1
|
Wei S, Moriuchi R, Wiyono CDAP, Inoue C, Chien MF. Unraveling tissue-specific molecular mechanisms orchestrating arsenic response processes in Pteris vittata through transcriptomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118059. [PMID: 40121942 DOI: 10.1016/j.ecoenv.2025.118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Pteris vittata remediates arsenic (As)-contaminated soils; however, the molecular mechanisms underlying the As management remain largely unknown. Therefore, in this study, we investigated As - related processes by conducting transcriptomic analysis on hydroponically grown P. vittata exposed to 500 ppb arsenate (AsV). Within 24 h, As was translocated to fronds, while As concentration among fronds differed (4.08-1323.35 µg/g-DW). Transcriptomic profiling of roots and fronds with high (PHAs) and low (PLAs) As concentrations revealed distinct As transport mechanisms. In the roots, the induction of PvPht1;3 and one PHO1 genes suggested the facilitation of AsV absorption, while ACR3 and POT genes were induced in both the roots and fronds. Notably, NRT2.5, NIP6;1, BOR2, and ABC transporter genes were specifically activated in PHAs, highlighting their potential roles in As hyperaccumulation. To our knowledge, this is the first report linking PHO1, POT, NRT2.5, NIP6;1, and BOR2 to As accumulation in P. vittata. Gene ontology enrichment analysis further emphasized a tissue-specific As response system. In the roots, differentially expressed genes (DEGs) associated with the activation of glutathione metabolic process, cell wall biogenesis, antioxidant response, and signal transduction pathways enabled a prompt response to As-derived stimuli, facilitating efficient As uptake and transport. In the fronds, DEGs related to cell wall modification, oxidative stress response, signal transduction, and active transport systems may contribute to As detoxification and hyperaccumulation. This study provides novel insights into the molecular basis of As uptake, transport, accumulation, and detoxification in P. vittata, providing valuable strategies for efficient phytoextraction via regulation of As metabolism.
Collapse
Affiliation(s)
- Shujun Wei
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan; CAS Center for Excellence in Molecular Plant Sciences, 300 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Ryota Moriuchi
- Functional Genomics Section, Shizuoka Instrumental Analysis Center, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Christine Dwi A P Wiyono
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino City, Tokyo 180-8633, Japan
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
2
|
Lin J, Dai Z, Lei M, Qi Q, Zhou W, Ma LQ, Dahlgren RA, Xu J. Arsenic modifies the microbial community assembly of soil-root habitats in Pteris vittata. ISME COMMUNICATIONS 2025; 5:ycae172. [PMID: 39830094 PMCID: PMC11742257 DOI: 10.1093/ismeco/ycae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/12/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Pteris vittata, renowned for its ability to hyperaccumulate arsenic, presents a promising solution to the escalating issue of global soil arsenic contamination. This fern cultivates a unique underground microbial community to enhance its environmental adaptability. However, our understanding of the assembly process and the long-term ecological impacts of this community remains limited, hindering the development of effective soil remediation strategies. This study addresses this gap by investigating soil-root habitats from three geographically diverse fields comprising a gradient of arsenic contamination, complemented by a time-scale greenhouse experiment. Field investigations reveal that arsenic stress influences community assembly dynamics in the rhizosphere by enhancing processes of homogeneous selection. Greenhouse experiments further reveal that arsenic exposure alters the assembly trajectory of rhizosphere communities by promoting key microbial modules. Specifically, arsenic exposure increases the enrichment of a core taxon (i.e. Rhizobiaceae) in the rhizosphere, both in field and greenhouse settings, boosting their abundance from undetectable levels to 0.02% in the soil after phytoremediation. Notably, arsenic exposure also promotes a pathogenic group (i.e. Spirochaetaceae) in the rhizosphere, increasing their abundance from undetectable levels to 0.1% in the greenhouse. This raise concerns that warrant further investigation in future phytoremediation studies. Overall, this study elucidates the assembly dynamics of the soil microbiome following the introduction of a remediation plant and emphasizes the often-overlooked impacts on soil microbial community following phytoremediation. By probing the ecological impacts of remediation plants, this work advances a more nuanced understanding of the complex ecological implications inherent in phytoremediation processes.
Collapse
Affiliation(s)
- Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
| | - Qian Qi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Weijun Zhou
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, One Shields Avenue, Davis 95616 CA, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
3
|
Guo Z, Cao J, Xu R, Zhang H, He L, Gao H, Zhu L, Jia M, Yang Z, Xiong W. Novel Photoelectron-Assisted Microbial Reduction of Arsenate Driven by Photosensitive Dissolved Organic Matter in Mine Stream Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22170-22182. [PMID: 39526867 DOI: 10.1021/acs.est.4c09647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The microbial reduction of arsenate (As(V)) significantly contributes to arsenic migration in mine stream sediment, primarily driven by heterotrophic microorganisms using dissolved organic matter (DOM) as a carbon source. This study reveals a novel reduction pathway in sediments that photosensitive DOM generates photoelectrons to stimulate diverse nonphototrophic microorganisms to reduce As(V). This microbial photoelectrophic As(V) reduction (PEAsR) was investigated using microcosm incubation, which showed the transfer of photoelectrons from DOM to indigenous sediment microorganisms, thereby leading to a 50% higher microbial reduction rate of As(V). The abundance of two marker genes for As(V) reduction, arrA and arsC, increased substantially, confirming the microbial nature of PEAsR rather than a photoelectrochemical process. Photoelectron ion is unlikely to stimulate photolithoautotrophic growth. Instead, diverse nonphototrophic genera, e.g., Cupriavidus, Sphingopyxis, Mycobacterium, and Bradyrhizobium, spanning 13 orders became enriched by 10-50 folds. Metagenomic binning revealed their genetic potential to mediate the photoelectron-assisted reduction of As(V). These microorganisms contain essential genes involved in respiratory As(V) reduction, detoxification As(V) reduction, dimethyl sulfoxide reductase family, c-type cytochromes, and multiple heavy-metal resistance but lack a complete photosynthesis system. The novel microbial PEAsR pathway offers new insights into the interaction between photoelectron utilization and nonphototrophic As(V)-reducing microorganisms, which may have profound implications for arsenic pollution transportation in mine stream sediment.
Collapse
Affiliation(s)
- Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Jie Cao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Lele He
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Linao Zhu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Meiying Jia
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| |
Collapse
|
4
|
Antenozio ML, Giannelli G, Fragni R, Baragaño D, Brunetti P, Visioli G, Cardarelli M. Enhanced Growth and Contrasting Effects on Arsenic Phytoextraction in Pteris vittata through Rhizosphere Bacterial Inoculations. PLANTS (BASEL, SWITZERLAND) 2024; 13:2030. [PMID: 39124148 PMCID: PMC11314128 DOI: 10.3390/plants13152030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
This greenhouse study evaluated the effects of soil enrichment with Pteris vittata rhizosphere bacteria on the growth and accumulation of arsenic in P. vittata grown on a naturally As-rich soil. Inoculations were performed with a consortium of six bacteria resistant to 100 mM arsenate and effects were compared to those obtained on the sterilized soil. Selected bacteria from the consortium were also utilized individually: PVr_9 homologous to Agrobacterium radiobacter that produces IAA and siderophores and shows ACC deaminase activity, PVr_15 homologous to Acinetobacter schindleri that contains the arsenate reductase gene, and PVr_5 homologous to Paenarthrobacter ureafaciens that possesses all traits from both PVr_9 and PVr_15. Frond and root biomass significantly increased in ferns inoculated with the consortium only on non-sterilized soil. A greater increase was obtained with PVr_9 alone, while only an increased root length was found in those inoculated with either PVr_5 or PVr_15. Arsenic content significantly decreased only in ferns inoculated with PVr_9 while it increased in those inoculated with PVr_5 and PVr_15. In conclusion, inoculations with the consortium and PVr_9 alone increase plant biomass, but no increase in As phytoextraction occurs with the consortium and even a reduction is seen with PVr_9 alone. Conversely, inoculations with PVr_5 and PVr_15 have the capacity of increasing As phytoextraction.
Collapse
Affiliation(s)
- Maria Luisa Antenozio
- IBPM-CNR c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro, 00185 Roma, Italy; (M.L.A.); (M.C.)
| | - Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy;
| | - Rosaria Fragni
- SSICA, Experimental Station for the Food Preserving Industry, viale Tanara 31a, 43121 Parma, Italy;
| | - Diego Baragaño
- Instituto de Ciencia y Tecnologia del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain;
| | - Patrizia Brunetti
- IBPM-CNR c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro, 00185 Roma, Italy; (M.L.A.); (M.C.)
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy;
| | - Maura Cardarelli
- IBPM-CNR c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro, 00185 Roma, Italy; (M.L.A.); (M.C.)
| |
Collapse
|
5
|
Rout Y, Swain SS, Ghana M, Dash D, Nayak S. Perspectives of pteridophytes microbiome for bioremediation in agricultural applications. Open Life Sci 2024; 19:20220870. [PMID: 38840895 PMCID: PMC11151392 DOI: 10.1515/biol-2022-0870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 06/07/2024] Open
Abstract
The microbiome is the synchronised congregation of millions of microbial cells in a particular ecosystem. The rhizospheric, phyllospheric, and endospheric microbial diversity of lower groups of plants like pteridophytes, which includes the Ferns and Fern Allies, have also given numerous alternative opportunities to achieve greener and sustainable agriculture. The broad-spectrum bioactivities of these microorganisms, including bioremediation of heavy metals (HMs) in contaminated soil, have been drawing the attention of agricultural researchers for the preparation of bioformulations for applications in climate-resilient and versatile agricultural production systems. Pteridophytes have an enormous capacity to absorb HMs from the soil. However, their direct application in the agricultural field for HM absorption seems infeasible. At the same time, utilisation of Pteridophyte-associated microbes having the capacity for bioremediation have been evaluated and can revolutionise agriculture in mining and mineral-rich areas. In spite of the great potential, this group of microbiomes has been less studied. Under these facts, this prospective review was carried out to summarise the basic and applied research on the potential of Pteridophyte microbiomes for soil bioremediation and other agricultural applications globally. Gaps have also been indicated to present scopes for future research programmes.
Collapse
Affiliation(s)
- Yasaswinee Rout
- Central National Herbarium, Botanical Survey of India, 711103, Howrah, West Bengal, India
| | | | - Madhusmita Ghana
- Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015, India
| | - Debabrata Dash
- Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015, India
| | - Shubhransu Nayak
- Odisha Biodiversity Board, Nayapalli, Bhubaneswar, 751015, India
| |
Collapse
|
6
|
Huang D, Sun X, Ghani MU, Li B, Yang J, Chen Z, Kong T, Xiao E, Liu H, Wang Q, Sun W. Bacteria associated with Comamonadaceae are key arsenite oxidizer associated with Pteris vittata root. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123909. [PMID: 38582183 DOI: 10.1016/j.envpol.2024.123909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Pteris vittata (P. vittata), an arsenic (As) hyperaccumulator commonly used in the phytoremediation of As-contaminated soils, contains root-associated bacteria (RAB) including those that colonize the root rhizosphere and endosphere, which can adapt to As contamination and improve plant health. As(III)-oxidizing RAB can convert the more toxic arsenite (As(III)) to less toxic arsenate (As(V)) under As-rich conditions, which may promote plant survial. Previous studies have shown that microbial As(III) oxidation occurs in the rhizospheres and endospheres of P. vittata. However, knowledge of RAB of P. vittata responsible for As(III) oxidation remained limited. In this study, members of the Comamonadaceae family were identified as putative As(III) oxidizers, and the core microbiome associated with P. vittata roots using DNA-stable isotope probing (SIP), amplicon sequencing and metagenomic analysis. Metagenomic binning revealed that metagenome assembled genomes (MAGs) associated with Comamonadaceae contained several functional genes related to carbon fixation, arsenic resistance, plant growth promotion and bacterial colonization. As(III) oxidation and plant growth promotion may be key features of RAB in promoting P. vittata growth. These results extend the current knowledge of the diversity of As(III)-oxidizing RAB and provide new insights into improving the efficiency of arsenic phytoremediation.
Collapse
Affiliation(s)
- Duanyi Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Muhammad Usman Ghani
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jinchan Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
7
|
Zeng W, Wan X, Lei M, Chen T. Intercropping of Pteris vittata and maize on multimetal contaminated soil can achieve remediation and safe agricultural production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170074. [PMID: 38218467 DOI: 10.1016/j.scitotenv.2024.170074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Soil contamination by multimetals is widespread. Hyperaccumulator-crop intercropping has been confirmed to be an effective method for arsenic (As)- or cadmium (Cd)-contaminated soil that can achieve soil cleanup and agricultural production. However, the influencing factors and response of hyperaccumulator-crop intercropping to multimetal-contaminated soil are still unclear. In this study, intercropping of the As hyperaccumulator Pteris vittata and maize was conducted on two typical types of multimetal-contaminated soil, namely, Soil A contaminated by As, Cd, and lead (Pb) and Soil B contaminated by As, Cd, and chromium (Cr). Intercropping reduced As, Cd, and Pb in the maize grains by 60 %, 66.7 %, and 20.4 %, respectively. The concentrations of As, Cd, Pb, and Cr in P. vittata increased by 314 %, 300 %, 447.3 %, and 232.6 %, respectively, relative to their concentrations in the monoculture plants. Two soils with different levels of contamination showed that higher heavy metal content might diminish the ability of intercropping to reduce soil heavy metal risk. No notable difference in soil microbial diversity was found between the intercropped and monocultured plants. The composition of microbial communities of intercropping groups were more similar to those of monoculture P. vittata on two different soils (Soils A and B). An imbalance between the amount of As taken up by the plants and the reduction in As in the soil was observed, and this imbalance may be related to watering, As leaching, and heterogeneity of soil As distribution. Reducing the risk resulting from As leaching and enhancing the efficiency of phytoextraction should be emphasized in remediation practices.
Collapse
Affiliation(s)
- Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100089, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100089, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100089, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100089, China
| |
Collapse
|
8
|
Kudo H, Han N, Yokoyama D, Matsumoto T, Chien MF, Kikuchi J, Inoue C. Bayesian network highlights the contributing factors for efficient arsenic phytoextraction by Pteris vittata in a contaminated field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165654. [PMID: 37478955 DOI: 10.1016/j.scitotenv.2023.165654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Phytoextraction is a low-cost and eco-friendly method for removing pollutants, such as arsenic (As), from contaminated soil. One of the most studied As hyperaccumulators for soil remediation include Pteris vittata. Although phytoextraction using plant-assisted microbes has been considered a promising soil remediation method, microbial harnessing has not been achieved due to the complex and difficult to understand interactions between microbes and plants. This problem can possibly be addressed with a multi-omics approach using a Bayesian network. However, limited studies have used Bayesian networks to analyze plant-microbe interactions. Therefore, to understand this complex interaction and to facilitate efficient As phytoextraction using microbial inoculants, we conducted field cultivation experiments at two sites with different total As contents (62 and 8.9 mg/kg). Metabolome and microbiome data were obtained from rhizosphere soil samples using nuclear magnetic resonance and high-throughput sequencing, respectively, and a Bayesian network was applied to the obtained multi-omics data. In a highly As-contaminated site, inoculation with Pseudomonas sp. strain m307, which is an arsenite-oxidizing microbe having multiple copies of the arsenite oxidase gene, increased As concentration in the shoots of P. vittata to 157.5 mg/kg under this treatment; this was 1.5-fold higher than that of the other treatments. Bayesian network demonstrated that strain m307 contributed to As accumulation in P. vittata. Furthermore, the network showed that microbes belonging to the MND1 order positively contributed to As accumulation in P. vittata. Based on the ecological characteristics of MND1, it was suggested that the rhizosphere of P. vittata inoculated with strain m307 was under low-nitrogen conditions. Strain m307 may have induced low-nitrogen conditions via arsenite oxidation accompanied by nitrate reduction, potentially resulting in microbial iron reduction or the prevention of microbial iron oxidation. These conditions may have enhanced the bioavailability of arsenate, leading to increased As accumulation in P. vittata.
Collapse
Affiliation(s)
- Hiroshi Kudo
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Ning Han
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Daiki Yokoyama
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomoko Matsumoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
9
|
Yang S, Yin R, Wang C, Wang J. Improved efficiency of Sedum lineare (Crassulaceae) in remediation of arsenic-contaminated soil by phosphate-dissolving strain P-1 in association with phosphate rock. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8317-8336. [PMID: 37597084 DOI: 10.1007/s10653-023-01727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
The selection of appropriate plants and growth strategies is a key factor in improving the efficiency and universal applicability of phytoremediation. Sedum lineare grows rapidly and tolerates multiple adversities. The effects of inoculation of Acinetobacter sp. phosphate solubilizing bacteria P-1 and application of phosphate rock (PR) as additives on the remediation efficiency of As-contaminated soil by S. lineare were investigated. Compared with the control, both the single treatment and the combination of inoculation with strain P-1 and application of PR improved the biomass by 30.7-395.5%, chlorophyll content by 48.1-134.8%, total protein content by 12.5-92.4% and total As accumulation by 45.1-177.5%, and reduced the As-induced oxidative damage. Inoculation with strain P-1 increased the activities of superoxide dismutases and catalases of S. lineare under As stress, decreased the accumulation of reactive oxygen species in plant tissues and promoted the accumulation of As in roots. In contrast, simultaneous application of PR decreased As concentration in S. lineare tissues, attenuated As-induced lipid peroxidation and improved As transport to shoots. In addition, the combined application showed the best performance in improving resistance and biomass, which significantly increased root length by 149.1%, shoot length by 33%, fresh weight by 395.5% and total arsenic accumulation by 159.2%, but decreased the malondialdehyde content by 89.1%. Our results indicate that the combined application of strain P-1 and PR with S. lineare is a promising bioremediation strategy to accelerate phytoremediation of As-contaminated soils.
Collapse
Affiliation(s)
- Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Rong Yin
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chen Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
10
|
Purnomo JS, Victor H, Dikson, Cornelia M, Pinontoan R. Decolorization potential of malachite green by Ralstonia mannitolilytica isolated from Indonesian cassava-based fermented food tapai. Arch Microbiol 2023; 205:339. [PMID: 37747508 DOI: 10.1007/s00203-023-03678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
Pollution due to textile dye effluent mishandling is hazardous to ecosystems and to the living beings inhabiting them. This can cause retarded photosynthesis, disrupted fish day/night cycles, unbalanced bacterial populations, and decreased oxygen concentration in contaminated water, leading to low habitability. In this study, we aimed to isolate and characterize the microorganisms found in Indonesian cassava-based fermented food tapai starter cultures as a source of potential microbes for the biological remediation of textile dye pollutants. Microorganisms in the tapai starter culture were screened for their decolorization activity via spread-culture inoculation on a solid growth medium supplemented with textile dyes. Isolated microorganisms were selected based on their ability to secrete textile dye-decolorizing extracellular enzymes via increased light penetration after incubation of the cell-free supernatant (CFS) containing extracellular enzymes in textile dye solutions. Isolate JSP1 was the only bacterium capable of producing malachite green (MG)-decolorizing extracellular enzymes, which enabled it to survive and decolorize MG up to 375 ppm. Moreover, isolate JSP1 CFS was able to optimally decolorize 75% of MG at 100 ppm, but its activity was diminished at concentrations > 350 ppm. Colony and cellular morphology, biochemistry, and 16S rRNA tests revealed that the isolate was of Ralstonia mannitolilytica. Therefore, R. mannitolilytica isolate JSP1 may be a potential bioremediation agent for MG.
Collapse
Affiliation(s)
- Jonathan Suciono Purnomo
- Department of Biology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia
| | - Hans Victor
- Department of Biology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia
| | - Dikson
- Department of Biology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia
| | - Melanie Cornelia
- Department of Food Technology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia
| | - Reinhard Pinontoan
- Department of Biology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia.
| |
Collapse
|
11
|
Guro P, Ulianich P, Shaposhnikov A, Yuzikhin O, Karlov D, Sazanova A, Safronova V, Belimov A. Draft Genome Sequence of the Bacterium Cupriavidus sp. Strain D39, Inhabiting the Rhizosphere of Pea Plants (Pisum sativum L.). Microbiol Resour Announc 2023; 12:e0135422. [PMID: 36943044 PMCID: PMC10112225 DOI: 10.1128/mra.01354-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
We report the draft genome sequence of Cupriavidus sp. strain D39, associated with the roots of pea plants. The genome is characterized by a GC content of 63.62% and a total length of 7.7 Mbp and contains several putative genes associated with resistance to metals and plant growth promotion.
Collapse
Affiliation(s)
- Polina Guro
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russian Federation
| | - Pavel Ulianich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russian Federation
| | - Alexander Shaposhnikov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russian Federation
| | - Oleg Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russian Federation
| | - Denis Karlov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russian Federation
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russian Federation
| | - Vera Safronova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russian Federation
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russian Federation
| |
Collapse
|
12
|
Zhang D, Lei M, Wan X, Guo G, Zhao X, Liu Y. Responses of diversity and arsenic-transforming functional genes of soil microorganisms to arsenic hyperaccumulator (Pteris vittata L.)/pomegranate (Punica granatum L.) intercropping. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157767. [PMID: 35926620 DOI: 10.1016/j.scitotenv.2022.157767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Intercropping of arsenic (As) hyperaccumulator (Pteris vittata L.) with crops can reduce the As concentration in soil and the resulting ecological and health risks, while maintaining certain economic benefits. However, it is still unclear how As-transforming functional bacteria and dominant bacteria in the rhizosphere of P. vittata affect the microbial properties of crop rhizosphere soil, as well as how As concentration and speciation change in crop rhizosphere soil under intercropping. This is of great significance for understanding the biogeochemical cycle of As in soil and crops. This study aimed to use high-throughput sequencing and quantitative polymerase chain reaction (qPCR) to analyze the effects of different rhizosphere isolation patterns on the bacterial diversity and the copy number of As-transforming functional genes in pomegranate (Punica granatum L.) rhizosphere soil. The results showed that the abundance of bacteria in the rhizosphere soil of pomegranate increased by 16.3 %, and the soil bacterial community structure significantly changed. C_Alphaproteobacteria and o_Rhizobiales bacteria significantly accumulated in the rhizosphere of pomegranate. The copy number of As methylation (arsM) gene in pomegranate rhizosphere soil significantly increased by 63.37 %. The concentrations of nonspecifically sorbed As (F1), As associated with amorphous Fe (hydr)oxides (F3), and the total As (FT) decreased; the proportion of As (III) in pomegranate rhizosphere soil decreased; and the proportion of As (V) increased in pomegranate rhizosphere soil. c_Alphaproteobacteria and o_Rhizobiales accumulated in crop rhizosphere soil under the intercropping of P. vittata with crops. Also, the copy number of As methylation functional genes in crop rhizosphere soil significantly increased, which could reduce As (III) proportion in crop rhizosphere soil. These changes favored simultaneous agricultural production and soil remediation. The results provided the theoretical basis and practical guidance for the safe utilization of As-contaminated soil in the intercropping of As-hyperaccumulator and cash crops.
Collapse
Affiliation(s)
- Degang Zhang
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; HongHe University, Mengzi 661100, Yunnan, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Zhao
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhong Liu
- HongHe University, Mengzi 661100, Yunnan, China
| |
Collapse
|
13
|
Khanna K, Kohli SK, Kumar P, Ohri P, Bhardwaj R, Alam P, Ahmad P. Arsenic as hazardous pollutant: Perspectives on engineering remediation tools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155870. [PMID: 35568183 DOI: 10.1016/j.scitotenv.2022.155870] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is highly toxic metal (loid) that impairs plant growth and proves fatal towards human population. It disrupts physiological, biochemical and molecular attributes of plants associated with water/nutrient uptake, redox homeostasis, photosynthetic machineries, cell/membrane damage, and ATP synthesis. Numerous transcription factors are responsive towards As through regulating stress signaling, toxicity and resistance. Additionally, characterization of specific genes encoding uptake, translocation, detoxification and sequestration has also explained their underlying mechanisms. Arsenic within soil enters the food chain and cause As-poisoning. Plethora of conventional methods has been used since decades to plummet As-toxicity, but the success rate is quite low due to environmental hazards. Henceforth, exploration of effective and eco-friendly methods is aimed for As-remediation. With the technological advancements, we have enumerated novel strategies to address this concern for practicing such techniques on global scale. Novel strategies such as bioremediation, phytoremediation, mycorrhizae-mediated remediation, biochar, algal-remediation etc. possess extraordinary results. Moreover, nitric oxide (NO), a signaling molecule has also been explored in relieving As-stress through reducing oxidative damages and triggering antioxidative responses. Other strategies such as role of plant hormones (salicylic acid, indole-3-acetic acid, jasmonic acid) and micro-nutrients such as selenium have also been elucidated in As-remediation from soil. This has been observed through stimulated antioxidant activities, gene expression of transporters, defense genes, cell-wall modifications along with the synthesis of chelating agents such as phytochelatins and metallothioneins. This review encompasses the updated information about As toxicity and its remediation through novel techniques that serve to be the hallmarks for stress revival. We have summarised the genetic engineering protocols, biotechnological as well as nanotechnological applications in plants to combat As-toxicity.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Department of Microbiology, D.A.V University, Sarmastpur, Jalandhar 144001, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Pankaj Kumar
- Department of Chemical Engineering, D.A.V University, Sarmastpur, Jalandhar 144001, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
14
|
Bhanse P, Kumar M, Singh L, Awasthi MK, Qureshi A. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. CHEMOSPHERE 2022; 303:134954. [PMID: 35595111 DOI: 10.1016/j.chemosphere.2022.134954] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 05/02/2023]
Abstract
Soil is considered as a vital natural resource equivalent to air and water which supports growth of the plants and provides habitats to microorganisms. Changes in soil properties, productivity, and, inevitably contamination/stress are the result of urbanisation, industrialization, and long-term use of synthetic fertiliser. Therefore, in the recent scenario, reclamation of contaminated/stressed soils has become a potential challenge. Several customized, such as, physical, chemical, and biological technologies have been deployed so far to restore contaminated land. Among them, microbial-assisted phytoremediation is considered as an economical and greener approach. In recent decades, soil microbes have successfully been used to improve plants' ability to tolerate biotic and abiotic stress and strengthen their phytoremediation capacity. Therefore, in this context, the current review work critically explored the microbial assisted phytoremediation mechanisms to restore different types of stressed soil. The role of plant growth-promoting rhizobacteria (PGPR) and their potential mechanisms that foster plants' growth and also enhance phytoremediation capacity are focussed. Finally, this review has emphasized on the application of advanced tools and techniques to effectively characterize potent soil microbial communities and their significance in boosting the phytoremediation process of stressed soils along with prospects for future research.
Collapse
Affiliation(s)
- Poonam Bhanse
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manish Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Yang C, Han N, Inoue C, Yang YL, Nojiri H, Ho YN, Chien MF. Rhizospheric plant-microbe synergistic interactions achieve efficient arsenic phytoextraction by Pteris vittata. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128870. [PMID: 35452977 DOI: 10.1016/j.jhazmat.2022.128870] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Phytoextraction is a cost-effective and eco-friendly technology to remove arsenic (As) from contaminated soil using plants and associated microorganisms. Pteris vittata is the most studied As hyperaccumulator, which effectively takes up inorganic arsenate via roots. Arsenic solubilization and speciation occur prior to plant absorption in the rhizosphere, which play a key role in As phytoextraction by P. vittata. This study investigated the metabolomic correlation of P. vittata and associated rhizospheric microorganisms during As phytoextraction. Three-month pot cultivation of P. vittata in As polluted soil was conducted. In rhizosphere, an increase of water-soluble As concentration and a decrease of pH was observed in the second month, suggesting acidic metabolites as a possible cause of As solubilization. A correlation network was built to elucidate the interactions among metabolites, bacteria and fungi in the rhizosphere of P. vittata. Our results demonstrate that the plant is the major driving force of rhizospheric microbiota generation, and both microbial community and metabolites in rhizosphere of P. vittata correlate to increased bioavailable As. Multi-omics analysis revealed that pterosins enrich microbes that potentially promote As phytoextraction. This study extends the current view of rhizospheric plant-microbes synergistic effects of hyperaccumulators on phytoextraction, which provides clues for developing efficient As phytoremediation approaches.
Collapse
Affiliation(s)
- Chongyang Yang
- Graduate School of Environment Studies (GSES), Tohoku University, Sendai 980-8579, Japan; Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ning Han
- Graduate School of Environment Studies (GSES), Tohoku University, Sendai 980-8579, Japan
| | - Chihiro Inoue
- Graduate School of Environment Studies (GSES), Tohoku University, Sendai 980-8579, Japan
| | - Yu-Liang Yang
- Agriculture Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ying-Ning Ho
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Mei-Fang Chien
- Graduate School of Environment Studies (GSES), Tohoku University, Sendai 980-8579, Japan.
| |
Collapse
|
16
|
Bacterial Arsenic Metabolism and Its Role in Arsenic Bioremediation. Curr Microbiol 2022; 79:131. [PMID: 35290506 DOI: 10.1007/s00284-022-02810-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
Arsenic contaminations, often adversely influencing the living organisms, including plants, animals, and the microbial communities, are of grave apprehension. Many physical, chemical, and biological techniques are now being explored to minimize the adverse affects of arsenic toxicity. Bioremediation of arsenic species using arsenic loving bacteria has drawn much attention. Arsenate and arsenite are mostly uptaken by bacteria through aquaglycoporins and phosphate transporters. After entering arsenic inside bacterial cell arsenic get metabolized (e.g., reduction, oxidation, methylation, etc.) into different forms. Arsenite is sequentially methylated into monomethyl arsenic acid (MMA) and dimethyl arsenic acid (DMA), followed by a transformation of less toxic, volatile trimethyl arsenic acid (TMA). Passive remediation techniques, including adsorption, biomineralization, bioaccumulation, bioleaching, and so on are exploited by bacteria. Rhizospheric bacterial association with some specific plants enhances phytoextraction process. Arsenic-resistant rhizospheric bacteria have immense role in enhancement of crop plant growth and development, but their applications are not well studied till date. Emerging techniques like phytosuction separation (PS-S) have a promising future, but still light to be focused on these techniques. Plant-associated bioremediation processes like phytoextraction and phytosuction separation (PS-S) techniques might be modified by treating with potent bacteria for furtherance.
Collapse
|
17
|
Gupta K, Srivastava S, Saxena G, Kumar A. Evaluation of Phytoremediation Potential of Pteris vittata L. on Arsenic Contaminated Soil Using Allium cepa Bioassay. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:423-429. [PMID: 34170357 DOI: 10.1007/s00128-021-03291-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The present study assessed the utility of Allium cepa based cyto-genotoxicity bioassays in evaluating the arsenic toxicity and remediation potential of Pteris vittata on contaminated soil of Lakhimpur-Kheri district. Untreated and P. vittata treated soil extracts were used for cyto-genotoxicity tests in A. cepa. Results showed that P. vittata extracted high concentration of arsenic, which ranged from 220 to 1420 mgkg-1 in different soils. Cyto-genotoxic assessment of A. cepa showed that extract of P. vittata treated soil had lower cyto-genotoxic effects as compared to untreated soil. A higher mitotic index (10%) while lower mitotic depression (29%), relative abnormality rate (10%), chromosomal aberrations (1%) and micronuclei (2%) were detected in root meristematic cells of A. cepa exposed to remediated soil extract in comparison to untreated soil. The studies provide a simple, rapid and economic cyto-genotoxicity bioassay tool for evaluating toxicity of contaminated soils of contaminated soils as well as revealed the phytoremdiation property of P. vittata against arsenic toxicity.
Collapse
Affiliation(s)
- Kiran Gupta
- Department of Botany, Lucknow University, Lucknow, 226007, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Gauri Saxena
- Department of Botany, Lucknow University, Lucknow, 226007, India
| | - Amit Kumar
- Department of Botany, Lucknow University, Lucknow, 226007, India.
| |
Collapse
|
18
|
Empirical Evidence of Arsenite Oxidase Gene as an Indicator Accounting for Arsenic Phytoextraction by Pteris vittata. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031796. [PMID: 35162818 PMCID: PMC8835403 DOI: 10.3390/ijerph19031796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/10/2023]
Abstract
Arsenic (As) is a toxic semi-metallic element that is ubiquitous in the environment and poses serious human health risks. Phytoextraction by Pteris vittata is considered a low-cost and environmentally friendly approach to treat As-contaminated soil. P. vittata mainly absorbs arsenate thus the bioavailability of As to P. vittata depends on the chemical form of As. Microbial redox of As contributes to the biogeochemical cycling of As, and rhizobacterium-assisted phytoextraction by P. vittata was proposed. In this study, this microbe-assisted phytoextraction was applied to two fields, and the effectiveness of phytoextraction was evaluated. The results revealed that P. vittata was able to grow in temperate and subarctic climate zones. The biomass was influenced by the weather, and the As concentration in plants was dependent on the As content in the soil. The ratio of arsenite oxidase genes (aioA-like genes) to 16S rRNA genes was employed to evaluate the effect of As phytoextraction, and the results exhibited that the ratio was related to the As concentration in P. vittata. Our results showed that arsenite oxidation in the rhizosphere might not be achieved by single-strain inoculation, while this study provided empirical evidence that the rhizospheric aioA-like genes could be an indicator for evaluating the effectiveness of As phytoextraction.
Collapse
|
19
|
Saha L, Tiwari J, Bauddh K, Ma Y. Recent Developments in Microbe-Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front Microbiol 2021; 12:731723. [PMID: 35002995 PMCID: PMC8733405 DOI: 10.3389/fmicb.2021.731723] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Soil contamination with heavy metals (HMs) is a serious concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Rapid industrialization and activities such as mining, manufacturing, and construction are generating a huge quantity of toxic waste which causes environmental hazards. There are various traditional physicochemical techniques such as electro-remediation, immobilization, stabilization, and chemical reduction to clean the contaminants from the soil. However, these methods require high energy, trained manpower, and hazardous chemicals make these techniques costly and non-environment friendly. Bioremediation, which includes microorganism-based, plant-based, microorganism-plant associated, and other innovative methods, is employed to restore the contaminated soils. This review covers some new aspects and dimensions of bioremediation of heavy metal-polluted soils. The bioremediation potential of bacteria and fungi individually and in association with plants has been reviewed and critically examined. It is reported that microbes such as Pseudomonas spp., Bacillus spp., and Aspergillus spp., have high metal tolerance, and bioremediation potential up to 98% both individually and when associated with plants such as Trifolium repens, Helianthus annuus, and Vallisneria denseserrulata. The mechanism of microbe's detoxification of metals depends upon various aspects which include the internal structure, cell surface properties of microorganisms, and the surrounding environmental conditions have been covered. Further, factors affecting the bioremediation efficiency and their possible solution, along with challenges and future prospects, are also discussed.
Collapse
Affiliation(s)
- Lala Saha
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Garlic and cilantro assisted phytoextraction of zinc using Sansevieria roxburghiana from contaminated soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Rahman F, Sugawara K, Wei S, Kohda YHT, Chien MF, Inoue C. Influence of low temperature on comparative arsenic accumulation and release by three Pteris hyperaccumulators. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1179-1188. [PMID: 34445930 DOI: 10.1080/10934529.2021.1970443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) hyperaccumulator Pteris ferns are renowned for their capacity to accumulate As and have been used to remediate As-contaminated environmental. However, there is less information on how they perform under low temperature though it is important for practical phytoremediation. The purpose of this study was to identify the effect of temperature on As accumulation by three As hyperaccumulators, Pteris multifida, Pteris cretica and Pteris vittata. Ferns were cultured with 5 mg/L As addition under 25 °C to 5 °C for 15 days. The results showed that dropping of temperatures reduced As accumulation by P. vittata moderately but not P. multifida and P. cretica until 10 °C. At 5 °C, all ferns discontinued As accumulation, and the morphology showed necrosis in P. vittata, wherein P. multifida and P. cretica kept healthy. The As distribution showed that As was mainly accumulated in fronds, while P. multifida stored partial As in its root. Both translocation factor and As efflux showed that temperate zone ferns manage As more strictly as compared to P. vittata. Our findings demonstrated that temperature should be considered when applying Pteris ferns for As phytoremediation, and P. multifida could be the most suitable fern for treating As-contaminated water in temperate zone area.
Collapse
Affiliation(s)
- Farzana Rahman
- Graduate School of Environmental Studies (GSES), Tohoku University, Sendai, Japan
- Department of General Educational Development, Daffodil International University, Dhaka, Bangladesh
| | - Kazuki Sugawara
- Graduate School of Environmental Studies (GSES), Tohoku University, Sendai, Japan
- Faculty of Science and Engineering, Seikei University, Tokyo, Japan
| | - Shujun Wei
- Graduate School of Environmental Studies (GSES), Tohoku University, Sendai, Japan
| | | | - Mei-Fang Chien
- Graduate School of Environmental Studies (GSES), Tohoku University, Sendai, Japan
| | - Chihiro Inoue
- Graduate School of Environmental Studies (GSES), Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Abou-Shanab RAI, Santelli CM, Sadowsky MJ. Bioaugmentation with As-transforming bacteria improves arsenic availability and uptake by the hyperaccumulator plant Pteris vittata (L). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:420-428. [PMID: 34334062 DOI: 10.1080/15226514.2021.1951654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inorganic arsenic (As) is a toxic and carcinogenic pollutant that has long-term impacts on environmental quality and human health. Pteris vittata plants hyperaccumulate As from soils. Soil bacteria are critical for As-uptake by P. vittata. We examined the use of taxonomically diverse soil bacteria to modulate As speciation in soil and their effect on As-uptake by P. vittata. Aqueous media inoculated with Pseudomonas putida MK800041, P. monteilii MK344656, P. plecoglossicida MK345459, Ochrobactrum intermedium MK346993 or Agrobacterium tumefaciens MK346997 resulted in the oxidation of 5-30% As(III) and a 49-79% reduction of As(V). Soil inoculated with P. monteilii increased extractable As(III) and As(V) from 0.5 and 0.09 in controls to 0.9 and 0.39 mg As kg-1 soil dry weight, respectively. Moreover, and P. vittata plants inoculated with P. monteilii, P. plecoglossicida, O. intermedium strains, and A. tumefaciens strains MK344655, MK346994, MK346997, significantly increased As-uptake by 43, 32, 12, 18, 16, and 14%, respectively, compared to controls. The greatest As-accumulation (1.9 ± 0.04 g kg-1 frond Dwt) and bioconcentration factor (16.3 ± 0.35) was achieved in plants inoculated with P. monteilii. Our findings indicate that the tested bacterial strains can increase As-availability in soils, thus enhancing As-accumulation by P. vittata. Novelty statement Pteris vittata, a well-known As-hyperaccumulator, has the remarkable ability to accumulate higher levels of As in their above-ground biomass. The As-tolerant bacteria-plant interactions play a significant role in bioremediation by mediating As-redox and controlling As-availability and uptake by P. vittata. Our studies indicated that most of the tested bacterial strains isolated from As-impacted soil significantly enhanced As-uptake by P. vittata. P. monteilii oxidized 20% of As(III) and reduced 50% of As(V), increased As-extraction from soils, and increased As-uptake by 43% greater compared with control. Therefore, these strains associated with P. vittata can be used in large-scale field applications to remediate As-contaminated soil.
Collapse
Affiliation(s)
| | - Cara M Santelli
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
- Department of Soil, Water & Climate, University of Minnesota, St. Paul, MN, USA
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
23
|
Popov M, Zemanová V, Sácký J, Pavlík M, Leonhardt T, Matoušek T, Kaňa A, Pavlíková D, Kotrba P. Arsenic accumulation and speciation in two cultivars of Pteris cretica L. and characterization of arsenate reductase PcACR2 and arsenite transporter PcACR3 genes in the hyperaccumulating cv. Albo-lineata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112196. [PMID: 33848737 DOI: 10.1016/j.ecoenv.2021.112196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Pollution and poisoning with carcinogenic arsenic (As) is of major concern globally. Interestingly, there are ferns that can naturally tolerate remarkably high As concentrations in soils while hyperaccumulating this metalloid in their fronds. Besides Pteris vittata in which As-related traits and molecular determinants have been studied in detail, the As hyperaccumulation status has been attributed also to Pteris cretica. We thus inspected two P. cretica cultivars, Parkerii and Albo-lineata, for As hyperaccumulation traits. The cultivars were grown in soils supplemented with 20, 100, and 250 mg kg-1 of inorganic arsenate (iAsV). Unlike Parkerii, Albo-lineata was confirmed to be As tolerant and hyperaccumulating, with up to 1.3 and 6.4 g As kg-1 dry weight in roots and fronds, respectively, from soils amended with 250 mg iAsV kg-1. As speciation analyses rejected that organoarsenical species and binding with phytochelatins and other proteinaceous ligands would play any significant role in the biology of As in either cultivar. While in Parkerii, the dominating As species, particularly in roots, occurred as iAsV, in Albo-lineata the majority of the root and frond As was apparently converted to iAsIII. Parkerii markedly accumulated iAsIII in its fronds when grown on As spiked soils. Considering the roles iAsV reductase ACR2 and iAsIII transporter ACR3 may have in the handling of iAs, we isolated Albo-lineata PcACR2 and PcACR3 genes closely related to P. vittata PvACR2 and PvACR3. The gene expression analysis in Albo-lineata fronds revealed that the transcription of PcACR2 and PcACR3 was clearly As responsive (up to 6.5- and 45-times increase in transcript levels compared to control soil conditions, respectively). The tolerance and uptake assays in yeasts showed that PcACRs can complement corresponding As-sensitive mutations, indicating that PcACR2 and PcACR3 encode functional proteins that can perform, respectively, iAsV reduction and membrane iAsIII transport tasks in As-hyperaccumulating Albo-lineata.
Collapse
Affiliation(s)
- Marek Popov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic; Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Veronika Zemanová
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Milan Pavlík
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Tomáš Matoušek
- Institute of Analytical Chemistry, The Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Antonín Kaňa
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
24
|
Irshad S, Xie Z, Mehmood S, Nawaz A, Ditta A, Mahmood Q. Insights into conventional and recent technologies for arsenic bioremediation: A systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18870-18892. [PMID: 33586109 DOI: 10.1007/s11356-021-12487-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/11/2021] [Indexed: 05/22/2023]
Abstract
Arsenic (As) bioremediation has been an economical and sustainable approach, being practiced widely under several As-contaminated environments. Bioremediation of As involves the use of bacteria, fungi, yeast, plants, and genetically modified organisms for detoxification/removal of As from the contaminated site. The understanding of multi-factorial biological components involved in these approaches is complex and more and more efforts are on their way to make As bioremediation economical and efficient. In this regard, we systematically reviewed the recent literature (n=200) from the last two decades regarding As bioremediation potential of conventional and recent technologies including genetically modified plants for phytoremediation and integrated approaches. Also, the responsible mechanisms behind different approaches have been identified. From the literature, it was found that As bioremediation through biosorption, bioaccumulation, phytoextraction, and volatilization involving As-resistant microbes has proved a very successful technology. However, there are various pathways of As tolerance of which the mechanisms have not been fully understood. Recently, phytosuction separation technology has been introduced and needs further exploration. Also, integrated approaches like phytobial, constructed wetlands using As-resistant bacteria with plant growth-promoting activities have not been extensively studied. It is speculated that the integrated bioremediation approaches with practical applicability and reliability would prove most promising for As remediation. Further technological advancements would help explore the identified research gaps in different approaches and lead us toward sustainability and perfection in As bioremediation.
Collapse
Affiliation(s)
- Sana Irshad
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Sajid Mehmood
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Upper Dir, Khyber Pakhtunkhwa, 18000, Pakistan.
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
- School of Biotechnology and Food Engineering, Huanghuai University, Zhumadian, 463000, China.
| |
Collapse
|
25
|
Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04301-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractToxic metal contamination of soil is a major environmental hazard. Chemical methods for heavy metal's (HMs) decontamination such as heat treatment, electroremediation, soil replacement, precipitation and chemical leaching are generally very costly and not be applicable to agricultural lands. However, many strategies are being used to restore polluted environments. Among these, phytoremediation is a promising method based on the use of hyper-accumulator plant species that can tolerate high amounts of toxic HMs present in the environment/soil. Such a strategy uses green plants to remove, degrade, or detoxify toxic metals. Five types of phytoremediation technologies have often been employed for soil decontamination: phytostabilization, phytodegradation, rhizofiltration, phytoextraction and phytovolatilization. Traditional phytoremediation method presents some limitations regarding their applications at large scale, so the application of genetic engineering approaches such as transgenic transformation, nanoparticles addition and phytoremediation assisted with phytohormones, plant growth-promoting bacteria and AMF inoculation has been applied to ameliorate the efficacy of plants as candidates for HMs decontamination. In this review, aspects of HMs toxicity and their depollution procedures with focus on phytoremediation are discussed. Last, some recent innovative technologies for improving phytoremediation are highlighted.
Collapse
|
26
|
Dai H, Wei S, Pogrzeba M, Krzyżak J, Rusinowski S, Zhang Q. The cadmium accumulation differences of two Bidens pilosa L. ecotypes from clean farmlands and the changes of some physiology and biochemistry indices. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111847. [PMID: 33388723 DOI: 10.1016/j.ecoenv.2020.111847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/03/2020] [Accepted: 12/19/2020] [Indexed: 05/15/2023]
Abstract
Bidens pilosa L. is a widely distributed Cd-hyperaccumulator species in the world with large biomass and fast growth rate. The Cd accumulating differences between different ecotypes of B. pilosa is not clear. This experiment firstly compared the Cd concentrations and relative physio-biochemical indices using two B. pilosa ecotypes collected from clean soils. The results showed that the Cd concentrations of stems and leaves of Hanzhong ecotype of B. pilosa (HZ) and Shenyang ecotype (SY) were all higher than their root Cd concentrations in different Cd concentration gradient experiment (from 2.57 mg kg-1 to 37.17 mg kg-1 in soils). Cd concentrations of the roots, stems and leaves of HZ and SY were all higher than in the soils either. However, HZ accumulated higher Cd concentrations than SY, i.e. roots increased by 32.7-45.8%, stems increased by 32.3-46.6% and leaves increased by 33.4-68.4%, respectively. Furthermore, the biomasses of HZ were all higher than the SY either. Compared to SY, higher Cd accumulation of HZ might be relevant with its higher photosynthetic pigment content, stomatal conductance, intercellular CO2 concentration, some antioxidant enzyme activities, H+-ATPase, Ca2+-ATPase and 5'-AMPase activities, and lower malondialdehyde (MDA) content. Particularly, the changes of extractable Cd concentrations in rhizospheric soils of HZ and SY were corresponding to their Cd concentrations. Considering the two different ecotypes of HZ and SY were all collected from different clean farmlands, the new foundings that different mechanisms of HZ and SY accumulating Cd from the soil might be very important for screening and constructing ideal hyperaccumulator aimed at improving phytoremediation capacities in the future.
Collapse
Affiliation(s)
- Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Marta Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha St, Katowice 40-844, Poland
| | - Jacek Krzyżak
- Institute for Ecology of Industrial Areas, 6 Kossutha St, Katowice 40-844, Poland
| | - Szymon Rusinowski
- Institute for Ecology of Industrial Areas, 6 Kossutha St, Katowice 40-844, Poland
| | - Qing Zhang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
27
|
Alka S, Shahir S, Ibrahim N, Ndejiko MJ, Vo DVN, Manan FA. Arsenic removal technologies and future trends: A mini review. JOURNAL OF CLEANER PRODUCTION 2021; 278:123805. [DOI: 10.1016/j.jclepro.2020.123805] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
28
|
Yang C, Ho YN, Inoue C, Chien MF. Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140137. [PMID: 32927575 DOI: 10.1016/j.scitotenv.2020.140137] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation is a promising inexpensive method of detoxifying arsenic (As) contaminated soils using plants and associated soil microorganisms. The potential of Pteris vittata to hyperaccumulate As contamination has been investigated widely. Since As(V) is efficiently taken up by P. vittata than As(III), As speciation by associated rhizobacteria could offer enormous possibility to enhance As phytoremediation. Specifically, increased rhizobacteria mediated As(III) to As(V) conversion appeared to be a crucial step in As mobilization and translocation. In this study, Pseudomonasvancouverensis strain m318 with the potential to improve As phytoremediation was inoculated to P. vittata in a field trial for three years to evaluate its long-term efficacy and stability for enhancing As phytoextraction. The biomass, As concentration, and As accumulation of ferns showed to be increased by inoculation treatment. Although this trend occasionally declined which may be accounted to lower As concentration in soil and amount of precipitation during experiments, the potential of inoculation was observed in increased enrichment coefficients. Further, the arsenite oxidase (aioA-like) genes in the rhizosphere were detected to evaluate the influence of inoculation on As phytoremediation. The findings of this study suggested the potential application of rhizosphere regulation to improve phytoremediation technologies for As contaminated soils. However, the conditions which set the efficacy of this method could be further optimized.
Collapse
Affiliation(s)
- Chongyang Yang
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan
| | - Ying-Ning Ho
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, 6-6-20 Aoba, Sendai 980-8579, Japan.
| |
Collapse
|