1
|
Gu L, Li S, Zhou L, Yuan F, Zhang T, Wang Y, Liu T, Li M, Zhang Z, Guo X. Ecophysiological and transcriptional landscapes of arbuscular mycorrhiza fungi enhancing yield, quality, and stalk rot resistance in Anoectochilus roxburghii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109885. [PMID: 40220671 DOI: 10.1016/j.plaphy.2025.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/23/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Anoectochilus roxburghii (Wall.) Lindl. (A. roxburghii) is an increasingly popular medicinal herb. Arbuscular mycorrhiza (AM) fungi, known for their symbiotic relationships with plant roots, enhance nutrient uptake and disease resistance in host plants. However, their specific regulatory mechanisms in A. roxburghii are not fully understood. In this study, Fujian A. roxburghii was inoculated with the AM fungus Glomus intraradices, and successful root colonization was observed. Following AM fungal colonization, there was a significant upregulation of photosynthesis-related genes in the stems, accompanied by improved canopy phenotypes and root architecture. Consequently, AM-inoculated plants exhibited increased fresh and dry biomass, as well as elevated levels of polysaccharides and flavonoids. Additionally, the incidence of Fusarium oxysporum-induced stalk rot was reduced in AM-inoculated plants. Analysis of defense-related enzymes indicated that AM-inoculated plants exhibited a rapid and robust response to pathogen infection, mitigating oxidative stress. Transcriptomic analysis revealed significant upregulation of genes associated "Fatty acid degradation", "MAPK signaling pathway-plant", and "Plant-pathogen interaction", suggesting their involvement in enhanced disease resistance. A regulatory network centered on ACX1 and calmodulin, involving multiple transcription factors such as WRKY, bHLH, ERF, NAC, and HSF, was implicated in defense responses. These findings demonstrated the beneficial effects of AM fungi on yield, quality, and disease resistance in A. roxburghii, providing a theoretical foundation for its cultivation and genetic improvement.
Collapse
Affiliation(s)
- Li Gu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shurong Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lichun Zhou
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feiyue Yuan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tingting Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yankun Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tiedong Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingjie Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongyi Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolei Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Wu Y, Zhu K, Wang C, Li Y, Li M, Sun Y. Comparative Metabolome and Transcriptome Analyses Reveal Molecular Mechanisms Involved in the Responses of Two Carex rigescens Varieties to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2984. [PMID: 39519903 PMCID: PMC11548242 DOI: 10.3390/plants13212984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Salt stress severely inhibits crop growth and production. The native turfgrass species Carex rigescens in northern China, exhibits extraordinary tolerance to multiple abiotic stresses. However, little is known about its specific metabolites and pathways under salt stress. To explore the molecular metabolic mechanisms under salt stress, we conducted metabolome analysis combined with transcriptome analysis of two varieties of Carex rigescens with differing salt tolerances: salt-sensitive Lvping NO.1 and salt-tolerant Lvping NO.2. After 5 days of salt treatment, 114 and 131 differentially abundant metabolites (DAMs) were found in Lvping NO.1 and Lvping NO.2, respectively. Among them, six amino acids involved in the amino acid biosynthesis pathway, namely, valine, phenylalanine, isoleucine, tryptophan, threonine, and serine, were accumulated after treatment. Furthermore, most DAMs related to phenylalanine biosynthesis, metabolism, and phenylpropanoid biosynthesis increased under salt stress in both varieties. The expression profiles of metabolism-associated genes were consistent with the metabolic profiles. However, genes including HCT, β-glucosidases, and F5H, and metabolite 4-hydroxycinnamic acid, of the two varieties may account for the differences in salt tolerance. Our study provides new insights into the mechanisms underlying salt tolerance in Carex rigescens and reveals potential metabolites and genes to improve crop resilience to saline environments.
Collapse
Affiliation(s)
- Yiming Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kai Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chu Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Bai Y, Yu H, Chen L, Meng Y, Ma Y, Wang D, Qian Y, Zhang D, Feng X, Zhou Y. Time-Course Transcriptome Analysis of Aquilegia vulgaris Root Reveals the Cell Wall's Roles in Salinity Tolerance. Int J Mol Sci 2023; 24:16450. [PMID: 38003641 PMCID: PMC10671252 DOI: 10.3390/ijms242216450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Salt stress has a considerable impact on the development and growth of plants. The soil is currently affected by salinisation, a problem that is becoming worse every year. This means that a significant amount of salt-tolerant plant material needs to be added. Aquilegia vulgaris has aesthetically pleasing leaves, unique flowers, and a remarkable tolerance to salt. In this study, RNA-seq technology was used to sequence and analyse the transcriptome of the root of Aquilegia vulgaris seedlings subjected to 200 mM NaCl treatment for 12, 24, and 48 h. In total, 12 Aquilegia vulgaris seedling root transcriptome libraries were constructed. At the three time points of salt treatment compared with the control, 3888, 1907, and 1479 differentially expressed genes (DEGs) were identified, respectively. Various families of transcription factors (TFs), mainly AP2, MYB, and bHLH, were identified and might be linked to salt tolerance. Gene Ontology (GO) analysis of DEGs revealed that the structure and composition of the cell wall and cytoskeleton may be crucial in the response to salt stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs showed a significant enrichment of the pentose and glucuronate interconversion pathway, which is associated with cell wall metabolism after 24 and 48 h of salt treatment. Based on GO and KEGG analyses of DEGs, the pentose and glucuronate interconversion pathway was selected for further investigation. AP2, MYB, and bHLH were found to be correlated with the functional genes in this pathway based on a correlation network. This study provides the groundwork for understanding the key pathways and gene networks in response to salt stress, thereby providing a theoretical basis for improving salt tolerance in Aquilegia vulgaris.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.B.); (H.Y.); (L.C.); (Y.M.); (Y.M.); (D.W.); (Y.Q.); (D.Z.); (X.F.)
| |
Collapse
|
4
|
Zuo ZF, Li Y, Mi XF, Li YL, Zhai CY, Yang GF, Wang ZY, Zhang K. Physiological and lipidomic response of exogenous choline chloride alleviating salt stress injury in Kentucky bluegrass ( Poa pratensis). FRONTIERS IN PLANT SCIENCE 2023; 14:1269286. [PMID: 37719216 PMCID: PMC10501137 DOI: 10.3389/fpls.2023.1269286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Introduction Choline participates in plant stress tolerance through glycine betaine (GB) and phospholipid metabolism. As a salt-sensitive turfgrass species, Kentucky bluegrass (Poa pratensis) is the main turfgrass species in cool-season areas. Methods To improve salinity tolerance and investigate the effects of choline on the physiological and lipidomic responses of turfgrass plants under salinity stress conditions, exogenous choline chloride was applied to Kentucky bluegrass exposed to salt stress. Results From physiological indicators, exogenous choline chloride could alleviate salt stress injury in Kentucky bluegrass. Lipid analysis showed that exogenous choline chloride under salt-stress conditions remodeled the content of phospholipids, glycolipids, and lysophospholipids. Monogalactosyl diacylglycerol, digalactosyl diacylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and lysophosphatidylcholine content were increased and phosphatidic acid content were decreased in plants after exogenous choline chloride under salt treatment. Plant leaf choline content increased, but GB was not detected in exogenous choline chloride treatment plants under nonstress or salt-stress conditions. Discussion GB synthesis pathway related genes showed no clear change to choline chloride treatment, whereas cytidyldiphosphate-choline (CDP-choline) pathway genes were upregulated by choline chloride treatment. These results reveal that lipid remodeling through choline metabolism plays an important role in the salt tolerance mechanism of Kentucky bluegrass. Furthermore, the lipids selected in this study could serve as biomarkers for further improvement of salt-sensitive grass species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kun Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Ji C, Liang Z, Cao H, Chen Z, Kong X, Xin Z, He M, Wang J, Wei Z, Xing J, Li C, Zhang Y, Zhang H, Sun F, Li J, Li K. Transcriptome-based analysis of the effects of compound microbial agents on gene expression in wheat roots and leaves under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1109077. [PMID: 37235031 PMCID: PMC10206238 DOI: 10.3389/fpls.2023.1109077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Introduction Salt stress inhibits the beneficial effects of most plant growth-promoting rhizobacteria. The synergistic relationship between beneficial rhizosphere microorganisms and plants helps achieve more stable growth-promoting effects. This study aimed 1) to elucidate changes in gene expression profiles in the roots and leaves of wheat after inoculation with compound microbial agents and 2) to determine the mechanisms by which plant growth-promoting rhizobacteria mediate plant responses to microorganisms. Methods Following inoculation with compound bacteria, transcriptome characteristics of gene expression profiles of wheat, roots, and leaves at the flowering stage were investigated using Illumina high-throughput sequencing technology. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the genes that were significantly differentially expressed. Results The expression of 231 genes in the roots of bacterial preparations (BIO) -inoculated wheat changed significantly (including 35 upregulated and 196 downregulated genes) compared with that of non-inoculated wheat. The expression of 16,321 genes in leaves changed significantly, including 9651 upregulated genes and 6670 downregulated genes. The differentially expressed genes were involved in the metabolism of carbohydrates, amino acids, and secondary compounds as well as signal transduction pathways. The ethylene receptor 1 gene in wheat leaves was significantly downregulated, and genes related to ethylene-responsive transcription factor were significantly upregulated. GO enrichment analysis showed that metabolic and cellular processes were the main functions affected in the roots and leaves. The main molecular functions altered were binding and catalytic activities, among which the cellular oxidant detoxification enrichment rate was highly expressed in the roots. The expression of peroxisome size regulation was the highest in the leaves. KEGG enrichment analysis showed that linoleic acid metabolism expression was highest in the roots, and the expression of photosynthesis-antenna proteins was the highest in leaves. After inoculation with a complex biosynthesis agent, the phenylalanine ammonia lyase (PAL) gene of the phenylpropanoid biosynthesis pathway was upregulated in wheat leaf cells while 4CL, CCR, and CYP73A were downregulated. Additionally, CYP98A and REF1 genes involved in the flavonoid biosynthesis pathway were upregulated, while F5H, HCT, CCR, E2.1.1.104, and TOGT1-related genes were downregulated. Discussion Differentially expressed genes may play key roles in improving salt tolerance in wheat. Compound microbial inoculants promoted the growth of wheat under salt stress and improved disease resistance by regulating the expression of metabolism-related genes in wheat roots and leaves and activating immune pathway-related genes.
Collapse
Affiliation(s)
- Chao Ji
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
- Taishan Forest Ecosystem Research Station, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, Shandong, China
| | - Zengwen Liang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
- Shandong Yongsheng Agricultural Development Co., Ltd., Yongsheng (Shouguang) Vegetable Technology Research Institute Co., Ltd, Weifang, China
| | - Hui Cao
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Zhizhang Chen
- College of Foreign Languages, Weifang University, Weifang, Shandong, China
| | - Xuehua Kong
- Weifang Hanting Vestibule School, Weifang Education Bureau, Weifang, Shandong, China
| | - Zhiwen Xin
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Mingchao He
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Jie Wang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Zichao Wei
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Jiahao Xing
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Chunyu Li
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Yingxiang Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Hua Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Fujin Sun
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Runxin Fruit and Vegetable Cultivation Cooperative of Weifang Economic Development Zone, Weifang Agricultural Bureau, Weifang, Shandong, China
| | - Jianlin Li
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Weifang Nuode Biotechnology Co., LTD, Weifang Agricultural Bureau, Weifang, Shandong, China
| | - Kun Li
- Taishan Forest Ecosystem Research Station, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, Shandong, China
- College of Forestry, Shandong Agriculture University, Taian, Shandong, China
| |
Collapse
|
6
|
Xu J, Yang C, Ji S, Ma H, Lin J, Li H, Chen S, Xu H, Zhong M. Heterologous expression of MirMAN enhances root development and salt tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1118548. [PMID: 37123825 PMCID: PMC10145921 DOI: 10.3389/fpls.2023.1118548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction β-Mannanase is a plant cell wall remodeling enzyme involved in the breakdown of hemicellulose and plays an important role in growth by hydrolyzing the mannan-like polysaccharide, but its function in adaptation to salt stress has been less studied. Methods Based on cloned the mannanase (MAN) gene from Mirabilis jalapa L., the study was carried out by heterologously expressing the gene in Arabidopsis thaliana, and then observing the plant phenotypes and measuring relevant physiological and biochemical indicators under 150 mM salt treatment. Results and discussion The results indicate that MirMAN is a protein with a glycohydrolase-specific structural domain located in the cell wall. We first found that MirMAN reduced the susceptibility of transgenic Arabidopsis thaliana to high salt stress and increased the survival rate of plants by 38%. This was corroborated by the following significant changes, including the reduction in reactive oxygen species (ROS) levels, increase in antioxidant enzyme activity, accumulation of soluble sugars and increase of the expression level of RD29 in transgenic plants. We also found thatthe heterologous expression of MirMAN promoted root growth mainly by elongating the primary roots and increasing the density of lateral roots. Meanwhile, the expression of ARF7, ARF19, LBD16 and LBD29 was up-regulated in the transgenic plants, and the concentration of IAA in the roots was increased. Those results indicate that MirMAN is involved in the initiation of lateral root primordia in transgenic plants through the IAA-ARF signalling pathway. In conclusion, MirMAN improves plant salt tolerance not only by regulating ROS homeostasis, but also by promoting the development of lateral roots. Reflecting the potential of the MirMAN to promote root plastic development in adaptation to salt stress adversity.
Collapse
Affiliation(s)
- Juanjuan Xu
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Caiyu Yang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shangyao Ji
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hui Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jingwei Lin
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hui Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shuisen Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hai Xu
- Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Rice Research Institute, Shenyang Agricultural University, Shenyang, Liaoning, China
- *Correspondence: Ming Zhong, ; Hai Xu,
| | - Ming Zhong
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- *Correspondence: Ming Zhong, ; Hai Xu,
| |
Collapse
|
7
|
Ma D, Cai J, Ma Q, Wang W, Zhao L, Li J, Su L. Comparative time-course transcriptome analysis of two contrasting alfalfa ( Medicago sativa L.) genotypes reveals tolerance mechanisms to salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1070846. [PMID: 36570949 PMCID: PMC9773191 DOI: 10.3389/fpls.2022.1070846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is a major abiotic stress affecting plant growth and crop yield. For the successful cultivation of alfalfa (Medicago sativa L.), a key legume forage, in saline-affected areas, it's essential to explore genetic modifications to improve salt-tolerance.Transcriptome assay of two comparative alfalfa genotypes, Adina and Zhaodong, following a 4 h and 8 h's 300 mM NaCl treatment was conducted in this study in order to investigate the molecular mechanism in alfalfa under salt stress conditions. Results showed that we obtained 875,023,571 transcripts and 662,765,594 unigenes were abtained from the sequenced libraries, and 520,091 assembled unigenes were annotated in at least one database. Among them, we identified 1,636 differentially expression genes (DEGs) in Adina, of which 1,426 were up-regulated and 210 down-regulated, and 1,295 DEGs in Zhaodong, of which 565 were up-regulated and 730 down-regulated. GO annotations and KEGG pathway enrichments of the DEGs based on RNA-seq data indicated that DEGs were involved in (1) ion and membrane homeostasis, including ABC transporter, CLC, NCX, and NHX; (2) Ca2+ sensing and transduction, including BK channel, EF-hand domain, and calmodulin binding protein; (3) phytohormone signaling and regulation, including TPR, FBP, LRR, and PP2C; (4) transcription factors, including zinc finger proteins, YABBY, and SBP-box; (5) antioxidation process, including GST, PYROX, and ALDH; (6) post-translational modification, including UCH, ubiquitin family, GT, MT and SOT. The functional roles of DEGs could explain the variations in salt tolerance performance observed between the two alfalfa genotypes Adina and Zhaodong. Our study widens the understanding of the sophisticated molecular response and tolerance mechanism to salt stress, providing novel insights on candidate genes and pathways for genetic modification involved in salt stress adaptation in alfalfa.
Collapse
Affiliation(s)
- Dongmei Ma
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Jinjun Cai
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Qiaoli Ma
- Agricultural College, Ningxia University, Yinchuan, China
| | - Wenjing Wang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Lijuan Zhao
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Jiawen Li
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| | - Lina Su
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
- Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Ningxia University, Yinchuan, China
| |
Collapse
|
8
|
Li Y, Sun Y, Cui H, Li M, Yang G, Wang Z, Zhang K. Carex rigescens caffeic acid O-methyltransferase gene CrCOMT confer melatonin-mediated drought tolerance in transgenic tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:971431. [PMID: 36035693 PMCID: PMC9399801 DOI: 10.3389/fpls.2022.971431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/22/2022] [Indexed: 05/27/2023]
Abstract
Melatonin is an important, multifunctional protective agent against a variety of abiotic and biotic stressors in plants. Caffeic acid O-methyltransferase (COMT) catalyzes the last step of melatonin synthesis in plants and reportedly participates in the regulation of stress response and tolerance. However, few studies have reported its function in melatonin-mediated drought resistance. In this study, CrCOMT was identified and was strongly induced by drought stress in Carex rigescens. CrCOMT overexpression in transgenic tobacco increased tolerance to drought stress with high levels of seed germination, relative water content, and survival rates. CrCOMT overexpression in tobacco improved membrane stability, and plants exhibited lower relative electrolytic leakage and malondialdehyde content, as well as higher photochemical efficiency than the wildtype (WT) under drought stress. The transgenic plants also had higher levels of proline accumulation and antioxidant enzyme activity, which decreased oxidative stress damage due to reactive oxygen species (ROS) hyperaccumulation under drought stress. The transcription of drought stress response and ROS scavenging genes was significantly higher in the CrCOMT overexpression plants than in the WT plants. In addition, CrCOMT transgenic tobacco plants exhibited higher melatonin content under drought stress conditions. Exogenous melatonin was applied to C. rigescens under drought stress to confirm the function of melatonin in mediating drought tolerance; the relative water content and proline content were higher, and the relative electrolytic leakage was lower in melatonin-treated C. rigescens than in the untreated plants. In summary, these results show that CrCOMT plays a positive role in plant drought stress tolerance by regulating endogenous melatonin content.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Huiting Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guofeng Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zengyu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Kun Zhang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Li H, Teng K, Yue Y, Teng W, Zhang H, Wen H, Wu J, Fan X. Seed Germination Mechanism of Carex rigescens Under Variable Temperature Determinded Using Integrated Single-Molecule Long-Read and Illumina Sequence Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:818458. [PMID: 35310626 PMCID: PMC8928477 DOI: 10.3389/fpls.2022.818458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The turfgrass species Carex rigescens has broad development and utilization prospects in landscaping construction. However, seed dormancy and a low germination rate have inhibited its application. Furthermore, the molecular mechanisms of seed germination in C. rigescens have not been thoroughly studied. Therefore, in the present study, PacBio full-length transcriptome sequencing combined with Illumina sequencing was employed to elucidate the germination mechanism of C. rigescens seeds under variable temperatures. In general, 156,750 full-length non-chimeric sequences, including those for 62,086 high-quality transcripts, were obtained using single-molecule long read sequencing. In total, 40,810 high-quality non-redundant, 1,675 alternative splicing, 28,393 putative coding sequences, and 1,052 long non-coding RNAs were generated. Based on the newly constructed full-length reference transcriptome, 23,147 differentially expressed genes were identified. We screened four hub genes participating in seed germination using weighted gene co-expression network analysis. Combining these results with the physiological observations, the important roles of sucrose and starch metabolic pathways in germination are further discussed. In conclusion, we report the first full-length transcriptome of C. rigescens, and investigated the physiological and transcriptional mechanisms of seed germination under variable temperatures. Our results provide valuable information for future transcriptional analyses and gene function studies of C. rigescens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juying Wu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xifeng Fan
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
10
|
Ma X, Liu JN, Yan L, Liang Q, Fang H, Wang C, Dong Y, Chai Z, Zhou R, Bao Y, Hou W, Yang KQ, Wu D. Comparative Transcriptome Analysis Unravels Defense Pathways of Fraxinus velutina Torr Against Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:842726. [PMID: 35310642 PMCID: PMC8931533 DOI: 10.3389/fpls.2022.842726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 05/03/2023]
Abstract
Fraxinus velutina Torr with high salt tolerance has been widely grown in saline lands in the Yellow River Delta, China. However, the salt-tolerant mechanisms of F. velutina remain largely elusive. Here, we identified two contrasting cutting clones of F. velutina, R7 (salt-tolerant), and S4 (salt-sensitive) by measuring chlorophyll fluorescence characteristics (Fv/Fm ratio) in the excised leaves and physiological indexes in roots or leaves under salt treatment. To further explore the salt resistance mechanisms, we compared the transcriptomes of R7 and S4 from leaf and root tissues exposed to salt stress. The results showed that when the excised leaves of S4 and R7 were, respectively, exposed to 250 mM NaCl for 48 h, Fv/Fm ratio decreased significantly in S4 compared with R7, confirming that R7 is more tolerant to salt stress. Comparative transcriptome analysis showed that salt stress induced the significant upregulation of stress-responsive genes in R7, making important contributions to the high salt tolerance. Specifically, in the R7 leaves, salt stress markedly upregulated key genes involved in plant hormone signaling and mitogen-activated protein kinase signaling pathways; in the R7 roots, salt stress induced the upregulation of main genes involved in proline biosynthesis and starch and sucrose metabolism. In addition, 12 genes encoding antioxidant enzyme peroxidase were all significantly upregulated in both leaves and roots. Collectively, our findings revealed the crucial defense pathways underlying high salt tolerance of R7 through significant upregulation of some key genes involving metabolism and hub signaling pathways, thus providing novel insights into salt-tolerant F. velutina breeding.
Collapse
Affiliation(s)
- Xinmei Ma
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
| | - Zejia Chai
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yan Bao
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Wenrui Hou
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
- *Correspondence: Ke Qiang Yang,
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan, China
- Dejun Wu,
| |
Collapse
|
11
|
Hu Q, Cui H, Ma C, Li Y, Yang C, Wang K, Sun Y. Lipidomic metabolism associated with acetic acid priming-induced salt tolerance in Carex rigescens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:665-677. [PMID: 34488152 DOI: 10.1016/j.plaphy.2021.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Acetic acid priming may mitigate salt stress to plants by modulating lipid metabolism. Carex rigescens is a stress-tolerant turfgrass species with a widespread distribution in north China. The objective of this study was to figure out whether modification of lipid profiles, including the contents, compositions and saturation levels of leaf lipids, may contribute to acetic acid modulated salt tolerance in C. rigescens. Plants of C. rigescens were primed with or without acetic acid (30 mM) and subsequently exposed to salt stress (300 mM NaCl) for 15 days. Salt stress affected the physiological performance of C. rigescens, while acetic acid-primed plants showed significantly lower malondialdehyde content, proline content, and electrolyte leakage than non-primed plants under salt stress. Acetic acid priming enhanced the contents of phospholipids and glycolipids involved in membrane stabilization and stress signaling (phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, digalactosyl diacylglycerol, monogalactosyl diacylglycerol, and sulfoquinovosyldiacylglycerol), reduced the content of toxic lipid intermediates (free fatty acids) during subsequent exposure to salt stress. Furthermore, expression levels of genes involved in lipid metabolism such as CK and PLDα changed due to acetic acid priming. These results demonstrated that acetic acid priming could enhance salt tolerance of C. rigescens by regulating lipid metabolism. The lipids could be used as biomarkers to select for salt-tolerant grass germplasm.
Collapse
Affiliation(s)
- Qiannan Hu
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Huiting Cui
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Chengze Ma
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Yue Li
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Chunhua Yang
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Kehua Wang
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Yan Sun
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
12
|
Zhang K, Sun Y, Li M, Long R. CrUGT87A1, a UDP-sugar glycosyltransferases (UGTs) gene from Carex rigescens, increases salt tolerance by accumulating flavonoids for antioxidation in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:28-36. [PMID: 33321375 DOI: 10.1016/j.plaphy.2020.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 05/15/2023]
Abstract
Salt stress is a serious abiotic stressor impeding plant growth and crop production around the world. Plant glycosyltransferases are thought to serve important roles in dealing with stress conditions, however, the functional role of how UGTs cope with salt stress is not well understood. Carex rigescens (Franch.) V. Krecz, is a widely distributed species of turfgrass with strong salinity tolerance found in northern China. To investigate how the glycosyltransferase gene, CrUGT87A1, functions in C. rigescens, we performed analyses of cloning, transcriptional expression, subcellular localization, and overexpression. The full-length sequence of CrUGT87A1 is 1455 bp with a 1338 bp length ORF, which encodes 445 amino acids, while CrUGT87A1 was found to be a nuclear and plasmalemma-localized protein. We found that the transcriptional expression of CrUGT87A1 was up-regulated under ABA, heat, salt, and drought treatments in leaf tissues. CrUGT87A1 overexpression in Arabidopsis plants had a significantly higher germination rate, better growth and physiology, and a higher expression levels of transcripts related to salt stress-related genes under high-salinity conditions, suggesting that CrUGT87A1 is involved in salt tolerance. The transcriptional expression of genes related to flavonoid-synthesis related and the flavonoid content reflected higher accumulations of flavonoids in transgenic plants. Our study demonstrated that CrUGT87A1 could play an important role in resisting salt stress due to increased flavonoid accumulation, which can promote antioxidation when dealing with high-salinity conditions. This study advances our collective understanding of the functional role of UGTs and can be used to improve the salt tolerance and breeding of crops and plants.
Collapse
Affiliation(s)
- Kun Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; College of Grassland Science and Technology, China Agricultural University, Beijing, 100093, PR China; College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Yan Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100093, PR China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
13
|
Carex muskingumensis and Osmotic Stress: Identification of Reference Genes for Transcriptional Profiling by RT-qPCR. Genes (Basel) 2020; 11:genes11091022. [PMID: 32878033 PMCID: PMC7563777 DOI: 10.3390/genes11091022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/16/2023] Open
Abstract
Carex muskingumensis is a highly valued perennial ornamental grass cultivated worldwide. However, there is limited genetic data regarding this species. Selection of proper reference genes (RGs) for reverse transcription quantitative PCR (RT-qPCR) data normalization has become an essential step in gene expression analysis. In this study, we aimed to examine expression stability of nine candidate RGs in C. muskingumensis plants, subjected to osmotic stress, generated either by salinity or PEG treatment. The identification of genes exhibiting high expression stability was performed by four algorithms (geNorm, NormFinder, BestKeeper and deltaCt method). The results showed that the combination of two genes would be sufficient for reliable expression data normalization. ADP (ADP-ribosylation factor) and TBP (TATA-box-binding protein) were identified as the most stably expressed under salinity treatment, while eIF4A (eukaryotic initiation factor 4A) and TBP were found to show the highest stability under PEG-induced drought. A set of three genes (ADP, eIF4A and TBP) displayed the highest expression stability across all experimental samples tested in this study. To our best knowledge, this is the first report regarding RGs selection in C. muskingumensis. It will provide valuable starting point information for conducting further analyses in this and related species concerning their responses to water shortage and salinity stress.
Collapse
|