawen Cheng
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Hongshuai Geng
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Chaonan Huang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Qian Zhou
- Environmental Technical Research Institute of Everbright Technology (Qingdao) Co., Ltd, Qingdao, China
| | - Weixun Liu
- Environmental Technical Research Institute of Everbright Technology (Qingdao) Co., Ltd, Qingdao, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
12
|
Fu Z, Lin S, Tian H, Hao Y, Wu B, Liu S, Luo L, Bai X, Guo Z, Lv Y. A comprehensive emission inventory of hazardous air pollutants from municipal solid waste incineration in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154212. [PMID: 35245558 DOI: 10.1016/j.scitotenv.2022.154212] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The Hazardous air pollutants (HAPs) released from increasing municipal solid waste incineration (MSWI) plants have drawn great concerns in China. However, a full picture of their emission characteristics is still urgently needed, especially after the implementation of stricter emission limits on MSWI. In this study, a comprehensive historical emission inventory of HAPs emitted from MSWI plants in China during the period of 2006-2017 was dedicatedly established by integrating with detailed plant-level activity data and renewed localized emission factors. Overall, HAPs emissions initially increased with years, then peaked or slowed increase in the year 2014, but leveled off after 2016 due to the gradually and fully implementing of newly revised national emission standard (GB18485-2014) applied to mainland China and much stricter local standards for several provinces and cities. It was estimated that totally 50,716 tons (t) of NOx, 13,026 t of CO, 7988 t of SO2, 4399 t of PM, 1943 t of HCl, 9916 kg of Pb, 5901 kg of Mn, 4805 kg of Cu, 3574 kg of Cr, 3329 kg of Ni, 2154 kg of Hg, 1168 kg of Cd, 862 kg of As, 409 kg of Co, 216 kg of Sb, 13 kg of Tl, and 19 g toxic equivalent quantity of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans were emitted from 337 MSWI plants scattered in 30 provinces of mainland China in 2017, respectively. HAPs emissions were heavily concentrated in developed coastal provinces and cities. Scenario analysis highlighted the importance of continuous improvement and upgrade on advanced air pollution control devices and MSWI management to meet the future ultra-low emission limits and minimize the harmful impacts of HAPs on atmospheric environment and public health.
Collapse
Affiliation(s)
- Zhiqiang Fu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shumin Lin
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China.
| | - Yan Hao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Bobo Wu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shuhan Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Lining Luo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Xiaoxuan Bai
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Zhihui Guo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yunqian Lv
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Pan SY, Liou YT, Chang MB, Chou CCK, Ngo TH, Chi KH. Characteristics of PCDD/Fs in PM 2.5 from emission stacks and the nearby ambient air in Taiwan. Sci Rep 2021; 11:8093. [PMID: 33854096 PMCID: PMC8046994 DOI: 10.1038/s41598-021-87468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
This study aimed to find the characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in fine particulate matter from different stationary emission sources (coal-fired boiler, CFB; municipal waste incinerator, MWI; electric arc furnace, EAF) in Taiwan and the relationship between PM2.5 and PM2.5-bound PCDD/Fs with Taiwanese mortality risk. PM2.5 was quantified using gravimetry and corresponding chemical analyses were done for PM2.5-bound chemicals. Mortality risks of PM2.5 exposure and PCDD/Fs exposure were calculated using Poisson regression. The highest concentration of PM2.5 (0.53 ± 0.39 mg/Nm3) and PCDD/Fs (0.206 ± 0.107 ng I-TEQ/Nm3) was found in CFB and EAF, respectively. Higher proportions of PCDDs over PCDFs were observed in the flue gases of CFB and MWI whereas it was reversed in EAF. For ambient air, PCDD/F congeners around the stationary sources were dominated by PCDFs in vapor phase. Positive matrix factorization (PMF) analysis found that the sources of atmosphere PCDD/Fs were 14.6% from EAF (r = 0.81), 52.6% from CFB (r = 0.74), 18.0% from traffic (r = 0.85) and 14.8% from MWI (r = 0.76). For the dioxin congener distribution, PCDDs were dominant in flue gases of CFB and MWI, PCDFs were dominant in EAF. It may be attributed to the different formation mechanisms among wastes incineration, steel-making, and coal-burning processes.
Collapse
Affiliation(s)
- Shih Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yi Ting Liou
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Moo Been Chang
- Graduate Institute of Environmental Engineering, National Central University, Chungli, 320, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, 115, Taiwan
| | - Tuan Hung Ngo
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.,International Health Program, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
14
|
Die Q, Lu A, Li C, Li H, Kong H, Li B. Occurrence of dioxin-like POPs in soils from urban green space in a metropolis, North China: implication to human exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5587-5597. [PMID: 32974823 DOI: 10.1007/s11356-020-10953-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Urban green space is a special space for urban life and natural contact and has an important impact on human health. However, little information is available on dioxin-like persistent organic pollutants (POPs) in the soils from the specific areas. We measured the concentrations of polychlorinated naphthalenes (PCNs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs) in the soils from urban green space in a metropolis, North China, and found total concentrations of PCDD/Fs, PCBs, and PCNs in the range of 11.5-91.4, 14.7-444, and 82.5-848 pg/g, respectively. It was worth to notice that the concentrations of PCDD/Fs in public park soil from urban center were significantly higher than those in the road greenbelts and resident lawns (Kruskal-Wallis test, p = 0.004). The source analysis indicated that sewage sludge from wastewater treatment plants were important sources of PCNs and PCDD/Fs in urban green land soils, and atmospheric deposition from municipal solid waste incinerator (MSWI) also play an important role in PCDD/F sources. The rough exposure risk evaluation showed that the residents were at a safe level with the daily doses being 0.172-3.144 fg/kg BW/day for children and 0.022-0.406 fg/kg BW/day for adult. Due to the complex and variable sources of PCDD/Fs in urban areas, dioxin-like POPs in urban green land should be given more attention to weaken human exposure.
Collapse
Affiliation(s)
- Qingqi Die
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| | - Anxiang Lu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| | - Cheng Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China.
| | - Haifeng Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| | - Hongling Kong
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| | - Bingru Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| |
Collapse
|
15
|
Trends of Polychlorinated Compounds in the Surroundings of a Municipal Solid Waste Incinerator in Mataró (Catalonia, Spain): Assessing Health Risks. TOXICS 2020; 8:toxics8040111. [PMID: 33266363 PMCID: PMC7712533 DOI: 10.3390/toxics8040111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/05/2022]
Abstract
Since 2008, the environmental levels of polychlorinated compounds near a municipal solid waste incinerator in Mataró (Catalonia, Spain) have been periodically monitored. The present study aimed at updating the data regarding the temporal changes occurred between 2015 and 2017, when air and soil samples were collected again, and the concentrations of the same chemical pollutants (i.e., polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs)) were analysed. Furthermore, the health risks associated with their human exposure were also evaluated. The levels of all the contaminants in soil were far below the threshold established by regional and national legislations, also being lower than those observed in previous surveys. A similar trend was also noted for PCDD/Fs in air samples, while airborne PCBs were the only group of chemicals whose levels significantly increased. In any case, the global assessment of the data regarding the different pollutants and matrices indicates that there has not been a general increase in the environmental pollution around the facility. In addition, the environmental exposure to PCDD/Fs and PCBs by the population living nearby is still clearly lower than the dietary intake of these same chemical pollutants.
Collapse
|
16
|
Li M, Tang B, Zheng J, Ma S, Zhuang X, Wang M, Zhang L, Yu Y, Mai B. PCDD/Fs in paired hair and serum of workers from a municipal solid waste incinerator plant in South China: Concentrations, correlations, and source identification. ENVIRONMENT INTERNATIONAL 2020; 144:106064. [PMID: 32889483 DOI: 10.1016/j.envint.2020.106064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Human hair has been widely used to evaluate the exposure to drugs and organic pollutants. However, reports on the relationship between polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-p-furans (PCDFs) in hair and the body burden of PCDD/Fs are limited. In this study, the association between PCDD/Fs in paired hair and serum samples from workers was examined in a municipal solid waste incinerator (MSWI) plant in South China. Fly ash and flue gas from the MSWI plant were also analyzed to determine the source apportionment of PCDD/Fs in the hair. The median international toxic equivalents (I-TEQs) of ΣPCDD/F in serum and hair were 28.0 pg TEQ/g (lipid weight) and 0.30 pg TEQ/g (dry weight), respectively. The indicator congener of PCDD/Fs for the TEQ levels was 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) in both hair and serum, the concentrations of which both exhibited significant and strong linear dependence on the total TEQ levels (p < 0.01, R2 = 0.966 and R2 = 0.670, respectively). Significant positive correlations were found in the 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin (HxCDD) and octachlorodibenzo-p-dioxin (OCDD) levels between the hair and serum samples (p < 0.05). Flue gas (which is an external source) was identified as the primary source of PCDD/Fs in human hair. Blood and flue gas were accountable for, on average, 37% and 61% of the PCDD/Fs in hair, respectively.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Shexia Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xi Zhuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Meihuan Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|