1
|
Wang S, Cui H, Lin Y, Zhang S, Li Y, Yan M, Wang Q, Zhou C, Zhang H. Glandular trichome heads confer cadmium tolerance in Nicotiana tabacum L. via the co-regulation of JA and ABA signaling. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138034. [PMID: 40157193 DOI: 10.1016/j.jhazmat.2025.138034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/25/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Cadmium (Cd) is a highly toxic heavy metal (HV) that poses significant threats to plant growth and development. Plant trichomes serve as critical sequestration organs for HVs; however, the different roles of glandular trichomes (GTs) and non-glandular trichomes (NGTs) in the process of detoxification remain elusive. In this study, two interacting proteins (NtHD9 and NtJAZ10) with opposite effects on glandular head formation in GTs were individually targeted for knockout in Nicotiana tabacum cv. K326: NtJAZ10 mutants (LK326) had dominant long-stalk glandular trichomes (LGTs), whereas NtHD9 mutants (NK326) had dominant NGTs. Phytohormone content measurements and subsequent hormone supplementation assays in LK326 and NK326 suggested that the NtJAZ10-NtHD9 module regulated LGT head formation via jasmonate signaling. Both LGTs and NGTs were Cd sequestration sites, but showed different Cd detoxification mechanisms; NGTs compartmentalized Cd in the vacuole, whereas LGTs promoted the cytosol-to-cell wall translocation of Cd, facilitating Cd excretion. LK326 further exhibited strong Cd stress tolerance, which was confirmed by elevated abscisic acid (ABA) levels, strengthened antioxidant systems, and heightened photosynthetic abilities. To understand the molecular mechanisms underlying Cd detoxification in trichomes, LK326 and NK326 trichomes were used for comparative RNA sequencing analysis, which revealed 18 genes that may be involved in Cd absorption and transport. Our findings suggest that JAZ10 is an ideal candidate gene for enhancing Cd stress tolerance by promoting the development of LGT glandular heads and increasing ABA levels in plants. These findings provide novel insights into improving Cd tolerance in plants and exploring the mechanism of trichome-mediated Cddetoxification.
Collapse
Affiliation(s)
- Shuai Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Cui
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Lin
- Fujian Province Nanping Branch Company, China National Tobacco Corporation, Nanping 353000, China
| | - Shiqiang Zhang
- Jilin Province Tobacco Industry Co. Ltd., China National Tobacco Corporation, Changchun 130000, China
| | - Yue Li
- Jilin Province Tobacco Industry Co. Ltd., China National Tobacco Corporation, Changchun 130000, China
| | - Meiqi Yan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Qi Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyi Zhou
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Song LY, Li J, Zhang LD, Guo ZY, Xu CQ, Jiang LW, Liu JY, Wang JC, Li QH, Tang HC, Zheng HL. AmTPS6 promotes trehalose biosynthesis to enhance the Cd tolerance in mangrove Avicennia marina. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135926. [PMID: 39307018 DOI: 10.1016/j.jhazmat.2024.135926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Cadmium (Cd) pollution poses a significant ecological risk to mangrove ecosystems. Trehalose has excellent potential to mitigate the adverse effects of heavy metals. Unfortunately, the mechanisms related to trehalose-mediated heavy metal tolerance in plants remain elusive. In the present study, we firstly found that Cd induced the accumulation of trehalose and the differential expression of trehalose biosynthesis genes in the roots of mangrove plant Avicennia marina. Then, we found that the application of exogenous trehalose could alleviate the negative effects of Cd on A. marina by phenotypic observation. In addition, photosynthetic parameters and cellular ultrastructure analyses demonstrated that exogenous trehalose could improve the photosynthesis and stabilize the chloroplast and nuclear structure of the leaves of A. marina. Besides, exogenous trehalose could inhibit the Cd2+ influx from the root to reduce the Cd2+ content in A. marina. Subsequently, substrate sensitivity assay combined with ion uptake analysis using yeast cells showed that several trehalose biosynthesis genes may have a regulatory function for Cd2+ transport. Finally, we further identified a positive regulatory factor, AmTPS6, which enhances the Cd tolerance in transgenic Arabidopsis thaliana. Taken together, these findings provide new understanding to the mechanism of Cd tolerance in mangrove A. marina at trehalose aspect and a theoretical basis for the conservation of mangroves in coastal wetlands.
Collapse
Affiliation(s)
- Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China; Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030000, China
| | - Zhao-Yu Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Li-Wei Jiang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jin-Yu Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Ji-Cheng Wang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Qing-Hua Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Han-Chen Tang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
3
|
Yang X, Tan AJ, Zheng MM, Feng D, Mao K, Yang GL. Physiological response, microbial diversity characterization, and endophytic bacteria isolation of duckweed under cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166056. [PMID: 37558073 DOI: 10.1016/j.scitotenv.2023.166056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Duckweed is a cadmium (Cd) hyperaccumulator. However, its enrichment characteristics and physiological responses to Cd have not been systematically studied. The physiological responses, enrichment characteristics, diversity of endophytic bacterial communities, and isolation of Cd-resistant endophytes in duckweed (Lemna minor 0014) were studied for different durations and Cd concentrations. The results indicated that peroxidase (POD) and catalase (CAT) activities decreased while superoxide dismutase activity first increased and then decreased with increasing Cd stress duration. POD activities, CAT activities, and O2- increased as Cd concentrations increased. Malondialdehyde content and Cd accumulation in duckweed increased with increasing concentrations and time. This endophytic diversity study identified 488 operational taxonomic units, with the dominant groups being Proteobacteria, Firmicutes, and Actinobacteria. Paenibacillus sp. Y11, a strain tolerant to high concentrations of Cd and capable of significantly promoting duckweed growth, was isolated from the plant. Our study revealed the effects of heavy metals on aquatic plants, providing a theoretical basis for the application of duckweed in water pollution.
Collapse
Affiliation(s)
- Xiao Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ai-Juan Tan
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Meng-Meng Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dan Feng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Kang Mao
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China
| | - Gui-Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China.
| |
Collapse
|
4
|
Zhang S, Zhang Y, Ren S, Lu H, Li J, Liang X, Wang L, Li Y, Wang M, Zhang C. Uptake, translocation and metabolism of acetamiprid and cyromazine by cowpea (Vigna unguiculata L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121839. [PMID: 37201568 DOI: 10.1016/j.envpol.2023.121839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Acetamiprid (ACE) and cyromazine (CYR) are the two pesticides that are used relatively frequently and in large quantities in cowpea growing areas in Hainan. The uptake, translocation and metabolic patterns and subcellular distribution of these two pesticides in cowpea are important factors affecting pesticide residues in cowpea and assessing the dietary safety of cowpea. In this study, we investigated the uptake, translocation, subcellular distribution, and metabolic pathway of ACE and CYR in cowpea under laboratory hydroponic conditions. The distribution trends of both ACE and CYR in cowpea plants were leaves > stems > roots. The distribution of both pesticides in subcellular tissues of cowpea was cell soluble fraction > cell wall > cell organelle, and both transport modes were passive. A multiplicity of metabolic reactions of both pesticides occurred in cowpea, including dealkylation, hydroxylation and methylation. The results of the dietary risk assessment indicate that ACE is safe for use in cowpeas, but CYR poses an acute dietary risk to infants and young children. This study provided a basis for insights into the transport and distribution of ACE and CYR in vegetables and contributes to the assessment of whether pesticide residues in vegetables could pose a potential threat to human health at high concentrations of pesticides in the environment.
Collapse
Affiliation(s)
- Shanying Zhang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Yu Zhang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Saihao Ren
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Hongwei Lu
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China
| | - Jiaomei Li
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China
| | - Xiaoyu Liang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Lifeng Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, PR China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, PR China
| | - Meng Wang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Chenghui Zhang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China.
| |
Collapse
|
5
|
Zheng MM, Feng D, Liu HJ, Yang GL. Subcellular distribution, chemical forms of cadmium and rhizosphere microbial community in the process of cadmium hyperaccumulation in duckweed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160389. [PMID: 36423841 DOI: 10.1016/j.scitotenv.2022.160389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Duckweed is a newly reported Cd hyperaccumulator that grow rapidly; however, little is known about its tolerance and detoxification mechanisms. In this study, we investigated the tissue, subcellular, and chemical form distribution of the Cd in duckweed and studied the influences of Cd on duckweed growth, ultrastructure, and rhizosphere microbial community. The results showed that Cd could negatively affect the growth of duckweed and shorten the root length. More Cd accumulated in the roots than in the leaves, and Cd was transferred from the roots to the leaves with time. During 12-24 h, Cd mainly existed in the cell wall fraction (2.05 %-95.52 %) and the organelle fraction (5.03 %-97.80 %), followed the soluble fraction (0.14 %-16.98 %). Over time, the proportion of Cd in the organelles increased (46.64 %-92.83 %), exceeding that in the cell wall (6.79 %-66.23 %), which indicated that duckweed detoxification mechanism may be related to the retention of cell wall and vacuole. The main chemical form of Cd was the NaCl-extracted state (30.15 %-88.66 %), which was integrated with pectate and protein. With increasing stress concentration and time, the proportion of the HCl-extracted state and HAc-extracted state increased, and they were low-toxic Cd oxalate and Cd phosphate, respectively. Cd damaged the ultrastructure of cells such as chloroplasts and mitochondria and inhibited the diversity of microbial communities in the duckweed rhizosphere; however, the dominant populations that could tolerate heavy metals increased. It was speculated that duckweed distributed Cd in a less toxic chemical form in a less active location, mainly through retention in the root cell wall and sequestration in the leaf vacuoles, and is dynamically adjusted. The rhizosphere microbial communities tolerate heavy metals may also be one of the mechanisms by which duckweed can tolerate Cd. This study revealed the mechanism of duckweed tolerance and detoxification of Cd at the molecular level and provides a theoretical basis for further development of duckweed.
Collapse
Affiliation(s)
- Meng-Meng Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center forMountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dan Feng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center forMountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Hui-Jiao Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center forMountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Gui-Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center forMountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China.
| |
Collapse
|
6
|
Tang H, Meng G, Xiang J, Mahmood A, Xiang G, SanaUllah, Liu Y, Huang G. Toxic effects of antimony in plants: Reasons and remediation possibilities-A review and future prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:1011945. [PMID: 36388491 PMCID: PMC9643749 DOI: 10.3389/fpls.2022.1011945] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 09/06/2023]
Abstract
Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and weathering of sulfide ores are the major ways of introducing Sb into our soils and aquatic environments. Crops grown on Sb-contaminated soils are a major reason of Sb entry into humans by eating Sb-contaminated foods. Sb toxicity in plants reduces seed germination and root and shoot growth, and causes substantial reduction in plant growth and final productions. Moreover, Sb also induces chlorosis, causes damage to the photosynthetic apparatus, reduces membrane stability and nutrient uptake, and increases oxidative stress by increasing reactive oxygen species, thereby reducing plant growth and development. The threats induced by Sb toxicity and Sb concentration in soils are increasing day by day, which would be a major risk to crop production and human health. Additionally, the lack of appropriate measures regarding the remediation of Sb-contaminated soils will further intensify the current situation. Therefore, future research must be aimed at devising appropriate measures to mitigate the hazardous impacts of Sb toxicity on plants, humans, and the environment and to prevent the entry of Sb into our ecosystem. We have also described the various strategies to remediate Sb-contaminated soils to prevent its entry into the human food chain. Additionally, we also identified the various research gaps that must be addressed in future research programs. We believe that this review will help readers to develop the appropriate measures to minimize the toxic effects of Sb and its entry into our ecosystem. This will ensure the proper food production on Sb-contaminated soils.
Collapse
Affiliation(s)
- Haiying Tang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Guiyuan Meng
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Junqing Xiang
- Loudi Liancheng Hi-Tech Agricultural Development Co. LTD, Loudi, China
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Guohong Xiang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - SanaUllah
- Agronomic Research Station Karor, Layyah, Pakistan
| | - Ying Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Guoqin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetics Breeding (Jiangxi Agricultural University), Ministry of Education, Nanchang, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
7
|
Zhang D, Zhou H, Shao L, Wang H, Zhang Y, Zhu T, Ma L, Ding Q, Ma L. Root characteristics critical for cadmium tolerance and reduced accumulation in wheat (Triticum aestivum L.). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114365. [PMID: 34953227 DOI: 10.1016/j.jenvman.2021.114365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Root radial transport is important for cadmium (Cd) absorption and root-shoot translocation. However, the relationship between root structural characteristics and radial transport of Cd in wheat is still unclear. Six wheat cultivars with different Cd tolerance and accumulation characteristics were used to investigate the roles of root phenotype, microstructure, and apoplastic and symplastic pathways in Cd uptake and root-shoot transport in pot culture. Longer root length, smaller root diameter, and more numerous root tips were more conducive to Cd absorption, while thicker roots were able to retain more Cd, thus reducing root-shoot transport and improving Cd tolerance of shoots. Cd stress can induce the deposition of apoplastic barriers in wheat roots, and the deposition of the apoplastic barrier increases under greater stress. The formation of apoplastic barriers can reduce Cd absorption and transfer to the shoot, and the presence of passage cells can weaken this effect. The cell wall thickening induced by Cd stress enhanced Cd adsorption capacity in wheat roots, but there was no significant correlation between Cd content and polysaccharide content in the cell wall. The up-regulated expression of TaHMA3 and TaVP1, which encode proteins related to Cd compartmentalization, was associated with increased Cd tolerance in wheat and decreased Cd translocation to aboveground parts. The morphology and anatomy of roots appear to play critical roles in Cd tolerance, uptake, and translocation in wheat. The present study provides useful information for the selection of wheat cultivars with low Cd accumulation.
Collapse
Affiliation(s)
- Dazhong Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Zhou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Leilei Shao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hairong Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanbo Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Ting Zhu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liting Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
8
|
Lei L, Cui X, Li C, Dong M, Huang R, Li Y, Li Y, Li Z, Wu J. The cadmium decontamination and disposal of the harvested cadmium accumulator Amaranthus hypochondriacus L. CHEMOSPHERE 2022; 286:131684. [PMID: 34346323 DOI: 10.1016/j.chemosphere.2021.131684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
The heavy metal accumulated biomass after phytoremediation needs to be decontaminated before disposal. Liquid extraction is commonly used to remove and recycle toxic heavy metals from contaminated biomass. In this study, we examined the cadmium (Cd) removal efficiency using different chemical reagents (hydrochloric acid, nitric acid, sulfuric acid, and ethylenediaminetetraacetic acid disodium) of the post-harvest Amaranthus hypochondriacus L. biomass. The purifications for the extracted liquids and ecological risk assessments for the extracted residues were also investigated. We have found that 77.8% of Cd in stems and 62.1% of Cd in leaves were removed by 0.25 M HCl after 24 h. In addition, K2CO3, KOH, and 4 Å molecular sieve could remove ≥89.0% of Cd in the extracted liquids. Finally, after we returned the extracted residues to the earthworm-incubated soil, the extracted biomass negatively affected the growth (weight loss ≥ 11.0%) and survival (mortality ≥ 33.3%) of Eisenia fetida. It should be noted that earthworms decreased soil available Cd concentrations from 0.14-0.05 mg kg-1 to 0.11-0.04 mg kg-1 and offset the negative effects of the Cd-contaminated biomass on soil microbes. Overall, given the cost of reagents, the Cd removal efficiency, and the ecological risks of the extracted biomass, using 0.25 M HCl for liquid extraction and K2CO3 for purification should be recommended. This work highlights the potential of liquid extraction for immediately and directly removing the Cd from fresh contaminated accumulator biomass and the resource cycling potential of the extracted liquids and biomass after purification.
Collapse
Affiliation(s)
- Long Lei
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Cui
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Li
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an, 710072, China
| | - Meiliang Dong
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxing Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yingwen Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhian Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Jingtao Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
9
|
Rabêlo FHS, Gaziola SA, Rossi ML, Silveira NM, Wójcik M, Bajguz A, Piotrowska-Niczyporuk A, Lavres J, Linhares FS, Azevedo RA, Vangronsveld J, Alleoni LRF. Unraveling the mechanisms controlling Cd accumulation and Cd-tolerance in Brachiaria decumbens and Panicum maximum under summer and winter weather conditions. PHYSIOLOGIA PLANTARUM 2021; 173:20-44. [PMID: 32602985 DOI: 10.1111/ppl.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 05/04/2023]
Abstract
We evaluated the mechanisms that control Cd accumulation and distribution, and the mechanisms that protect the photosynthetic apparatus of Brachiaria decumbens Stapf. cv. Basilisk and Panicum maximum Jacq. cv. Massai from Cd-induced oxidative stress, as well as the effects of simulated summer or winter conditions on these mechanisms. Both grasses were grown in unpolluted and Cd-polluted Oxisol (0.63 and 3.6 mg Cd kg-1 soil, respectively) at summer and winter conditions. Grasses grown in the Cd-polluted Oxisol presented higher Cd concentration in their tissues in the winter conditions, but the shoot biomass production of both grasses was not affected by the experimental conditions. Cadmium was more accumulated in the root apoplast than the root symplast, contributing to increase the diameter and cell layers of the cambial region of both grasses. Roots of B. decumbens were more susceptible to disturbed nutrients uptake and nitrogen metabolism than roots of P. maximum. Both grasses translocated high amounts of Cd to their shoots resulting in oxidative stress. Oxidative stress in the leaves of both grasses was higher in summer than winter, but only in P. maximum superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were increased. However, CO2 assimilation was not affected due to the protection provided by reduced glutathione (GSH) and phytochelatins (PCs) that were more synthesized in shoots than roots. In summary, the root apoplast was not sufficiently effective to prevent Cd translocation from roots to shoot, but GSH and PCs provided good protection for the photosynthetic apparatus of both grasses.
Collapse
Affiliation(s)
- Flávio Henrique Silveira Rabêlo
- College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Monica Lanzoni Rossi
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Małgorzata Wójcik
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Andrzej Bajguz
- Faculty of Biology and Chemistry, University of Bialystok, Białystok, Poland
| | | | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | |
Collapse
|
10
|
Yue Z, Dexin D, Guangyue L, Haitao Y, Kaige Z, Nan H, Hui Z, Zhongran D, Jianhong M, Feng L, Jing S, Yongdong W. Enhanced effects and mechanisms of Syngonium podophyllum-Peperomia tetraphylla co-planting on phytoremediation of low concentration uranium-bearing wastewater. CHEMOSPHERE 2021; 279:130810. [PMID: 34134431 DOI: 10.1016/j.chemosphere.2021.130810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
To improve the remediation efficiency of plants on low concentration uranium-bearing wastewater and clarify its strengthening mechanism, Syngonium podophyllum-Peperomia tetraphylla co-planting system was established, the enhanced effects of plants interaction on uranium removal were investigated, the chemical forms, valence states, and subcellular distribution of uranium in plants were confirmed, and the mechanisms of alleviating uranium stress by plants interaction were revealed. In Syngonium podophyllum-Peperomia tetraphylla co-planting system, the total amount of ethanol-extracted uranium and deionized water-extracted uranium with higher toxicity in their roots were reduced by 10.30% and 7.17%, respectively, which reduced the toxicity of uranium to plants. Plants interaction can inhibit the reduction of U(VI) in the root of Peperomia tetraphylla, which is conducive to the transport of uranium from roots to shoots. In addition, uranium in plants mainly existed in the cell wall (54.44%-66.52%) and the soluble fraction (23.85%-32.89%). These results indicated that Syngonium podophyllum and Peperomia tetraphylla co-planting can enhance their effects of uranium removal by alleviating uranium stress with the cell wall immobilization and vacuole compartmentation, improving biomass of plants, increasing bioaccumulation factor and translocation factor of uranium.
Collapse
Affiliation(s)
- Zhang Yue
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, PR China
| | - Ding Dexin
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, PR China
| | - Li Guangyue
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, PR China
| | - Yi Haitao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, PR China
| | - Zhai Kaige
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, PR China
| | - Hu Nan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, PR China
| | - Zhang Hui
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, PR China
| | - Dai Zhongran
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, PR China
| | - Ma Jianhong
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, PR China
| | - Li Feng
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, PR China
| | - Sun Jing
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, PR China
| | - Wang Yongdong
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Heng Yang, 421001, Hunan, PR China.
| |
Collapse
|
11
|
Yang GL, Zheng MM, Tan AJ, Liu YT, Feng D, Lv SM. Research on the Mechanisms of Plant Enrichment and Detoxification of Cadmium. BIOLOGY 2021; 10:biology10060544. [PMID: 34204395 PMCID: PMC8234526 DOI: 10.3390/biology10060544] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
The heavy metal cadmium (Cd), as one of the major environmentally toxic pollutants, has serious impacts on the growth, development, and physiological functions of plants and animals, leading to deterioration of environmental quality and threats to human health. Research on how plants absorb and transport Cd, as well as its enrichment and detoxification mechanisms, is of great significance to the development of phytoremediation technologies for ecological and environmental management. This article summarises the research progress on the enrichment of heavy metal cadmium in plants in recent years, including the uptake, transport, and accumulation of Cd in plants. The role of plant roots, compartmentalisation, chelation, antioxidation, stress, and osmotic adjustment in the process of plant Cd enrichment are discussed. Finally, problems are proposed to provide a more comprehensive theoretical basis for the further application of phytoremediation technology in the field of heavy metal pollution.
Collapse
Affiliation(s)
- Gui-Li Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Meng-Meng Zheng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Ai-Juan Tan
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Yu-Ting Liu
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Dan Feng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-1376-513-6919
| |
Collapse
|
12
|
Antimony induced structural and ultrastructural changes in Trapa natans. Sci Rep 2021; 11:10695. [PMID: 34021213 PMCID: PMC8140150 DOI: 10.1038/s41598-021-89865-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/15/2020] [Indexed: 02/04/2023] Open
Abstract
Antimony (Sb) is considered as a priority toxic metalloid in the earth crust having no known biological function. The current study was carried out in a hydroponic experiment to study the accumulation of ecotoxic Sb in subcellular level, and to find out the ultrastructural damage caused by Sb in different vegetative parts of Trapa natans. Sb-induced structural and ultrastructural changes of T. natans were investigated using scanning electron microscope (SEM) and transmission electron microscope (TEM). Experimental plants were exposed to different Sb(III) treatments: SbT1 (1.5 μmol/L), SbT2 (40 μmol/L) and SbT3 (60 μmol/L). Calculated bioconcentration factor (BCF) and translocation factor (TF) showed that at higher concentration (SbT2, SbT3), T. natans is a potent phytoexcluder whereas it can translocate a substantial amount of Sb to the aerial parts at lower concentration (SbT1). SEM analysis revealed Sb-mediated structural changes in the size of stomatal aperture, intercellular spaces and vascular bundles of different vegetative tissues of T. natans. TEM results showed subcellular compartmentalization of Sb in vacuole and cell wall as electron dense deposition. This is considered as a part of strategy of T. natans to detoxify the deleterious effects under Sb stress conditions. Fourier transform infrared spectroscopy (FTIR) study of plant biomass revealed possible metabolites of T. natans which can bind Sb.
Collapse
|
13
|
Bora MS, Sarma KP. Anatomical and ultrastructural alterations in Ceratopteris pteridoides under cadmium stress: A mechanism of cadmium tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112285. [PMID: 33957421 DOI: 10.1016/j.ecoenv.2021.112285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 05/08/2023]
Abstract
The present research is an appraisal of anatomical and ultrastructural alterations in aquatic fern, Ceratopteris pteridoides under cadmium (Cd) exposure. Plants were cultured hydroponically for 12 consecutive days in different Cd treatments: 10 µM L-1 (CDT1), 20 µM L-1 (CDT2), 40 µM L-1 (CDT3) and 60 µM L-1 (CDT4). Anatomical and ultrastructural changes of different vegetative tissues of C. pteridoides were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cd stress significantly (P < 0.05) decreased water content percentage (WC%), relative growth rate (RGR) and root activity in C. pteridoides, especially at highest Cd concentration (treatment CDT4). Significant (P < 0.05) drop of stress tolerance indices (STI) was noticed in C. pteridoides under treatment CDT4. Anatomical study of the Cd-treated C. pteridoides showed stomatal closure of leaves, reduction of diameter in xylem tracheids of stem and root, and decrease of intercellular spaces. Furthermore, ultrastructural alterations of leaf, stem, and root cells were evident with a damaged membrane system of chloroplast and mitochondria, disorganization of chloroplastic components, accumulation of large starch grains and plastoglobules, and formation of multivesicular bodies. The deposition of electron-dense material in the cell wall of root cells can be regarded as an important tolerance mechanism of C. pteridoides under Cd stress. Fourier transform infrared (FTIR) spectroscopy analysis of Cd-treated C. pteridoides biomass illustrated Cd-binding interaction with O-H, N-H, C-H, C≡C, C˭O, P˭O, -C-OH and CS functional groups of different metabolites.
Collapse
Affiliation(s)
- Monashree Sarma Bora
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, India
| | - Kali Prasad Sarma
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, India.
| |
Collapse
|
14
|
Exogenous Glutathione Alleviation of Cd Toxicity in Italian Ryegrass ( Lolium multiflorum) by Modulation of the Cd Absorption, Subcellular Distribution, and Chemical Form. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218143. [PMID: 33158133 PMCID: PMC7663564 DOI: 10.3390/ijerph17218143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
Subcellular fractions and the chemical forms of cadmium (Cd) reflect its level of toxicity to plants; however, these effects of exogenous glutathione (GSH) are poorly understood. We exposed two Italian ryegrass (Lolium multiflorum) cultivars (IdyII and Harukaze) to 50 µM Cd or 200 µM GSH to investigate the effect of GSH on the Cd uptake, subcellular compartments, and chemical forms. Cd significantly inhibited the plant growth, while GSH supplementation decreased this inhibition. The application of GSH significantly improved the Cd concentration in the roots but reduced that in the shoots and decreased the Cd translocation from root to shoot. The Cd concentration of the root in the cell wall was increased while the concentration in the soluble fraction was decreased when supplied with GSH. The inorganic form (80% ethanol for Cd extraction) in the roots was significantly reduced when treated with GSH. The Cd form extracted by 2% acetic acid (HAC) with low toxicity and immobility were greatly increased. In leaves, the application GSH decreased in any form of Cd form extracted. In conclusion, exogenous GSH decreased the translocation of Cd and alleviated Italian ryegrass Cd toxicity by accumulating more Cd in the root cell wall and immobilizing more Cd in lower toxicity fractions.
Collapse
|