1
|
Xu J, Li Y, Feng Z, Chen H. Cigarette Smoke Contributes to the Progression of MASLD: From the Molecular Mechanisms to Therapy. Cells 2025; 14:221. [PMID: 39937012 PMCID: PMC11816580 DOI: 10.3390/cells14030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Cigarette smoke (CS), an intricate blend comprising over 4000 compounds, induces abnormal cellular reactions that harm multiple tissues. Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease (CLD), encompassing non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). Recently, the term NAFLD has been changed to metabolic dysfunction-associated steatotic liver disease (MASLD), and NASH has been renamed metabolic dysfunction-associated steatohepatitis (MASH). A multitude of experiments have confirmed the association between CS and the incidence and progression of MASLD. However, the specific signaling pathways involved need to be updated with new scientific discoveries. CS exposure can disrupt lipid metabolism, induce inflammation and apoptosis, and stimulate liver fibrosis through multiple signaling pathways that promote the progression of MASLD. Currently, there is no officially approved efficacious pharmaceutical intervention in clinical practice. Therefore, lifestyle modifications have emerged as the primary therapeutic approach for managing MASLD. Smoking cessation and the application of a series of natural ingredients have been shown to ameliorate pathological changes in the liver induced by CS, potentially serving as an effective approach to decelerating MASLD development. This article aims to elucidate the specific signaling pathways through which smoking promotes MASLD, while summarizing the reversal factors identified in recent studies, thereby offering novel insights for future research on and the treatment of MASLD.
Collapse
Affiliation(s)
- Jiatong Xu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (Z.F.)
| | - Yifan Li
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (Z.F.)
| | - Zixuan Feng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (J.X.); (Y.L.); (Z.F.)
| | - Hongping Chen
- Department of Histology and Embryology, Jiangxi Medical College, Nanchang University, Nanchang 330019, China
| |
Collapse
|
2
|
Teh YM, Mualif SA, Mohd Noh NI, Lim SK. The Potential of Naturally Derived Compounds for Treating Chronic Kidney Disease: A Review of Autophagy and Cellular Senescence. Int J Mol Sci 2024; 26:3. [PMID: 39795863 PMCID: PMC11719669 DOI: 10.3390/ijms26010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by irreversible progressive worsening of kidney function leading to kidney failure. CKD is viewed as a clinical model of premature aging and to date, there is no treatment to reverse kidney damage. The well-established treatment for CKD aims to control factors that may aggravate kidney progression and to provide kidney protection effects to delay the progression of kidney disease. As an alternative, Traditional Chinese Medicine (TCM) has been shown to have fewer adverse effects for CKD patients. However, there is a lack of clinical and molecular studies investigating the mechanisms by which natural products used in TCM can improve CKD. In recent years, autophagy and cellular senescence have been identified as key contributors to aging and age-related diseases. Exploring the potential of natural products in TCM to target these processes in CKD patients could slow disease progression. A better understanding of the characteristics of these natural products and their effects on autophagy and cellular senescence through clinical studies, coupled with the use of these products as complementary therapy alongside mainstream treatment, may maximize therapeutic benefits and minimize adverse effects for CKD patients. While promising, there is currently a lack of thorough research on the potential synergistic effects of these natural products. This review examines the use of natural products in TCM as an alternative treatment for CKD and discusses their active ingredients in terms of renoprotection, autophagy, and cellular senescence.
Collapse
Affiliation(s)
- Yoong Mond Teh
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Siti Aisyah Mualif
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia;
| | - Soo Kun Lim
- Department of Medicine, Faculty of Medicine, University of Malaysia (UM), Kuala Lumpur 59100, Malaysia
| |
Collapse
|
3
|
Ferraz DC, Moura CCG, Signorelli NSM, Rosa RC, Pereira SADL, Borges ALS, Bittar VP, Duarte RMF, Teixeira RR, Bertolini M, Espindola FS. The Interaction of Apical Periodontitis, Cigarette Smoke, and Alcohol Consumption on Liver Antioxidant Status in Rats. Int J Mol Sci 2024; 25:12011. [PMID: 39596079 PMCID: PMC11593682 DOI: 10.3390/ijms252212011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to investigate the impact of alcohol (A), secondhand cigarette smoking (ShS), and their combined effect on liver antioxidant activity and hepatic damage in rats with induced apical periodontitis (AP). Thirty-five female Wistar rats were randomly allocated into five groups (n = 7): (1) control (rats without ShS, alcoholic diet, or AP), (2) control-AP (induced AP only), (3) ShS-AP (ShS exposure and induced AP), (4) A-AP (alcoholic diet and induced AP), and (5) A+ShS-AP (alcoholic diet, ShS exposure, and induced AP). Alcohol was administered through semi-voluntary intake, while ShS exposure involved the daily inhalation of cigarette smoke. The experimental period lasted 8 weeks, with AP induction occurring in the 4th week following molar pulp exposure. Liver samples were collected post-euthanasia for histomorphometric and antioxidant marker analyses. All AP-induced groups exhibited increased liver sinusoidal dilation compared to the control group (p < 0.05). AP significantly reduced total antioxidant capacity (FRAP) across all groups (p < 0.05). In AP-induced groups, FRAP levels were further decreased in ShS-AP and A+ShS-AP compared to control-AP (p < 0.05). AP also led to a decrease in the glutathione defense system (p < 0.05). Rats with alcohol exposure (A-AP and A+ShS-AP) showed reduced glutathione peroxidase activity (p < 0.05). Glutathione reductase activity was comparable in the control and control-AP groups (p > 0.05), but significantly decreased in the alcohol and ShS-exposed groups (p < 0.05). Apical periodontitis can relate to morphological changes in the liver's sinusoidal spaces and impairment of liver's antioxidant capacity of rats, particularly when combined with chronic alcohol consumption and exposure to cigarette smoke.
Collapse
Affiliation(s)
- Danilo Cassiano Ferraz
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia 38405-266, MG, Brazil; (D.C.F.)
| | - Camilla Christian Gomes Moura
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia 38405-266, MG, Brazil; (D.C.F.)
| | - Nara Sarmento Macêdo Signorelli
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia 38405-266, MG, Brazil; (D.C.F.)
| | - Rodrigo César Rosa
- Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | | | - Ana Luiza Silva Borges
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, MG, Brazil (F.S.E.)
| | - Vinícius Prado Bittar
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, MG, Brazil (F.S.E.)
| | | | - Renata Roland Teixeira
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, MG, Brazil (F.S.E.)
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Foued Salmen Espindola
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-319, MG, Brazil (F.S.E.)
| |
Collapse
|
4
|
Shi H, Zhao X, Peng Q, Zhou X, Liu S, Sun C, Cao Q, Zhu S, Sun S. Green Tea Polyphenols Alleviate Kidney Injury Induced by Di(2-Ethylhexyl) Phthalate in Mice. Am J Nephrol 2023; 55:86-105. [PMID: 37734331 DOI: 10.1159/000534106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer. Studies have revealed that DEHP exposure can cause kidney damage. Green tea is among the most popular beverages in China. Green tea polyphenols (GTPs) have been proven to have therapeutic effects on organ damage induced by heavy metal exposure. However, few studies have reported on GTP-relieving DEHP-induced kidney damage. METHODS C57BL/6J male mice aged 6-8 weeks were treated with distilled water (control group), 1,500 mg/kg/d DEHP + corn oil (model group), 1,500 mg/kg/d DEHP + corn oil + 70 mg/kg GTP (treatment group), corn oil (oil group), and 70 mg/kg GTP (GTP group) by gavage for 8 weeks, respectively. The renal function of mice and renal tissue histopathology of each group were evaluated. The renal tissues of mice in the model, treatment, and control groups were analyzed using high-throughput sequencing. We calculated the differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) using the limma R package, the CIBERSORT algorithm was used to predict immune infiltration, the starBase database was used to screen the miRNA-mRNA regulatory axis, and immunohistochemical analyses were performed to verify protein expression. RESULTS GTP alleviated the deterioration of renal function, renal inflammation and fibrosis, and mitochondrial and endoplasmic reticulum lesions induced by DEHP in mice. Differential immune infiltrations of plasma, dendritic, T, and B cells were noted between the model and treatment groups. We found that three differentially expressed miRNAs (mmu-miR-383-5p, mmu-miR-152-3p, and mmu-miR-144-3p), three differentially expressed mRNAs (Ddit4, Dusp1, and Snx18), and three differentially expressed proteins (Ddit4, Dusp1, and Snx18) played crucial roles in the miRNA-mRNA-protein regulatory axes when GTPs mitigate DEHP-induced kidney damage in mice. CONCLUSION GTP can alleviate DEHP-induced kidney damage and regulate immune cell infiltration. We screened four important miRNA-mRNA-protein regulatory axes of GTP, mitigating DEHP-induced kidney damage in mice.
Collapse
Affiliation(s)
- Heng Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Xinhai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qin Peng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xianling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sisi Liu
- Department of Pathology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Chuanchuan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiuyu Cao
- Department of Gynecologic, Jiangmen Hospital Affiliated to Jinan University, Jiangmen, China
| | - Shiping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shengyun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Mitochondria oxidative stress mediated nicotine-promoted activation of pancreatic stellate cells by regulating mitochondrial dynamics. Toxicol In Vitro 2022; 84:105436. [PMID: 35842057 DOI: 10.1016/j.tiv.2022.105436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/09/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022]
Abstract
Nicotine, one of the main ingredients of cigarettes, promotes activation of pancreatic stellate cells(PSCs) and exacerbates pancreatic fibrosis in previous studies. Here we focus on the inner relationship between mitochondrial oxidative stress and mitochondrial dynamics to explore the possible mechanism. Primary human PSCs were stimulated by nicotine. The effect of nicotine on oxidative stress and mitochondrial dynamics was analyzed by reactive oxygen species (ROS) assay, quantitative real-time PCR, and western blotting. Mitochondrial morphology was observed. Antioxidant and small interfering RNA transfection were applied to explore the interrelationship between oxidative stress and mitochondrial dynamics, as well as its effect on PSCs activation. Nicotine exposure significantly increased Intracellular and mitochondrial ROS of hPSCs and promoted mitochondrial fission by upregulating dynamin-related protein 1(DRP1). Knockdown Drp1 reversed mitochondrial fragmentation and hPSCs activation that promoted by nicotine, but fail to alleviate oxidative stress. A mitochondrial-targeted antioxidant could reverse all the above changes. Our finding suggests that mitochondria oxidative stress mediated nicotine-promoted activation of PSCs by inducing Drp1-mediated mitochondrial fission, provides a new perspective on the possible mechanism by which nicotine affects PSCs, and reveals a potential therapeutic strategy.
Collapse
|
6
|
Rocha DFA, Machado-Junior PA, Souza ABF, Castro TDF, Costa GDP, Talvani A, Bezerra FS, Cangussú SD. Lycopene Ameliorates Liver Inflammation and Redox Status in Mice Exposed to Long-Term Cigarette Smoke. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7101313. [PMID: 34869769 PMCID: PMC8639233 DOI: 10.1155/2021/7101313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/09/2021] [Indexed: 01/11/2023]
Abstract
Cigarette smoke (CS) is the major cause of preventable death worldwide, and it can also cause damage to extrapulmonary organs, such as the liver, mainly due the generation of reactive oxygen species (ROS). The liver is an essential organ for human survival since it is mainly responsible for the body metabolism and among other things and it is the place where many endogenous and exogenous substances undergo biological transformation. Lycopene is a nonprovitamin A carotenoid found in red fruits and vegetables, and its role as a potent antioxidant is well known. In this study, we hypothesized that lycopene could protect mouse liver against long-term CS exposure. Thirty C57BL/6 mice were exposed to twelve cigarette smoke (12 cigarettes per day) for 60 days and pretreated with 25 mg/kg/day or 50 mg/kg/day of lycopene via orogastric gavage. After euthanasia, the hepatic tissue was collected for histopathological, antioxidant defense, oxidative stress, inflammatory, and collagen deposition analysis. Our analysis demonstrated that lycopene results in a suitable outcome to ameliorate the pathological changes, inflammatory and antioxidant profile in a mouse model of long-term CS exposure, and collagen accumulation in the hepatic extracellular matrix. This study demonstrates for the first time that supplementation of lycopene can be a possible pharmacological tool for the treatment of hepatic damage caused by exposure to long-term CS.
Collapse
Affiliation(s)
- Daniela Fonseca Abdo Rocha
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - Ana Beatriz Farias Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), 35400-00 Ouro Preto, MG, Brazil
| |
Collapse
|
7
|
Zhang WH, Chen Y, Gao LM, Cao YN. Neuroprotective role of epigallocatechin-3-gallate in acute glaucoma via the nuclear factor-κB signalling pathway. Exp Ther Med 2021; 22:1235. [PMID: 34539831 PMCID: PMC8438659 DOI: 10.3892/etm.2021.10669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is a disease involving impaired visual function accompanied by degeneration and necrosis of the optic nerve. Epigallocatechin-3-gallate (EGCG) exerts a neuroprotective effect against the degeneration of retinal ganglion cells. However, whether EGCG can relieve glaucoma and the possible mechanisms remain unclear. In order to determine the function of EGCG in glaucoma, an acute glaucoma rat model was established. Optic neuropathology was examined by haematoxylin-eosin staining and immunofluorescence staining for class III-β tubulin. The levels of inflammation-associated cytokines, such as interleukin (IL)-4, IL-6, TNF-α, IL-1β, IL-13 and IFN-γ were measured by flow cytometry. T cell proliferation was assessed by the carboxyfluorescein diacetate succinimidyl ester method. Finally, the functional role of EGCG in glaucoma was explored. The levels of the inflammation-associated proteins p-IκBα and p-p65 were measured by western blot analysis. The results showed that optic nerve injury occurred, and elevated levels of the inflammatory cytokines IL-4, IL-6, TNF-α, IL-1β, IL-13 and IFN-γ were observed in the rat model of acute glaucoma. In addition, an increased T lymphocyte proliferation rate and imbalance of Th1/Th2 cytokines were present in the models. Importantly, treatment with EGCG significantly alleviated optic nerve injury. At the molecular level, EGCG decreased the levels of inflammation-associated cytokines, decreased the proliferation rate of T lymphocyte cells, and repaired the imbalance of Th1/Th2 cytokines. Moreover, EGCG inhibited the increase in the phosphorylation of IκBα and p65 caused by modelling and thus suppressed the activation of the nuclear factor (NF)-κB signalling pathway. The findings of the present study indicate that EGCG could attenuate the symptoms of glaucoma and inhibit inflammatory responses by suppressing the NF-κB signalling pathway in a rat glaucoma model.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu Chen
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Li-Mo Gao
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yan-Na Cao
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
8
|
Li A, Yuan JF, Gong Q, Zhang N, Chen LY, Luo YY, Cui YR, Wang HL, Liu RH. Effects of Eucommia ulmoides extract against renal injury caused by long-term high purine diets in rats. Food Funct 2021; 12:5607-5620. [PMID: 34018492 DOI: 10.1039/d0fo02802a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diets of overloaded purine-rich foods for a long time are one of the important reasons to cause renal lesions. Eucommia ulmoides is one of the traditional Chinese medicine herbs, which has been used to recover functions of the kidney. However, its mechanism remains unclear. The aim of this study was to explore the effects and protective mechanism of Eucommia ulmoides extract on renal injury caused by long-term high purine diets in rats. SD rats underwent an intragastric adenine (200 mg kg-1 d-1) administration for 9 weeks and were treated for 15 weeks. The results demonstrated that Eucommia ulmoides extract significantly reduced serum Cre and BUN levels in rats. H&E and Masson's trichrome stains showed notable lowering of the infiltration of inflammatory cells, the formation of fibrous tissues and collagen fibers, and improvement in the pathological morphology of kidneys. It also suppressed the protein and mRNA expressions of TGF-β1 and α-SMA and enhanced E-cadherin expression. Meanwhile, Eucommia ulmoides extract prominently inhibited the mRNA expression of Col I, Col III, Col IV, TIMP-1, and TIMP-2 and promoted expressions of MMP-1, MMP-2 and MMP-9. Through our study, it is the first time to prove that Eucommia ulmoides extract could ameliorate renal interstitial fibrosis and may involve in the regulation of the extracellular matrix (ECM) degradation enzyme (MMPs/TIMPs) system, promotion of the expression of E-cadherin, and suppression of expressions of TGF-β1 and α-SMA. The results provide a significant implication for the utilization of Eunomia Ulmoides extract as functional foods to enhance renal functions and improve renal injury caused by high purine diets.
Collapse
Affiliation(s)
- An Li
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|