1
|
Li C, Deng Y, Chen N, Luo J, Ji Y, Yuan A, Wang L, Tan L, Sun H, Wang SL, Chen C. Season and weather factors matter, but not enough: a machine learning-based study on predicting incremental lifetime cancer risk of polycyclic aromatic hydrocarbons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-12. [PMID: 39953937 DOI: 10.1080/09603123.2025.2467182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
With the intensification of urbanization, air pollution has garnered global concern. This study aims to predict the incremental lifetime cancer risk (ILCR) of polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5. Utilizing machine learning regression algorithms and data from six cities in Jiangsu Province in 2018, we established models to investigate the relationship between ILCR and various factors, with a special emphasis on seasonal and meteorological data. After model training, SHapley Additive exPlanation (SHAP) analysis revealed that seasonal factors were even more influential than PM2.5 in predicting ILCR. Models were then validated using 2019 data, resulting in an R2 of 0.42, which indicated a decrease in accuracy compared to the 2018 test set R2 of 0.74 but still represented an improvement over using PM2.5 alone (R2 = 0.2). This suggests that while seasonal and related factors are crucial, additional factors are needed to build a robust model for future ILCR predictions.
Collapse
Affiliation(s)
- Chenjia Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Yuxiang Deng
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Nuo Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Junyao Luo
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Yan Ji
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Anjie Yuan
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Li Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
- State Key Lab of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, P. R. China
| | - Lifeng Tan
- Changzhou Medical Center, Nanjing Medical University, Changzhou, P. R. China
| | - Hong Sun
- Institute of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, P. R. China
| | - Shou-Lin Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
- State Key Lab of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, P. R. China
| | - Chao Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, P. R. China
| |
Collapse
|
2
|
Bai L, Geng X, Liu X. Review of polycyclic aromatic hydrocarbons pollution characteristics and carcinogenic risk assessment in global cooking environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124816. [PMID: 39187058 DOI: 10.1016/j.envpol.2024.124816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
In recent years, research on air pollution in cooking environments has gained increasing attention, particularly studies related to polycyclic aromatic hydrocarbons (PAHs) pollution. Hence, it is crucial and urgent to conduct a comprehensive review of research findings and further evaluate their carcinogenic risks. This study adopts a comprehensive literature review approach, systematically integrating and deeply analyzing the conclusions and data from 62 selected relevant studies. It focuses on the impact of different factors on PAHs concentrations, considers the indoor-outdoor PAHs concentration ratio, and conducts carcinogenic risk assessments for PAHs. The results show that Africa has the highest average PAHs pollution concentration globally at 14.74 μg/m³, exceeding that of other continents by 1.5-160.9 times. Among various influencing factors, fuel type has the most significant impact on PAHs concentrations. Existing research data indicate that cooking with charcoal as fuel produces the highest PAHs concentration at 223.52 μg/m³, with high molecular weight PAHs accounting for 58.16%, significantly higher than when using clean energy. Furthermore, efficient ventilation systems have been proven to substantially reduce PAHs concentrations, with a reduction rate of up to 88.1%. However, cooking methods and food types also have a small but non-negligible impact on PAHs production. Using mild cooking methods such as steaming and selecting low-fat foods can also reduce PAHs to some extent. Additionally, through the analysis of the Indoor/Outdoor ratio, it was found that cooking is the primary source of indoor pollution, and the average concentration of PAHs in cooking environments in Asia and Africa is much higher than in Europe and America. The Total Incremental Lifetime Cancer Risk (TILCR) exceeds 10⁻⁴, indicating a high level of carcinogenic risk.
Collapse
Affiliation(s)
- Li Bai
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; Key Laboratory of Songliao Aquatic of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Xinshuai Geng
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Xinru Liu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, 110168, Shenyang, China
| |
Collapse
|
3
|
Ali L, Alam A, Ali AM, Teoh WY, Altarawneh M. A comprehensive Review into Emission Sources, Formation Mechanisms, Ecological Effects, and Biotransformation Routes of Halogenated Polycyclic Aromatic Hydrocarbons (HPAHs). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117196. [PMID: 39426109 DOI: 10.1016/j.ecoenv.2024.117196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Halogenated polycyclic aromatic hydrocarbons (HPAHs, H = F, Cl, Br) are a new class of PAHs derivatives that mainly originate from the incomplete combustion of halogen-laden materials and via metallurgical operations. These compounds circulate extensively in various environmental matrices. This survey provides a comprehensive review on governing synthesis routes of HPAHs, their environmental occurrence, and their health and ecological effects. The review comprehensively enlists and presents emission sources of these emerging organic pollutants into the air that serves as their main reservoir. The formation of HPAHs ensues through successive addition reactions of related precursors accompanied by ring cyclization steps; in addition to direct unimolecular fragmentation of parents halogenated. Halogenation of parent PAHs rapidly occurs in saline ecosystems, thus multiplying the availability of these notorious compounds in the environment. Certain HPAHs appear to be more carcinogenic than dioxins. Transmission routes of HPAHs from their emission sources to water bodies, soil, aquatic life, plants, terrestrial animals, and humans are well-documented. Later, the direct and indirect diffusion of HPAHs from air to the biotic (plants, animals, humans) and abiotic components (soil, water, sediments) are described in detail. The study concludes that HPAHs are permeable to the carbon matrices resulting in the alleviation of the source-to-sink interface. As a potential future perspective, understanding the transmission interfaces lays a foundation to intervene in the introduction of these toxicants into the food chain.
Collapse
Affiliation(s)
- Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Ayesha Alam
- United Arab Emirates University, Department of Integrative Agriculture, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Abdul Majeed Ali
- Medcare Hospital, Department of Pediatrics and Neonatology, King Faisal Street, Sharjah 15551, United Arab Emirates
| | - Wey Yang Teoh
- Department of Chemical Engineering, Sustainable Process Engineering Centre (SPEC), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
4
|
Eck-Varanka B, Hubai K, Kováts N, Teke G. Biomonitoring polycyclic aromatic hydrocarbon levels in domestic kitchens using commonly grown culinary herbs. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:295-303. [PMID: 38887758 PMCID: PMC11180055 DOI: 10.1007/s40201-024-00898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/06/2024] [Indexed: 06/20/2024]
Abstract
Cooking is a significant source of polycyclic aromatic hydrocarbon (PAHs) emissions in indoor environments. A one-month biomonitoring study was carried out in previously selected rural Hungarian kitchens to evaluate cooking-related PAHs concentrations in 4 common kitchen vegetables such as basil, parsley, rocket and chives. The study had two mainobjectives: firstly, to follow PAHs accumulation pattern and to find out if this pattern can be associated with different cooking habits. Also, the usefulness of culinary herbs for indoor bioaccumulation studies was assessed. The 2-ring naphthalene was the dominant PAH in the majority of the samples, its concentrations were in the range of 25.4 µg/kg and 274 µg/kg, of 3-ring PAHs the prevalency of phenanthrene was observed, with highest concentration of 62 µg/kg. PAHs accumulation pattern in tested plants clearly indicated differences in cooking methods and cooking oils used in the selected households. Use of lard and animal fats in general resulted in the high concentrations of higher molecular weight (5- and 6-ring) PAHs, while olive oil usage could be associated with the emission of 2- and 3-ring PAHs. Culinary herbs, however, accumulated carcinogenic PAHs such as benzo[a]anthracene (highest concentration 11.9 µg/kg), benzo[b]fluoranthene (highest concentration 13.8 µg/kg) and chrysene (highest concentration 20.1 µg/kg) which might question their safe use.
Collapse
Affiliation(s)
- Bettina Eck-Varanka
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200 Veszprém, Hungary
| | - Katalin Hubai
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200 Veszprém, Hungary
| | - Nora Kováts
- Centre for Natural Sciences, University of Pannonia, Egyetem Str. 10, 8200 Veszprém, Hungary
| | - Gábor Teke
- ELGOSCAR-2000 Environmental Technology and Water Management Ltd, 8184 Balatonfűzfő, Hungary
| |
Collapse
|
5
|
Stavroulas I, Bougiatioti A, Grivas G, Liakakou E, Petrinoli K, Kourtidis K, Gerasopoulos E, Mihalopoulos N. Cooking as an organic aerosol source leading to urban air quality degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168031. [PMID: 37890627 DOI: 10.1016/j.scitotenv.2023.168031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Air quality degradation events in the urban environment are often attributed to anthropogenic aerosol sources related to combustion of liquid or solid fuels in various activities. The effects of massive cooking emissions during Greek nationwide traditional festivities were investigated by a combined characterization of particulate matter (PM) levels and organic aerosol (OA) sources. Focus was centered on periods around two major festivities, namely "Fat Thursday" and Easter Sunday along six different years. OA sources were apportioned through Positive Matrix Factorization (PMF) on Aerosol Chemical Speciation Monitor (ACSM) mass spectra, while the spatial characteristics of the episodes were assessed through a low-cost, sensor-based PM2.5 monitoring network operating in Athens and other Greek cities. Contrasts were examined by considering a 15-day period around each event, while the effect of the 2020-2021 mobility restrictions, related to COVID-19, was also assessed. An episode-specific cooking organic aerosol (COA) spectral profile was delineated, and can be considered as a reference for ambient COA from meat grilling. Severe pollution episodes that affected the entire Athens basin were recorded, with PM2.5 concentrations exceeding 300 μg m-3 on occasions. COA contributions dominated primary organic aerosol (POA) and made up almost half of OA concentrations. During "Fat Thursday" COA concentrations and contributions peaked during night-time (23.2 μg m-3 and 46 %, respectively) while for Easter Sunday COA maxima were recorded in the early afternoon (27.4 μg m-3 and 39 %). Analyzing a full-year OA source dataset, revealed a pronounced recreational cooking pattern in central Athens, with COA concentrations rising towards the weekend, reflecting the impact of the food service sector. In view of the upcoming review of the EU air quality directive, foreseeing stricter annual PM2.5 limits as well as 24-h limit values and related alerts, the mitigation of cooking emissions appears as a potent instrument for achieving tangible air quality benefits.
Collapse
Affiliation(s)
- I Stavroulas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Palea Penteli, Greece; Climate and Atmosphere Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece.
| | - A Bougiatioti
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Palea Penteli, Greece.
| | - G Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Palea Penteli, Greece
| | - E Liakakou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Palea Penteli, Greece
| | - K Petrinoli
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Palea Penteli, Greece
| | - K Kourtidis
- Department of Environmental Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
| | - E Gerasopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Palea Penteli, Greece
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Palea Penteli, Greece; Climate and Atmosphere Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
6
|
Takikawa T, Wang Q, Omagari R, Noro K, Miyake Y, Amagai T. Development of an analytical method for indoor polycyclic aromatic hydrocarbons and their halogenated derivatives by using thermal separation probe coupled to gas chromatography-tandem mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166931. [PMID: 37689201 DOI: 10.1016/j.scitotenv.2023.166931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (XPAHs) have been a concern because of their high toxicity. Monitoring indoor PAHs and XPAHs concentrations is important for risk assessment because humans typically spend >90 % of their time indoors. However, the background levels of indoor PAHs and XPAHs concentrations are unknown because of the low sensitivity of conventional analytical methods. In this study, we developed a highly sensitive analytical method using a thermal separation probe (TSP) coupled to a gas chromatograph with a triple quadrupole mass spectrometer method for 26 PAHs and 40 XPAHs. The method quantification limit (MQL) values of the TSP method were 1.1 (3,8-dichlorofluoranthene)-906 (dibenzo[a,e]pyrene) times lower than those of the conventional method. The regression line comparing the TSP and conventional methods was y = (0.944 ± 0.0401)x, which was in good agreement. These results demonstrate that the TSP method can be applied to indoor air analysis. The total concentrations of PAHs and XPAHs were 944 and 73.5 pg m-3 for the house and 735 and 0.924 pg m-3 in the office, respectively. Among the detected compounds, 13 PAHs and XPAHs could not be detected using conventional methods because of their high MQL values. The composition of total toxicity equivalency values in the house was dominated by dibenzo[a,i]pyrene (DBaiP: 43.2 %) and dibenzo[a,h]pyrene (DBahP: 27.1 %), which could not be detected using the conventional method. Therefore, the TSP method can improve the risk assessment of indoor PAHs and XPAHs.
Collapse
Affiliation(s)
- Tetsuya Takikawa
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Qi Wang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan; Research Center for Chemical Information and Management, National Institute of Occupational Safety and Health (JNIOSH), 6-21-1, Nagao, Tama-ku, Kawasaki, Kanagawa 214-8585, Japan.
| | - Ryo Omagari
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Kazushi Noro
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
| | - Yuichi Miyake
- Graduate School/Faculty of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Takashi Amagai
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
7
|
Xie J, Tao L, Wu Q, Tu S, Liu B, Lin T, Yang L, Li C, Liu G. Global squid contamination by halogenated polycyclic aromatic hydrocarbons and its trade induced risk transfer. ENVIRONMENT INTERNATIONAL 2023; 179:108163. [PMID: 37619253 DOI: 10.1016/j.envint.2023.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Squid is traded globally as an important food resource. However, the occurrence of carcinogenic halogenated polycyclic aromatic hydrocarbons (HPAHs) in squid and the risk of their transfer through trade is little understood or recognized. Here, we comprehensively evaluated the occurrence and risk transfer by quantifying the congener-specific concentrations of HPAHs in 121 squid samples collected from the Pacific, Atlantic and Indian oceans. This was the first time that nine of the 36 target chlorinated and brominated PAH congeners had been detected in squid. The HPAHs exhibited growth-dilution effects in the squid. The lipid content of squid was the most significant factor influencing HPAH bioaccumulation, while differences in squid growth and local ocean contamination influenced by geographical distribution also affected HPAH bioaccumulation. The redistribution and risk transfers of HPAHs in squid as a food could be affected by international trading. The cancer risks from squid consumption in China and Mexico were increased by 50 % and 30 %, respectively, because of international squid trading.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shuyi Tu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Bilin Liu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
8
|
Zhang H, Wang X, Shen X, Li X, Wu B, Li G, Bai H, Cao X, Hao X, Zhou Q, Yao Z. Chemical characterization of volatile organic compounds (VOCs) emitted from multiple cooking cuisines and purification efficiency assessments. J Environ Sci (China) 2023; 130:163-173. [PMID: 37032033 DOI: 10.1016/j.jes.2022.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 06/19/2023]
Abstract
Cooking process can produce abundant volatile organic compounds (VOCs), which are harmful to environment and human health. Therefore, we conducted a comprehensive analysis in which VOCs emissions from multiple cuisines have been sampled based on the simulation and acquisition platform, involving concentration characteristics, ozone formation potential (OFP) and purification efficiency assessments. VOCs emissions varied from 1828.5 to 14,355.1 µg/m3, with the maximum and minimum values from Barbecue and Family cuisine, respectively. Alkanes and alcohol had higher contributions to VOCs from Sichuan and Hunan cuisine (64.1%), Family cuisine (66.3%), Shandong cuisine (69.1%) and Cantonese cuisine (69.8%), with the dominant VOCs species of ethanol, isobutane and n-butane. In comparison, alcohols (79.5%) were abundant for Huaiyang cuisine, while alkanes (19.7%), alkenes (35.9%) and haloalkanes (22.9%) accounted for higher proportions from Barbecue. Specially, carbon tetrachloride, n-hexylene and 1-butene were the most abundant VOCs species for Barbecue, ranging from 8.8% to 14.6%. The highest OFP occurred in Barbecue. The sensitive species of OFP for Huaiyang cuisine were alcohols, while other cuisines were alkenes. Purification efficiency assessments shed light on the removal differences of individual and synergistic control technologies. VOCs emissions exhibited a strong dependence on the photocatalytic oxidation, with the removal efficiencies of 29.0%-54.4%. However, the high voltage electrostatic, wet purification and mechanical separation techniques played a mediocre or even counterproductive role in the VOCs reduction, meanwhile collaborative control technologies could not significantly improve the removal efficiency. Our results identified more effective control technologies, which were conductive to alleviating air pollution from cooking emissions.
Collapse
Affiliation(s)
- Hanyu Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xuejun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Bobo Wu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Guohao Li
- Beijing Municipal Research Institute of Environmental Protection, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Urban Environmental Pollution Control Engineering Research Center, Beijing 100037, China
| | - Huahua Bai
- Beijing Municipal Research Institute of Environmental Protection, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, National Urban Environmental Pollution Control Engineering Research Center, Beijing 100037, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Hao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Qi Zhou
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
9
|
Huang X, Li Z, Zhang T, Zhu J, Wang X, Nie M, Harada K, Zhang J, Zou X. Research progress in human biological monitoring of aromatic hydrocarbon with emphasis on the analytical technology of biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114917. [PMID: 37094484 DOI: 10.1016/j.ecoenv.2023.114917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Aromatic hydrocarbons are unsaturated compounds containing carbon and hydrogen that form single aromatic ring, or double, triple, or multiple fused rings. This review focuses on the research progress of aromatic hydrocarbons represented by polycyclic aromatic hydrocarbons (including halogenated polycyclic aromatic hydrocarbons), benzene and its derivatives including toluene, ethylbenzene, xylenes (o-, m- and p-), styrene, nitrobenzene, and aniline. Due to the toxicity, widespread coexistence, and persistence of aromatic hydrocarbons in the environment, accurate assessment of exposure to aromatic hydrocarbons is essential to protect human health. The effects of aromatic hydrocarbons on human health are mainly derived from three aspects: different routes of exposure, the duration and relative toxicity of aromatic hydrocarbons, and the concentration of aromatic hydrocarbons which should be below the biological exposure limit. Therefore, this review discusses the primary exposure routes, toxic effects on humans, and key populations, in particular. This review briefly summarizes the different biomarker indicators of main aromatic hydrocarbons in urine, since most aromatic hydrocarbon metabolites are excreted via urine, which is more feasible, convenient, and non-invasive. In this review, the pretreatment and analytical techniques are compiled systematically for the qualitative and quantitative assessments of aromatic hydrocarbons metabolites such as gas chromatography and high-performance liquid chromatography with multiple detectors. This review aims to identify and monitor the co-exposure of aromatic hydrocarbons that provides a basis for the formulation of corresponding health risk control measures and guide the adjustment of the exposure dose of pollutants to the population.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Zhuoya Li
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Tianai Zhang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Jing Zhu
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Xuan Wang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Manqing Nie
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Kouji Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jing Zhang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China.
| | - Xiaoli Zou
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Hong DH, Jung J, Jo JH, Kim DH, Ryu JY. Occupational exposure to polycyclic aromatic hydrocarbons in Korean adults: evaluation of urinary 1-hydroxypyrene, 2-naphthol, 1-hydroxyphenanthrene, and 2-hydroxyfluorene using Second Korean National Environmental Health Survey data. Ann Occup Environ Med 2023; 35:e6. [PMID: 37063599 PMCID: PMC10089814 DOI: 10.35371/aoem.2023.35.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Background Polycyclic aromatic hydrocarbons (PAHs) are occupational and environmental pollutants generated by the incomplete combustion of organic matter. Exposure to PAHs can occur in various occupations. In this study, we compared PAH exposure levels among occupations based on 4 urinary PAH metabolites in a Korean adult population. Methods The evaluation of occupational exposure to PAHs was conducted using Second Korean National Environmental Health Survey data. The occupational groups were classified based on skill types. Four urinary PAH metabolites were used to evaluate PAH exposure: 1-hydroxypyrene (1-OHP), 2-naphthol (2-NAP), 1-hydroxyphenanthrene (1-OHPHE), and 2-hydroxyfluorene (2-OHFLU). The fraction exceeding the third quartile of urinary concentration for each PAH metabolite was assessed for each occupational group. Adjusted odds ratios (ORs) for exceeding the third quartile of urinary PAH metabolite concentration were calculated for each occupational group compared to the "business, administrative, clerical, financial, and insurance" group using multiple logistic regression analyses. Results The "guard and security" (OR: 2.949; 95% confidence interval [CI]: 1.300-6.691), "driving and transportation" (OR: 2.487; 95% CI: 1.418-4.364), "construction and mining" (OR: 2.683; 95% CI: 1.547-4.655), and "agriculture, forestry, and fisheries" (OR: 1.973; 95% CI: 1.220-3.191) groups had significantly higher ORs for 1-OHP compared to the reference group. No group showed significantly higher ORs than the reference group for 2-NAP. The groups with significantly higher ORs for 1-OHPHE than the reference group were "cooking and food service" (OR: 2.073; 95% CI: 1.208-3.556), "driving and transportation" (OR: 1.724; 95% CI: 1.059-2.808), and "printing, wood, and craft manufacturing" (OR: 2.255; 95% CI: 1.022-4.974). The OR for 2-OHFLU was significantly higher in the "printing, wood, and craft manufacturing" group (OR: 3.109; 95% CI: 1.335-7.241) than in the reference group. Conclusions The types and levels of PAH exposure differed among occupational groups in a Korean adult population.
Collapse
Affiliation(s)
- Dong Hyun Hong
- Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Jongwon Jung
- Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Jeong Hun Jo
- Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Dae Hwan Kim
- Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Ji Young Ryu
- Department of Occupational and Environmental Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| |
Collapse
|
11
|
Li X, Ma M, Zhao B, Li N, Fang L, Wang D, Luan T. Chlorinated Polycyclic Aromatic Hydrocarbons Induce Immunosuppression in THP-1 Macrophages Characterized by Disrupted Amino Acid Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16012-16023. [PMID: 36282008 DOI: 10.1021/acs.est.2c06471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Frequent chlorinated polycyclic aromatic hydrocarbon (Cl-PAH) occurrence in environmental samples and emerging detection in human serum have warned of their underestimated risks. Studies showed that some Cl-PAHs exhibit dioxin-like properties, implying immunotoxic potential but lacking direct evidence and specific mechanisms. Here, we integrated a high-content screening (HCS) system and high-resolution mass spectrometry to investigate the immune dysfunction and metabolic disruption induced by Cl-PAHs and their parent PAHs (PPAHs) in THP-1 macrophages. Both 9-chloroanthracene and 2,7-dichlorofluorene exerted clear immunosuppression on THP-1 mφs, while their PPAHs exhibited different immune disturbances. Interestingly, Cl-PAH/PPAHs induced complex alterations in the multicytokine/chemokine network, including biphasic alterations with initial inhibition and later enhancement. Furthermore, the protein-protein interaction results revealed that inflammatory cytokines are the core of this complicated network regulation. Connecting immune phenotypes and metabolomics, amino acid metabolism reprogramming was identified as a potential cause of Cl-PAH/PAH-induced immunotoxicity. Phytosphingosine and l-kynurenine were proposed as candidate immunosuppression biomarkers upon Cl-PAH exposure. This article provides direct immunotoxicity evidence of Cl-PAHs without activating AhR for the first time and discusses the contribution of metabolites to Cl-PAH/PPAH-induced immune responses in macrophages, highlighting the potential of developing new methods based on immunometabolism mechanisms for toxic risk evaluation of environmental chemicals.
Collapse
Affiliation(s)
- Xinyan Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang515200, China
| | - Mei Ma
- China Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Bilin Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
| | - Na Li
- China Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Ling Fang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou510275, China
| | - Donghong Wang
- China Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang515200, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, China
| |
Collapse
|
12
|
Li W, Wu S. Challenges of halogenated polycyclic aromatic hydrocarbons in foods: Occurrence, risk, and formation. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Zhao C, Li A, Zhang G, Pan Y, Meng L, Yang R, Li Y, Zhang Q, Jiang G. Parent and Halogenated Polycyclic Aromatic Hydrocarbons in the Serum of Coal-Fired Power Plant Workers: Levels, Sex Differences, Accumulation Trends, and Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12431-12439. [PMID: 36001868 DOI: 10.1021/acs.est.2c03099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Workers in coal-fired power plants are at a high risk of exposure to polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (HPAHs), yet no studies have investigated such exposure of HPAHs. In this study, 12 PAHs and 8 chlorinated PAHs, but no brominated PAHs, were detected in >80% of serum samples from workers of a coal-fired power plant in eastern China. Serum HPAH concentrations were higher in plant workers (16-273 ng/g lipid) than in people without occupational exposure (12-51 ng/g lipid), and serum PAH and HPAH concentrations both in male and female workers were positively correlated with the occupational exposure duration, with an estimated doubling time of 11-17 years. Correlations were found between concentrations of ∑8HPAHs and ∑12PAHs but not between 7-chlorobenz[a]anthracene (7-ClBaA) and 1-chloropyrene (1-ClPyr) and their respective parent PAHs. In males, total concentrations of PAHs and HPAHs were positively correlated with pulmonary hypofunction and hypertension but not with abnormal electrocardiogram. The benzo[a]pyrene equivalents ratio of ∑8HPAHs/∑12PAHs was 0.3 ± 0.1. Among the HPAHs in the serum, 9-chlorophenanthrene, 7-ClBaA, and 1-ClPyr showed high health risks. This study is the first report on HPAH exposure in coal-fired power plant workers and provides new evidence on the health risks of PAHs and HPAHs in humans.
Collapse
Affiliation(s)
- Chuxuan Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lan Zhou, Gansu 730070, China
| | - Yiyao Pan
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province 250014, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Zhao L, Zhou M, Zhao Y, Yang J, Pu Q, Yang H, Wu Y, Lyu C, Li Y. Potential Toxicity Risk Assessment and Priority Control Strategy for PAHs Metabolism and Transformation Behaviors in the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10972. [PMID: 36078713 PMCID: PMC9517862 DOI: 10.3390/ijerph191710972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In this study, 16 PAHs were selected as the priority control pollutants to summarize their environmental metabolism and transformation processes, including photolysis, plant degradation, bacterial degradation, fungal degradation, microalgae degradation, and human metabolic transformation. Meanwhile, a total of 473 PAHs by-products generated during their transformation and degradation in different environmental media were considered. Then, a comprehensive system was established for evaluating the PAHs by-products' neurotoxicity, immunotoxicity, phytotoxicity, developmental toxicity, genotoxicity, carcinogenicity, and endocrine-disrupting effect through molecular docking, molecular dynamics simulation, 3D-QSAR model, TOPKAT method, and VEGA platform. Finally, the potential environmental risk (phytotoxicity) and human health risks (neurotoxicity, immunotoxicity, genotoxicity, carcinogenicity, developmental toxicity, and endocrine-disrupting toxicity) during PAHs metabolism and transformation were comprehensively evaluated. Among the 473 PAH's metabolized and transformed products, all PAHs by-products excluding ACY, CHR, and DahA had higher neurotoxicity, 152 PAHs by-products had higher immunotoxicity, and 222 PAHs by-products had higher phytotoxicity than their precursors during biological metabolism and environmental transformation. Based on the TOPKAT model, 152 PAH by-products possessed potential developmental toxicity, and 138 PAH by-products had higher genotoxicity than their precursors. VEGA predicted that 247 kinds of PAH derivatives had carcinogenic activity, and only the natural transformation products of ACY did not have carcinogenicity. In addition to ACY, 15 PAHs produced 123 endocrine-disrupting substances during metabolism and transformation. Finally, the potential environmental and human health risks of PAHs metabolism and transformation products were evaluated using metabolic and transformation pathway probability and degree of toxic risk as indicators. Accordingly, the priority control strategy for PAHs was constructed based on the risk entropy method by screening the priority control pathways. This paper assesses the potential human health and environmental risks of PAHs in different environmental media with the help of models and toxicological modules for the toxicity prediction of PAHs by-products, and thus designs a risk priority control evaluation system for PAHs.
Collapse
Affiliation(s)
- Lei Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Mengying Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Jiawen Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yang Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Cong Lyu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
15
|
Jing JJ, Zhang LE, Lu WM, Peng Y, Wang L, Liu SH, Wang MJ, Ou SF, Yang J, Zou YF. Household cooking oil type and risk of oral micronucleus frequency in Chinese nonsmokers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119520. [PMID: 35623571 DOI: 10.1016/j.envpol.2022.119520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Household animal fat has been linked to increased incidence of cancers compared with vegetable fat. However, few epidemiological studies have associated these two cooking oil types with precancerous genotoxic effects, such as occurrence of micronuclei (MN). This study aimed to explore the association between oral MN frequency and household cooking oil type and whether the association can be attributed to polycyclic aromatic hydrocarbons (PAHs). We collected information about individual cooking oil use, measured genotoxic effects by MN tests and urinary PAHs metabolites (OHPAHs) in 245 nonsmokers. The associations between household cooking oil type and MN frequency and OHPAHs were analyzed using generalized linear models (GLMs) and logistic regression models, evaluating odds ratios and coefficient (95% confidence intervals) (ORs, 95% Cls; β, 95% Cls). The odds of animal fat consumers, rather than vegetable fat consumers, was positively associated with higher MN frequency (OR = 1.94, P < 0.05). The associations were discovered in participants only using kitchen ventilation (OR = 2.04, P < 0.05). Animal fat consumers had higher total OHPAHs than vegetable fat consumers (1.58 ± 0.22 mg/mol, Cr vs 1.20 ± 0.12 mg/mol, Cr; P = 0.028). Significant correlations were observed between total OHPAHs quartiles and increased MN frequency (β = 0.38, P-trend = 0.026). After stratifying by household cooking oil type, sensitivity analyses showed that the positive association between total OHPAHs quartiles and increased MN frequency was only observed in animal fat consumers (β = 0.61, P-trend = 0.030). In conclusion, usage of household animal fat was associated with an increased odds of oral MN frequency in Chinese nonsmokers and the odds correlated with increased PAHs exposure. This finding supplemented evidence associating cooking oil type with genotoxic effects and explained its association with PAHs exposure.
Collapse
Affiliation(s)
- Jia-Jun Jing
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Li-E Zhang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China; Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Wen-Min Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yang Peng
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China; Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Liang Wang
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, 76798, USA
| | - Shao-Hui Liu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Ming-Jun Wang
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Song-Feng Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jie Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yun-Feng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
16
|
Navruz-Varli S, Bilici S, Ari A, Ertürk-Ari P, Ilhan MN, O Gaga E. Organic pollutant exposure and health effects of cooking emissions on kitchen staff in food services. INDOOR AIR 2022; 32:e13093. [PMID: 36040287 DOI: 10.1111/ina.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/01/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
This study was conducted to determine the exposure and health risk to cooking fumes of a total of 88 volunteer kitchen staff aged between 18 and 65 years working in five different kitchens in Ankara. Gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs), and volatile organic compound (VOCs) concentrations were evaluated in the indoor air of 5 kitchens. Serum malondialdehyde (MDA) and superoxide dismutase (SOD) levels were analyzed to determine the oxidative damage as a result of the exposure to cooking fumes among the cooks and waiters. Significant positive relationships were found between serum MDA levels of the hot kitchen workers and indoor chrysene (Chr), indeno(1,2,3-c,d)pyrene (Ind), and total VOC levels. Although the carcinogenic risks estimated for the exposed population were between the acceptable/tolerable levels, the hazard quotient (HQ) estimated for the exposure to indoor benzene exceeded the safe level. The results of the study revealed that exposure to organic pollutants in indoor air may be a risk factor for the development of oxidative stress, especially in hot kitchen workers. The importance of efficient ventilation in the kitchen has been pointed out to reduce health risks caused by cooking fumes.
Collapse
Affiliation(s)
| | - Saniye Bilici
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkiye
| | - Akif Ari
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkiye
| | - Pelin Ertürk-Ari
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkiye
| | | | - Eftade O Gaga
- Department of Environmental Engineering, Eskişehir Technical University, Eskisehir, Turkiye
| |
Collapse
|
17
|
Li W, Wu S. Halogenated polycyclic aromatic hydrocarbons and their parent compounds in ready-to-eat seafood rich in salt: Method validation, profiles, correlation, and exposure risks. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Shamsedini N, Dehghani M, Samaei M, Azhdarpoor A, Hoseini M, Fararouei M, Bahrany S, Roosta S. Health risk assessment of polycyclic aromatic hydrocarbons in individuals living near restaurants: a cross-sectional study in Shiraz, Iran. Sci Rep 2022; 12:8254. [PMID: 35585178 PMCID: PMC9117185 DOI: 10.1038/s41598-022-12040-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent toxic substances that have ubiquitous presence in water, air, soil, and sediment environments, posing serious environmental risks. The present study aimed to investigate the concentrations of urinary PAHs and their health effects in individuals living near restaurants via a health risk assessment analysis. This cross-sectional study was performed on 57 people living near restaurants and 30 individuals as the control group. Five urinary metabolites of PAHs were monitored. In order to evaluate the effects of the urinary metabolites of PAHs on Malondialdehyde (MDA) concentration, Total Anti-oxidation Capacity (TAC) in urine samples, and C-Reactive Protein (CRP) in serum samples, regression model was used by considering the effects of the possible confounding factors. Non-carcinogenic health risk was calculated, as well. The median concentration of urinary PAHs was 1196.70 and 627.54 ng/g creatinine in the people living near restaurants and the control group, respectively. Among the metabolites, the lowest and highest mean concentrations were related to 9-OHPhe and 1-OHP, respectively in the two study groups. Moreover, PAHs were significantly associated with MDA level and TAC (p < 0.05). Hazard Quotient (HQ) and Hazard Index (HI) were less than 1. Long-term studies are required to determine the actual health effects by identifying the sources of PAHs emission and to find ways to decrease the production of these compounds.
Collapse
Affiliation(s)
- Narges Shamsedini
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Fars Water and Wastewater Company, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammadreza Samaei
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aboolfazl Azhdarpoor
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Bahrany
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Roosta
- Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Zhao C, Li C, Wang C, Li Y, Yang R, Zhang Q, Jiang G. Ultrasensitive determination of 39 parent and emerging halogenated polycyclic aromatic hydrocarbons in human serum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1430-1438. [PMID: 35319554 DOI: 10.1039/d2ay00029f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Halogenated polycyclic aromatic hydrocarbons (HPAHs) have attracted extensive attention because of their high toxicity and bioaccumulation. However, there has been no report on the content of HPAHs in human tissues and the corresponding analytical method. In this study, a method for the simultaneous determination of 16 polycyclic aromatic hydrocarbons (PAHs) and 23 HPAHs in human serum was developed and validated. Simple and stable removal of interfering substances in complex serum and the detection of ultra-trace HPAHs are the key difficulties. After 0.5 mL serum was treated with formic acid and 10% isopropanol, samples were prepared by solid phase extraction (SPE) and analyzed by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). The recoveries of the method were 65-103%, with low detection limits of 0.001-0.019 ng mL-1. For HPAHs, the precision was in the range of 0.2-10% according to relative standard deviation (RSD). Subsequently, the developed method was validated for serum samples obtained in hospitals, and 8 PAHs and 12 HPAHs were detected. The concentration of ∑HPAHs was 23 ± 12 ng g-1 lipid in females and 21 ± 10 ng g-1 lipid in males, in which phenanthrene and anthracene halogenated derivatives were the main components. The level of HPAHs was correlated with PAHs, which was 23-119 times higher than that of HPAHs. The detected HPAHs contain highly toxic and persistent components, representing an ongoing human health risk, which should receive more attention.
Collapse
Affiliation(s)
- Chuxuan Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengxin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Sei K, Wang Q, Tokumura M, Hossain A, Raknuzzaman M, Miyake Y, Amagai T. Occurrence, potential source, and cancer risk of PM 2.5-bound polycyclic aromatic hydrocarbons and their halogenated derivatives in Shizuoka, Japan, and Dhaka, Bangladesh. ENVIRONMENTAL RESEARCH 2021; 196:110909. [PMID: 33639145 DOI: 10.1016/j.envres.2021.110909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Because of their unintentional formation and low vapor pressure, polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (XPAHs) in the atmosphere are distributed primarily to aerosolized particles with an aerodynamic diameter less than 2.5 μm (PM2.5). However, no information is available regarding the occurrence of PM2.5-bound PAHs and XPAHs in Bangladesh, one of the most highly PM2.5-polluted regions worldwide. In this study, we investigated the occurrence of PM2.5-bound PAHs and XPAHs in the atmospheres of Dhaka in Bangladesh and Shizuoka in Japan (as a reference) and estimated their incremental lifetime cancer risks (ILCRs). In addition, we statistically estimated the potential sources of PM2.5-bound PAHs and XPAHs by using principal component analysis and positive matrix factorization. The median concentration of total PM2.5-bound PAHs and XPAHs in Bangladesh was 24.2 times that in Japan. The estimated potential sources of PAHs clearly differed between Japan and Bangladesh, whereas those of XPAHs were largely (>80%) unknown in both countries. The median ILCR in Bangladesh was 2.81 × 10-3, which greatly exceeded the upper limit of acceptable risk (10-4). These results indicate that comprehensive monitoring and control of atmospheric PM2.5-bound PAHs and XPAHs are needed urgently, especially in highly polluted countries.
Collapse
Affiliation(s)
- Kento Sei
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Qi Wang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Masahiro Tokumura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Anwar Hossain
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Raknuzzaman
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Yuichi Miyake
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Takashi Amagai
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|