1
|
Zhang L, Cui Y, Xu J, Qian J, Yang X, Chen X, Zhang C, Gao P. Ecotoxicity and trophic transfer of metallic nanomaterials in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171660. [PMID: 38490428 DOI: 10.1016/j.scitotenv.2024.171660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Metallic nanomaterials (MNMs) possess unique properties that have led to their widespread application in fields such as electronics and medicine. However, concerns about their interactions with environmental factors and potential toxicity to aquatic life have emerged. There is growing evidence suggesting MNMs can have detrimental effects on aquatic ecosystems, and are potential for bioaccumulation and biomagnification in the food chain, posing risks to higher trophic levels and potentially humans. While many studies have focused on the general ecotoxicity of MNMs, fewer have delved into their trophic transfer within aquatic food chains. This review highlights the ecotoxicological effects of MNMs on aquatic systems via waterborne exposure or dietary exposure, emphasizing their accumulation and transformation across the food web. Biomagnification factor (BMF), the ratio of the contaminant concentration in predator to that in prey, was used to evaluate the biomagnification due to the complex nature of aquatic food chains. However, most current studies have BMF values of less than 1 indicating no biomagnification. Factors influencing MNM toxicity in aquatic environments include nanomaterial properties, ion variations, light, dissolved oxygen, and pH. The multifaceted interactions of these variables with MNM toxicity remain to be fully elucidated. We conclude with recommendations for future research directions to mitigate the adverse effects of MNMs in aquatic ecosystems and advocate for a cautious approach to the production and application of MNMs.
Collapse
Affiliation(s)
- Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yifei Cui
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jingran Qian
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoni Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
2
|
Yamini V, Shanmugam V, Rameshpathy M, Venkatraman G, Ramanathan G, Al Garalleh H, Hashmi A, Brindhadevi K, Devi Rajeswari V. Environmental effects and interaction of nanoparticles on beneficial soil and aquatic microorganisms. ENVIRONMENTAL RESEARCH 2023; 236:116776. [PMID: 37517486 DOI: 10.1016/j.envres.2023.116776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
A steadily increasing production volume of nanoparticles reflects their numerous industrial and domestic applications. These economic successes come with the potential adverse effects on natural systems that are associated with their presence in the environment. Biological activities and effects of nanoparticles are affected by their entry method together with their specificities like their size, shape, charge, area, and chemical composition. Particles can be classified as safe or dangerous depending on their specific properties. As both aquatic and terrestrial systems suffer from organic and inorganic contamination, nanoparticles remain a sink for these contaminants. Researching the sources, synthesis, fate, and toxicity of nanoparticles has advanced significantly during the last ten years. We summarise nanoparticle pathways throughout the ecosystem and their interactions with beneficial microorganisms in this research. The prevalence of nanoparticles in the ecosystem causes beneficial microorganisms to become hazardous to their cells, which prevents the synthesis of bioactive molecules from undergoing molecular modifications and diminishes the microbe population. Recently, observed concentrations in the field could support predictions of ambient concentrations based on modeling methodologies. The aim is to illustrate the beneficial and negative effects that nanoparticles have on aqueous and terrestrial ecosystems, as well as the methods utilized to reduce their toxicity.
Collapse
Affiliation(s)
- V Yamini
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Venkatkumar Shanmugam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - M Rameshpathy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Dahban, Jeddah, 21361, Saudi Arabia
| | - Ahmed Hashmi
- Architectural Engineering Department, College of Engineering, University of Business and Technology - Dahban, Jeddah, 21361, Saudi Arabia
| | - Kathirvel Brindhadevi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, 140103, India.
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Functional Nanohybrids and Nanocomposites Development for the Removal of Environmental Pollutants and Bioremediation. Molecules 2022; 27:molecules27154856. [PMID: 35956804 PMCID: PMC9369816 DOI: 10.3390/molecules27154856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/17/2022] Open
Abstract
World population growth, with the consequent consumption of primary resources and production of waste, is progressively and seriously increasing the impact of anthropic activities on the environment and ecosystems. Environmental pollution deriving from anthropogenic activities is nowadays a serious problem that afflicts our planet and that cannot be neglected. In this regard, one of the most challenging tasks of the 21st century is to develop new eco-friendly, sustainable and economically-sound technologies to remediate the environment from pollutants. Nanotechnologies and new performing nanomaterials, thanks to their unique features, such as high surface area (surface/volume ratio), catalytic capacity, reactivity and easy functionalization to chemically modulate their properties, represent potential for the development of sustainable, advanced and innovative products/techniques for environmental (bio)remediation. This review discusses the most recent innovations of environmental recovery strategies of polluted areas based on different nanocomposites and nanohybrids with some examples of their use in combination with bioremediation techniques. In particular, attention is focused on eco-friendly and regenerable nano-solutions and their safe-by-design properties to support the latest research and innovation on sustainable strategies in the field of environmental (bio)remediation.
Collapse
|
4
|
Shahcheraghi N, Golchin H, Sadri Z, Tabari Y, Borhanifar F, Makani S. Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech 2022; 12:65. [PMID: 35186662 PMCID: PMC8828840 DOI: 10.1007/s13205-021-03108-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology is one of the most emerging fields of research within recent decades and is based upon the exploitation of nano-sized materials (e.g., nanoparticles, nanotubes, nanomembranes, nanowires, nanofibers and so on) in various operational fields. Nanomaterials have multiple advantages, including high stability, target selectivity, and plasticity. Diverse biotic (e.g., Capsid of viruses and algae) and abiotic (e.g., Carbon, silver, gold and etc.) materials can be utilized in the synthesis process of nanomaterials. "Nanobiotechnology" is the combination of nanotechnology and biotechnology disciplines. Nano-based approaches are developed to improve the traditional biotechnological methods and overcome their limitations, such as the side effects caused by conventional therapies. Several studies have reported that nanobiotechnology has remarkably enhanced the efficiency of various techniques, including drug delivery, water and soil remediation, and enzymatic processes. In this review, techniques that benefit the most from nano-biotechnological approaches, are categorized into four major fields: medical, industrial, agricultural, and environmental.
Collapse
Affiliation(s)
- Nikta Shahcheraghi
- Department of Engineering, University of Science and Culture, Tehran, Iran
| | - Hasti Golchin
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Zahra Sadri
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Yasaman Tabari
- Faculty of Sciences and Advanced Technologies, Science and Culture University, 1461968151 Tehran, Iran
| | - Forough Borhanifar
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| |
Collapse
|
5
|
Ternois M, Mougon M, Flahaut E, Dussutour A. Slime molds response to carbon nanotubes exposure: from internalization to behavior. Nanotoxicology 2021; 15:511-526. [PMID: 33705250 DOI: 10.1080/17435390.2021.1894615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Carbon nanotubes (CNTs) offer attractive opportunities due to their physical, electrical, mechanical, optical, and thermal properties. They are used in a wide range of applications and are found in numerous consumer products. On the downside, their increasing presence in the environment poses potential threats to living organisms and ecosystems. The aim of this study was to evaluate the toxicity of double-walled carbon nanotubes (DWCNTs) on a new model system: the acellular slime mold Physarum polycephalum. Despite its ecological significance, its simplicity of organization, and its behavioral complexity, exposure of such organisms to nanoparticles has been poorly investigated. Slime molds were exposed to DWCNTs using three routes of exposure (topical, food, environment). We first demonstrated that DWCNTs were rapidly internalized by slime molds especially when DWCNTs were mixed with the food or spread out in the environment. Secondly, we showed that a 6-week exposure to DWCNTs did not lead to bioaccumulation nor did it lead to persistence in the slime molds when they entered a resting stage. Thirdly, we revealed that 2 days following exposure, DWCNTs were almost entirely excreted from the slime molds. Lastly, we uncovered that DWCNTs exposure altered the migration speed, the pseudopods formation, and the expansion rate of the slime molds. Our results extend our current knowledge of CNTs cytotoxicity and introduce P. polycephalum as an ideal organism for nanotoxicology.
Collapse
Affiliation(s)
- Manon Ternois
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), UMR5169 CNRS, Toulouse University, Toulouse, France.,CIRIMAT, CNRS, INPT, UPS, UMR5085 CNRS-UPS-INPT, Toulouse University, Toulouse, France
| | - Maxence Mougon
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), UMR5169 CNRS, Toulouse University, Toulouse, France.,CIRIMAT, CNRS, INPT, UPS, UMR5085 CNRS-UPS-INPT, Toulouse University, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, CNRS, INPT, UPS, UMR5085 CNRS-UPS-INPT, Toulouse University, Toulouse, France
| | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), UMR5169 CNRS, Toulouse University, Toulouse, France
| |
Collapse
|
6
|
Martínez G, Merinero M, Pérez-Aranda M, Pérez-Soriano EM, Ortiz T, Begines B, Alcudia A. Environmental Impact of Nanoparticles' Application as an Emerging Technology: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 14:E166. [PMID: 33396469 PMCID: PMC7795427 DOI: 10.3390/ma14010166] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
The unique properties that nanoparticles exhibit, due to their small size, are the principal reason for their numerous applications, but at the same time, this might be a massive menace to the environment. The number of studies that assess the possible ecotoxicity of nanomaterials has been increasing over the last decade to determine if, despite the positive aspects, they should be considered a potential health risk. To evaluate their potential toxicity, models are used in all types of organisms, from unicellular bacteria to complex animal species. In order to better understand the environmental consequences of nanotechnology, this literature review aims to describe and classify nanoparticles, evaluating their life cycle, their environmental releasing capacity and the type of impact, particularly on living beings, highlighting the need to develop more severe and detailed legislation. Due to their diversity, nanoparticles will be discussed in generic terms focusing on the impact of a great variety of them, highlighting the most interesting ones for the industry.
Collapse
Affiliation(s)
- Guillermo Martínez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain; (G.M.); (M.M.); (P.-A.M.)
| | - Manuel Merinero
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain; (G.M.); (M.M.); (P.-A.M.)
| | - María Pérez-Aranda
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain; (G.M.); (M.M.); (P.-A.M.)
| | - Eva María Pérez-Soriano
- Department of Materials Science and Engineering and Transport, Escuela Politécnica Superior, University of Seville, 41011 Seville, Spain;
| | - Tamara Ortiz
- Department of Normal and Pathological Cytology and Histology, Faculty of Medicine, University of Seville, 41009 Seville, Spain;
| | - Belén Begines
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain; (G.M.); (M.M.); (P.-A.M.)
| | - Ana Alcudia
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain; (G.M.); (M.M.); (P.-A.M.)
| |
Collapse
|