1
|
Liu Q, Yang C, Qi J, Shen Q, Ye M, Li H, Zhang L. Bioactivities and Structure-Activity Relationships of Harmine and Its Derivatives: A Review. Chem Biodivers 2025:e202402953. [PMID: 40024888 DOI: 10.1002/cbdv.202402953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
Natural products and their derivatives play a crucial role in treating various diseases. Harmine, a tricyclic β-carboline alkaloid isolated from the seeds of Peganum harmala L., has emerged as a promising therapeutic candidate owing to its multifaceted biological activities. Recent studies have further highlighted the enhanced therapeutic potential of harmine derivatives. To assess the current research landscape on harmine and its derivatives, we conducted a comprehensive analysis of studies published between 2019 and 2024 in scientific databases, such as PubMed, Web of Science, and Google Scholar. In this review, the possible applications of harmine and its derivatives were systematically illustrated, including biological activities, structure-activity relationships, and nanotechnology applications. Notably, the biological activities of harmine and its derivatives mainly contained antitumor, neuroprotective, antiparasitic, anti-inflammatory, and antidiabetic properties. In addition, structural modifications and the application of nanocarriers make harmine and its derivatives more druggable. The aim of this review is to summarize the recent advancements in harmine and its derivatives research, analyze emerging trends, and explore their clinical value.
Collapse
Affiliation(s)
- Qian Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Cheng Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jiamin Qi
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiying Shen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Mingxing Ye
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hangying Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Liming Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
2
|
Chen Y, Li H, Yi TC, Shen J, Zhang J. Notch Signaling in Insect Development: A Simple Pathway with Diverse Functions. Int J Mol Sci 2023; 24:14028. [PMID: 37762331 PMCID: PMC10530718 DOI: 10.3390/ijms241814028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway which functions between adjacent cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling plays remarkably diverse roles in development to regulate cell fate determination, organ growth and tissue patterning. While initially discovered and characterized in the model insect Drosophila melanogaster, recent studies across various insect species have revealed the broad involvement of Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in physiological responses, are summarized. These results are discussed within the developmental context, aiming to deepen our understanding of the diversified functions of the Notch signaling pathway in different insect species.
Collapse
Affiliation(s)
- Yao Chen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Haomiao Li
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.C.)
| |
Collapse
|
3
|
Cui G, Jiang Z, Chen Y, Li Y, Ai S, Sun R, Yi X, Zhong G. Evolutional insights into the interaction between Rab7 and RILP in lysosome motility. iScience 2023; 26:107040. [PMID: 37534141 PMCID: PMC10391735 DOI: 10.1016/j.isci.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 12/12/2022] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Lysosome motility is critical for the cellular function. However, Rab7-related transport elements showed genetic differences between vertebrates and invertebrates, making the mechanism of lysosomal motility mysterious. We suggested that Rab7 interacted with RILP as a feature of highly evolved organisms since they could interact with each other in Spodoptera frugiperda but not in Drosophila melanogaster. The N-terminus of Sf-RILP was identified to be necessary for their interaction, and Glu61 was supposed to be the key point for the stability of the interaction. A GC-rich domain on the C-terminal parts of Sf-RILP hampered the expression of Sf-RILP and its interaction with Sf-Rab7. Although the corresponding vital amino acids in the mammalian model at the C-terminus of Sf-RILP turned to be neutral, the C-terminus would also help with the homologous interactions between RILP fragments in insects. The significantly different interactions in invertebrates shed light on the biodiversity and complexity of lysosomal motility.
Collapse
Affiliation(s)
- Gaofeng Cui
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Zhiyan Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yun Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shupei Ai
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ranran Sun
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Guo X, Yu Z, Yin D. Sex-dependent obesogenic effect of tetracycline on Drosophila melanogaster deteriorated by dysrhythmia. J Environ Sci (China) 2023; 124:472-480. [PMID: 36182155 DOI: 10.1016/j.jes.2021.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 06/16/2023]
Abstract
Antibiotics have been identified as obesogens contributing to the prevalence of obesity. Moreover, their environmental toxicity shows sex dependence, which might also explain the sex-dependent obesity observed. Yet, the direct evidence for such a connection and the underlying mechanisms remain to be explored. In this study, the effects of tetracycline, which is a representative antibiotic found in both environmental and food samples, on Drosophila melanogaster were studied with consideration of both sex and circadian rhythms (represented by the eclosion rhythm). Results showed that in morning-eclosed adults, tetracycline significantly stimulated the body weight of females (AM females) at 0.1, 1.0, 10.0 and 100.0 µg/L, while tetracycline only stimulated the body weight of males (AM males) at 1.0 µg/L. In the afternoon-eclosed adults, tetracycline significantly stimulated the body weight of females (PM females) at 0.1, 1.0 and 100.0 µg/L, while it showed more significant stimulation in males (PM males) at all concentrations. Notably, the stimulation levels were the greatest in PM males among all the adults. The results showed the clear sex dependence of the obesogenic effects, which was diminished by dysrhythmia. Further biochemical assays and clustering analysis suggested that the sex- and rhythm-dependent obesogenic effects resulted from the bias toward lipogenesis against lipolysis. Moreover, they were closely related to the preference for the energy storage forms of lactate and glucose and also to the presence of excessive insulin, with the involvement of glucolipid metabolism. Such relationships indicated potential bridges between the obesogenic effects of pollutants and other diseases, e.g., cancer and diabetes.
Collapse
Affiliation(s)
- Xueping Guo
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Jiaxing Tongji Institute for Environment, Jiaxing 3014051, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Jiaxing Tongji Institute for Environment, Jiaxing 3014051, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Mo L, Li R, He C, Chen Q, Xu C, Shen L, Chen K, Wu Y. Hedgehog pathway is negatively regulated during the development of Drosophila melanogaster PheRS-m (Drosophila homologs gene of human FARS2) mutants. Hum Cell 2023; 36:121-131. [PMID: 36205831 DOI: 10.1007/s13577-022-00796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/17/2022] [Indexed: 01/20/2023]
Abstract
Hereditary spastic paraplegia (HSP) is a neurodegeneration disease, one of the reasons is caused by autosomal recessive missense mutation of the karyogene that encodes phenylalanyl-tRNA synthetase 2, mitochondrial (FARS2). However, the molecular mechanism underlying FARS2-mediated HSP progression is unknown. Mitochondrial phenylalanyl-tRNA synthetase gene (PheRS-m) is the Drosophila melanogaster homolog gene of human FARS2. This study constructed a Drosophila HSP missense mutation model and a PheRS-m knockout model. Some of the mutant fly phenotypes included developmental delay, shortened lifespan, wing-structure abnormalities and decreased mobility. RNA-sequencing results revealed a relationship between abnormal phenotypes and the hedgehog (Hh) pathway. A qRT-PCR assay was used to determine the key genes (ptc, hib, and slmb) of the Hh pathway that exhibited increased expression during different developmental stages. We demonstrated that Hh signaling transduction is negatively regulated during the developmental stages of PheRS-m mutants but positively regulated during adulthood. By inducing the agonist and inhibitor of Hh pathway in PheRS-m larvae, the developmental delay in mutants can be partly salvaged or postponed. Collectively, our findings indicate that Hh signaling negatively regulates the development of PheRS-m mutants, subsequently leading to developmental delay.
Collapse
Affiliation(s)
- Lidangzhi Mo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Rui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Chunxia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Qi Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Changwei Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Liangliang Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Wu Q, Du X, Feng X, Cheng H, Chen Y, Lu C, Wu M, Tong H. Chlordane exposure causes developmental delay and metabolic disorders in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112739. [PMID: 34481351 DOI: 10.1016/j.ecoenv.2021.112739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The incidence of metabolic diseases is increasing every year, and several studies have highlighted the activity of persistent organic pollutants (POPs) in causing hyperlipidemia and diabetes, and these compounds are considered to be endocrine disrupting chemicals (EDCs). Chlordane is classified as an endocrine disruptor, but the mechanism of how it functions is still unclear. This study investigates the effects of chlordane exposure on Drosophila larvae. Drosophila was cultured in diet containing 0.01 μM, 0.1 μM, 1 μM, 5 μM, and 10 μM chlordane, and the toxicity of chlordane, the growth and development of Drosophila, the homeostasis of glucose and lipid metabolism and insulin signaling pathway, lipid peroxidation-related indicators and Nrf2 signaling pathway were evaluated. We here found that exposure to high concentrations of chlordane decreased the survival rate of Drosophila and that exposure to low concentrations of chlordane caused disruption of glucose and lipid metabolism, increased insulin secretion and impairment of insulin signaling. Notably, it also led to massive ROS production and lipid peroxidation despite of the activation of Nrf2 signaling pathway, an important pathway for maintaining redox homeostasis. Collectively, chlordane causes lipid peroxidation and disrupts redox homeostasis, which may be a potential mechanism leading to impaired insulin signaling and the metabolism of glucose and lipid, ultimately affects Drosophila development.
Collapse
Affiliation(s)
- Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xueting Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xucong Feng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huimin Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yingjun Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenying Lu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Zhang Q, Hao L, Hong Y. Exploring the multilevel effects of triclosan from development, reproduction to behavior using Drosophila melanogaster. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144170. [PMID: 33360465 DOI: 10.1016/j.scitotenv.2020.144170] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS) is widely used as an antibacterial agent, but its residue in the environment poses a great threat. In this study, Drosophila melanogaster were treated with series concentrations of TCS and the effects on development, behavior, reproduction, and oxidative stress indicators were investigated. The results showed that high concentrations of TCS severely interfered with the metamorphosis, resulting in lower hatching rate and longer development time. The hatching rate was only 75.00% ± 4.08% in 0.80 mg/mL TCS group. TCS also showed dose-dependent damage to the fertility of flies, causing ovarian defects and decreased the number of offspring. Almost no offspring adults hatched when exposed to high concentrations of TCS (0.50 and 0.80 mg/mL), and the hatching rate was 0% in 0.80 mg/mL TCS group. Larvae crawling, adult climbing and anti-starvation ability were also affected to varying degrees and showed hormesis. TCS could damage larval intestinal cells in a dose-dependent manner, and injury was lightened with culture time prolonging to 30 h. It is noteworthy that TCS caused redox imbalance with an increase on catalase (CAT) activity and decrease on reactive oxygen species (ROS) level. Our results conclude that TCS elicits multiple impacts on Drosophila and its rational use should be strengthened.
Collapse
Affiliation(s)
- Qing Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lichong Hao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Pharmacological effects of harmine and its derivatives: a review. Arch Pharm Res 2020; 43:1259-1275. [PMID: 33206346 DOI: 10.1007/s12272-020-01283-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Harmine is isolated from the seeds of the medicinal plant, Peganum harmala L., and has been used for thousands of years in the Middle East and China. Harmine has many pharmacological activities including anti-inflammatory, neuroprotective, antidiabetic, and antitumor activities. Moreover, harmine exhibits insecticidal, antiviral, and antibacterial effects. Harmine derivatives exhibit pharmacological effects similar to those of harmine, but with better antitumor activity and low neurotoxicity. Many studies have been conducted on the pharmacological activities of harmine and harmine derivatives. This article reviews the pharmacological effects and associated mechanisms of harmine. In addition, the structure-activity relationship of harmine derivatives has been summarized.
Collapse
|
9
|
Yu Z, Shen J, Li Z, Yao J, Li W, Xue L, Vandenberg LN, Yin D. Obesogenic Effect of Sulfamethoxazole on Drosophila melanogaster with Simultaneous Disturbances on Eclosion Rhythm, Glucolipid Metabolism, and Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5667-5675. [PMID: 32285665 DOI: 10.1021/acs.est.9b07889] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotics have recently gained attention because they are emerging environmental pollutants with obesogenic properties. In this study, Drosophila melanogaster were exposed to sulfamethoxazole (SMX), a sulfonamide antibiotic, and the effects were measured on circadian rhythm (represented by the eclosion rhythm), lipid metabolism, and microbiota. Circadian rhythm disorder was considered due to its connection with lipid metabolism and microbiota in association with obesity. SMX decreased the proportion of adult flies that eclosed in the morning (AM adults) and increased the proportion of PM adults. Moreover, SMX increased the body weight of PM adults, indicating that SMX exposure caused dysrhythmia in eclosion together with obesity. In measurements of key metabolites and metabolic enzymes, SMX exposure stimulated 3 indices in AM adults and 10 indices in PM adults. In AMP-activated protein kinase and insulin/IGF-1 signaling pathways, SMX upregulated six genes in AM adults and nine genes in PM adults. Finally, microbiota analysis demonstrated that SMX increased the Firmicutes/Bacteroides ratios (F/B) by 79.6- and 5.8-fold compared to concurrent controls in AM and PM adults. Collectively, these results suggest that SMX showed obesogenic effects accompanied with dysrhythmia and disturbances in lipid metabolism and microbiota. Further studies on the intrinsic connection are needed.
Collapse
Affiliation(s)
- Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
- Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, P. R. China
| | - Jiaying Shen
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jinmin Yao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Wenzhe Li
- College of Life Science and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Lei Xue
- College of Life Science and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Laura N Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts - Amherst, Amherst, Massachusetts 01003, United States
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|