1
|
Comadran-Casas C, Unluer C, Bass AM, Macdonald J, Khaksar Najafi E, Spruzeniece L, Gauchotte-Lindsay C. Bioremediation of multiple heavy metals through biostimulation of microbial-induced calcite precipitation at varying calcium-to-urea concentrations. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137691. [PMID: 40088671 DOI: 10.1016/j.jhazmat.2025.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Studies on heavy metal bioremediation through microbial-induced calcite precipitation (MICP) typically involve bioaugmentation approaches that use low calcium-to-urea ratios and target single contaminants. We present an investigation on the efficiency of soils' autochthonous ureolytic bacteria to simultaneously remediate multiple heavy metals and sequester carbon through urea hydrolysis and MICP on an urban soil containing excess Pb, Zn, Mn, Sr, Ba and Al. Soils were treated at a fixed urea concentration of 333 mM and increasing calcium content of 0, 50 and 333 mM to provide a range of carbonation potential. Urea hydrolysis (Ca2+ = 0 mM) did not produce quantifiable soil carbonation and mobilised Mn into the exchangeable fraction. Ca2+ at 50 mM delayed soils' autochthonous ureolytic activity and produced limited carbon and heavy metal mineralisation (CaCO3 = 0-0.7 %). 333 mM of Ca2+ inhibited urea hydrolysis however, if applied following urea hydrolysis, both carbon (CaCO3 = 4-7 %) and heavy metal (Pb, Zn, Mn, Sr and Ba) mineralisation were maximised. Urea hydrolysis and MICP were most successful in removing Pb and Zn from the exchangeable fraction (>85 %). However, the higher pH induced by urea hydrolysis at Ca2+ = 0-50 mM (∼9) compared to 333 mM (∼8.5) favoured partition of Pb into the oxyhydroxide fraction. Instead, partition of Zn, Mn, Sr and Ba into the soil carbonate fraction increased with increasing calcium, whilst there was no evidence of Al carbonation. The results of this study evidence the feasibility of biostimulation approaches to remediate multiple contaminants simultaneously through MICP, provide insights into multiple element's behaviour during urea hydrolysis and MICP and demonstrate carbon and element mineralisation are maximised at equimolar calcium-to-urea ratio of 333 mM.
Collapse
Affiliation(s)
- Carla Comadran-Casas
- Division of Infrastructure and Environment, James Watt School of Engineering, the University of Glasgow, United Kingdom.
| | - Cise Unluer
- Department of Civil Engineering and Management, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Adrian M Bass
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| | - John Macdonald
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elmira Khaksar Najafi
- Division of Infrastructure and Environment, James Watt School of Engineering, the University of Glasgow, United Kingdom
| | - Liene Spruzeniece
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Caroline Gauchotte-Lindsay
- Division of Infrastructure and Environment, James Watt School of Engineering, the University of Glasgow, United Kingdom.
| |
Collapse
|
2
|
Abbas HMM, Rais U, Altaf MM, Rasul F, Shah A, Tahir A, Nafees-Ur-Rehman M, Shaukat M, Sultan H, Zou R, Khan MN, Nie L. Microbial-inoculated biochar for remediation of salt and heavy metal contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176104. [PMID: 39250966 DOI: 10.1016/j.scitotenv.2024.176104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Numerous harmful contaminants (i.e. salt and heavy metals) have become major threats to soil and are being introduced into the soil through human and geological activities. These contaminants are raising global concerns about their toxic effects on food safety, human health and reclamation mechanisms. Microbial-inoculated biochar can improve soil environment by immobilizing and transforming contaminants in soil and altering the physico-chemical and biochemical properties of soil. In this review we will discuss the positive effects of microbial-modified biochar on physicochemical properties of contaminated soil. It can decrease the pH, EC while increase CEC, OM and other biochemical properties of soil. Additionally, we discuss the efficacy of biochar as a microbial carrier for salt and heavy metals-contaminated soil and plant growth in those soils. This review provides a better understanding of the potential of microbial biochar can be used for bioremediation of contaminated soil, which will help the researcher to modify biochar in a targeted way for specific applications.
Collapse
Affiliation(s)
- Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ummah Rais
- Department of Zoology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Mohsin Altaf
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, 38040 Faisalabad, Punjab, Pakistan
| | - Asad Shah
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ashar Tahir
- Rubber Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571700, Hainan, China
| | | | - Muhammad Shaukat
- Department of Agricultural Sciences, Faculty of Sciences, Allama Iqbal Open University Islamabad, 44310 Islamabad, Pakistan
| | - Haider Sultan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ruilong Zou
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
| | - Lixiao Nie
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
| |
Collapse
|
3
|
Ji G, Huan C, Zeng Y, Lyu Q, Du Y, Liu Y, Xu L, He Y, Tian X, Yan Z. Microbiologically induced calcite precipitation (MICP) in situ remediated heavy metal contamination in sludge nutrient soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134600. [PMID: 38759409 DOI: 10.1016/j.jhazmat.2024.134600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Microbiologically induced calcite precipitation (MICP), as a newly developing bioremediation technology, could redeem heavy metal contamination in diverse scenarios. In this study, MICP bacterium Sporosarcina ureilytica ML-2 was employed to suppress the pollution of Pb, Cd and Zn in municipal sludge nutrient soil. After MICP remediation, the exchangeable Cd and Zn in sludge nutrient soil were correspondingly reduced by 31.02 % and 6.09 %, while the carbonate-bound Pb, Cd and Zn as well as the residual fractions were increased by 16.12 %, 6.63 %, 13.09 % and 6.10 %, 45.70 %, 3.86 %, respectively. In addition, the extractable Pb, Cd and Zn either by diethylenetriaminepentaacetic acid (DTPA) or toxicity characteristic leaching procedure (TCLP) in sludge nutrient soil were significantly reduced. These results demonstrated that the bio-calcite generated via MICP helped to immobilize heavy metals. Furthermore, MICP treatment improved the abundance of functional microorganisms related to urea cycle, while reduced the overall abundance of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs). This work confirmed the feasibility of MICP in remediation of heavy metal in sludge nutrient soil, which expanded the application field of MICP and provided a promising way for heavy metal pollution management.
Collapse
Affiliation(s)
- Gaosheng Ji
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Chenchen Huan
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shanxi Province 710064, China
| | - Yong Zeng
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qingyang Lyu
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yaling Du
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lishan Xu
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yue He
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; College of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Xueping Tian
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| | - Zhiying Yan
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| |
Collapse
|
4
|
Huang Y, Liu T, Liu J, Xiao X, Wan Y, An H, Luo X, Luo S. Exceptional anti-toxic growth of water spinach in arsenic and cadmium co-contaminated soil remediated using biochar loaded with Bacillus aryabhattai. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133966. [PMID: 38452681 DOI: 10.1016/j.jhazmat.2024.133966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Functionalized biochars are crucial for simultaneous soil remediation and safe agricultural production. However, a comprehensive understanding of the remediation mechanism and crop safety is imperative. In this work, the all-in-one biochars loaded with a Bacillus aryabhattai (B10) were developed via physisorption (BBC) and sodium alginate embedding (EBC) for simultaneous toxic As and Cd stabilization in soil. The bacteria-loaded biochar composites significantly decreased exchangeable As and Cd fractions in co-contaminated soil, with enhanced residual fractions. Heavy metal bioavailability analysis showed a maximum CaCl2-As concentration decline of 63.51% and a CaCl2-Cd decline of 50.96%. At a 3% dosage of composite, rhizosphere soil showed improved organic matter, cation exchange capacity, and enzyme activity. The aboveground portion of water spinach grown in pots was edible, with final As and Cd contents (0.347 and 0.075 mg·kg⁻¹, respectively) meeting food safety standards. Microbial analysis revealed the composite's influence on the rhizosphere microbial community, favoring beneficial bacteria and reducing plant pathogenic fungi. Additionally, it increased functional microorganisms with heavy metal-resistant genes, limiting metal migration in plants and favoring its growth. Our research highlights an effective strategy for simultaneous As and Cd immobilization in soil and inhibition of heavy metal accumulation in vegetables.
Collapse
Affiliation(s)
- Yutian Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Jie Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yuke Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huanhuan An
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China; Key laboratory of Jiangxi province for agricultural environmental pollution prevention and control in red soil hilly region, School of life sciences, Jinggangshan University, Ji'an 343009, PR China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
5
|
Zhang L, Wang W, Yue C, Si Y. Biogenic calcium improved Cd 2+ and Pb 2+ immobilization in soil using the ureolytic bacteria Bacillus pasteurii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171060. [PMID: 38378057 DOI: 10.1016/j.scitotenv.2024.171060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Bioremediation based on microbial-induced carbonate precipitation (MICP) was conducted in cadmium and lead contaminated soil to investigate the effects of MICP on Cd and Pb in soil. In this study, soil indigenous nitrogen was shown to induce MICP to stabilize heavy metals without inputting exogenous urea. The results showed that applying Bacillus pasteurii coupled with CaCl2 reduced Cd and Pb bioavailability, which could be clarified through the proportion of exchangeable Cd and Pb in soil decreasing by 23.65 % and 12.76 %, respectively. Moreover, B. pasteurii was combined separately with hydroxyapatite (HAP), eggshells (ES), and oyster shells (OS) to investigate their effects on soil heavy metals' chemical fractions, toxicity characteristic leaching procedure (TCLP)-extractable Cd and Pb as well as enzymatic activity. Results showed that applying B. pasteurii in soil significantly decreased the heavy metals in the exchangeable fraction and increased them in the carbonate phase fraction. When B. pasteurii was combined with ES and OS, the content of carbonate-bound Cd increased by 114.72 % and 118.81 %, respectively, significantly higher than when B. pasteurii was combined with HAP, wherein the fraction of carbonate-bound Cd increased by 86 %. The combination of B. pasteurii and biogenic calcium effectively reduced the leached contents of Cd and Pb in soil, and the TCLP-extractable Cd and Pb fractions decreased by 43.88 % and 30.66 %, respectively, in the BP + ES group and by 52.60 % and 41.77 %, respectively, in the BP + OS group. This proved that MICP reduced heavy metal bioavailability in the soil. Meanwhile, applying B. pasteurii and calcium materials significantly increased the soil urease enzyme activity. The microstructure and chemical composition of the soil samples were studied, and the results from scanning electron microscope, Fourier transform infra-red spectroscopy, and X-ray diffraction demonstrated the MICP process and identified the formation of CaCO3, Ca0.67Cd0.33CO3, and PbCO3 in heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wenjun Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Caili Yue
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Yang J, Jiang L, Guo Z, Sarkodie EK, Li K, Shi J, Peng Y, Liu H, Liu X. The Cd immobilization mechanisms in paddy soil through ureolysis-based microbial induced carbonate precipitation: Emphasis on the coexisting cations and metatranscriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133174. [PMID: 38086299 DOI: 10.1016/j.jhazmat.2023.133174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Microbial induced carbonate precipitation (MICP) can immobilize metals and reduce their bioavailability. However, little is known about the immobilization mechanism of Cd in the presence of soil cations and the triggered gene expression and metabolic pathways in paddy soil. Thus, microcosmic experiments were conducted to study the fractionation transformation of Cd and metatranscriptome analysis. Results showed that bioavailable Cd decreased from 0.62 to 0.29 mg/kg after 330 d due to the MICP immobilization. This was ascribed to the increase in carbonate bound, Fe-Mn oxides bound, and residual Cd. The underlying immobilization mechanisms could be attributed to the formation of insoluble Cd-containing precipitates, the complexation and lattice substitution with carbonate and Fe, Mn and Al (hydr)oxides, and the adsorption on functional group on extracellular polymers of cell. During the MICP immobilization process, up-regulated differential expression urease genes were significantly enriched in the paddy soil, corresponding to the arginine biosynthesis, purine metabolism and atrazine degradation. The metabolic pathway of bacterial chemotaxis, flagellum assembly, and peptidoglycan biosynthesis and the expression of cadA gene related to Cd excretion enhanced Cd resistance of soil microbiome. Therefore, this study provided new insights into the immobilization mechanisms of Cd in paddy soils through ureolysis-based MICP process.
Collapse
Affiliation(s)
- Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Sun J, He X, LE Y, Al-Tohamy R, Ali SS. Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120081. [PMID: 38237330 DOI: 10.1016/j.jenvman.2024.120081] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 02/04/2024]
Abstract
Protecting the environment from harmful pollutants has become increasingly difficult in recent decades. The presence of heavy metal (HM) pollution poses a serious environmental hazard that requires intricate attention on a worldwide scale. Even at low concentrations, HMs have the potential to induce deleterious health effects in both humans and other living organisms. Therefore, various strategies have been proposed to address this issue, with extremophiles being a promising solution. Bacteria that exhibit resistance to metals are preferred for applications involving metal removal due to their capacity for rapid multiplication and growth. Extremophiles are a special group of microorganisms that are capable of surviving under extreme conditions such as extreme temperatures, pH levels, and high salt concentrations where other organisms cannot. Due to their unique enzymes and adaptive capabilities, extremophiles are well suited as catalysts for environmental biotechnology applications, including the bioremediation of HMs through various strategies. The mechanisms of resistance to HMs by extremophilic bacteria encompass: (i) metal exclusion by permeability barrier; (ii) extracellular metal sequestration by protein/chelator binding; (iii) intracellular sequestration of the metal by protein/chelator binding; (iv) enzymatic detoxification of a metal to a less toxic form; (v) active transport of HMs; (vi) passive tolerance; (vii) reduced metal sensitivity of cellular targets to metal ions; and (viii) morphological change of cells. This review provides comprehensive information on extremophilic bacteria and their potential roles for bioremediation, particularly in environments contaminated with HMs, which pose a threat due to their stability and persistence. Genetic engineering of extremophilic bacteria in stressed environments could help in the bioremediation of contaminated sites. Due to their unique characteristics, these organisms and their enzymes are expected to bridge the gap between biological and chemical industrial processes. However, the structure and biochemical properties of extremophilic bacteria, along with any possible long-term effects of their applications, need to be investigated further.
Collapse
Affiliation(s)
- Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xing He
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yilin LE
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
8
|
Cho SK, Igliński B, Kumar G. Biomass based biochar production approaches and its applications in wastewater treatment, machine learning and microbial sensors. BIORESOURCE TECHNOLOGY 2024; 391:129904. [PMID: 37918492 DOI: 10.1016/j.biortech.2023.129904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Biochar is a stable carbonaceous material derived from various biomass and can be utilized as adsorbents, catalysts and precursors in various environmental applications. This review discusses various feedstock materials and methods of biochar production via traditional as well as modern approaches. Additionally, the biochar characteristics, HTC process, and its modification by employing steam and gas purging, acidic, basic / alkaline and organo-solvent, electro- and magnetic fields have been discussed. The recent biochar applications for real water, wastewater and industrial wastewater for the abstraction of environmental contaminants also reviewed. Moreover, applications in machine learning and microbial sensors were discussed. In the meantime, analyses on commercial and environmental profit, current ecological concerns and the future directions of biochar application have been well presented.
Collapse
Affiliation(s)
- Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Bartłomiej Igliński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
9
|
Wang C, Sun X, Chen Y, Zhang Y, Li M. Comparative metabolomic analysis reveals Ni(II) stress response mechanism of Comamonas testosteroni ZG2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115244. [PMID: 37441950 DOI: 10.1016/j.ecoenv.2023.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The focus on the toxicity of nickel (Ni(II)) in animal and human cells has increased recently. Ni(II) contamination hazards to animals and humans can be reduced by bioremediation methods. However, one of the limitation of bioremediation bacteria in soil remediation is that they cannot survive in moderate and heavy contamination Ni(II)-contaminated environments. Therefore, the Ni(II) response mechanism of Comamonas testosteroni ZG2 which has soil remediation ability in high-concentration Ni(II) environment must be elucidated. The results demonstrated that the ZG2 strain can survive at 350 mg/L concentration of Ni(II), but the growth of ZG2 was completely inhibited under the concentration of 400 mg/L Ni(II) with significant alterations in the membrane morphology, adhesion behavior, and functional groups and serious membrane damage. Furthermore, the metabolic analysis showed that Ni(II) may affect the adhesion behavior and biofilm formation of the ZG2 strain by affecting the abundance of metabolites in amino acid biosynthesis, aminoacyl-tRNA biosynthesis, ABC transporter, and cofactor biosynthesis pathways, and inhibiting its growth. This study provides new evidence clarifying the response mechanism of Ni(II) stress in the ZG2 strain, thus playing a significant role in designing the strategies of bioremediation.
Collapse
Affiliation(s)
- Chunli Wang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China; College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Xiaotong Sun
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Yuanhui Chen
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Yu Zhang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Mingtang Li
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
10
|
Schommer VA, Vanin AP, Nazari MT, Ferrari V, Dettmer A, Colla LM, Piccin JS. Biochar-immobilized Bacillus spp. for heavy metals bioremediation: A review on immobilization techniques, bioremediation mechanisms and effects on soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163385. [PMID: 37054796 DOI: 10.1016/j.scitotenv.2023.163385] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Heavy metals contamination present risks to ecosystems and human health. Bioremediation is a technology that has been applied to minimize the levels of heavy metals contamination. However, the efficiency of this process varies according to several biotic and abiotic aspects, especially in environments with high concentrations of heavy metals. Therefore, microorganisms immobilization in different materials, such as biochar, emerges as an alternative to alleviate the stress that heavy metals have on microorganisms and thus improve the bioremediation efficiency. In this context, this review aimed to compile recent advances in the use of biochar as a carrier of bacteria, specifically Bacillus spp., with subsequent application for the bioremediation of soil contaminated with heavy metals. We present three different techniques to immobilize Bacillus spp. on biochar. Bacillus strains are capable of reducing the toxicity and bioavailability of metals, while biochar is a material that serves as a shelter for microorganisms and also contributes to bioremediation through the adsorption of contaminants. Thus, there is a synergistic effect between Bacillus spp. and biochar for the heavy metals bioremediation. Biomineralization, biosorption, bioreduction, bioaccumulation and adsorption are the mechanisms involved in this process. The application of biochar-immobilized Bacillus strains results in beneficial effects on the contaminated soil, such as the reduction of toxicity and accumulation of metals in plants, favoring their growth, in addition to increasing microbial and enzymatic activity in soil. However, competition and reduction of microbial diversity and the toxic characteristics of biochar are reported as negative impacts of this strategy. More studies using this emerging technology are essential to improve its efficiency, to elucidate the mechanisms and to balance positive and negative impacts, especially at the field scale.
Collapse
Affiliation(s)
- Vera Analise Schommer
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Ana Paula Vanin
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Valdecir Ferrari
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Aline Dettmer
- Graduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
11
|
Rajput VD, Chernikova N, Minkina T, Gorovtsov A, Fedorenko A, Mandzhieva S, Bauer T, Tsitsuashvili V, Beschetnikov V, Wong MH. Biochar and metal-tolerant bacteria in alleviating ZnO nanoparticles toxicity in barley. ENVIRONMENTAL RESEARCH 2023; 220:115243. [PMID: 36632881 DOI: 10.1016/j.envres.2023.115243] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The constant use of zinc oxide nanoparticles (ZnO NPs) in agriculture could increase their concentration in soil, and cause a threat to sustainable crop production. The present study was designed to determine the role of spore-forming and metal-tolerant bacteria, and biochar in alleviating the toxic effects of a high dose of ZnO NPs (2000 mg kg-1) spiked to the soil (Haplic Chernozem) on barley (Hordeum sativum L). The mobile compounds of Zn in soil and their accumulation in H. sativum tissues were increased significantly. The addition of biochar (2.5% of total soil) and bacteria (1010 CFU kg-1) separately and in combination showed a favorable impact on H. sativum growth in ZnO NPs polluted soil. The application of bacteria (separately) to the contaminated soil reduced the mobility of Zn compounds by 7%, due to loosely bound Zn compounds, whereas only biochar inputs lowered Zn mobile compounds mobility by 33%, even the combined application of biochar and bacteria also suppressed the soil Zn mobile compounds. Individual application of biochar and bacteria reduced the Zn plant uptake, i.e., underground parts (roots) by 44% and 20%, and in the above-ground parts of H. sativum plants by 39% and 13%, respectively, compared to ZnO NPs polluted soil treatments. Biochar, both separately and in combination with bacteria improved the root length by 48 and 85%, and plant height by 53 and 40%, respectively, compared to the polluted control. The root length and plant height decreased by 52 and 40% in ZnO NPs spiked soil compared clean soil treatments. Anatomical results showed an improvement in the structural organization of cellular-sub-cellular tissues of root and leaf. The changes in ultrastructural organization of assimilation tissue cells were noted all treatments due to the toxic effects of ZnO NPs compared with control treatment. The results indicate that metal-tolerant bacteria and biochar could be effective as a soil amendment to reduce metal toxicity, enhance crop growth, and improve soil health.
Collapse
Affiliation(s)
- Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia.
| | - Natalya Chernikova
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Andrey Gorovtsov
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Alexey Fedorenko
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Tatiana Bauer
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Victoria Tsitsuashvili
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | | | - Ming Hung Wong
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia; Consortium on Health, Environment, Education, and Research (CHEER), And Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, 999077, China
| |
Collapse
|
12
|
Zhang W, Zhang H, Xu R, Qin H, Liu H, Zhao K. Heavy metal bioremediation using microbially induced carbonate precipitation: Key factors and enhancement strategies. Front Microbiol 2023; 14:1116970. [PMID: 36819016 PMCID: PMC9932936 DOI: 10.3389/fmicb.2023.1116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
With the development of economy, heavy metal (HM) contamination has become an issue of global concern, seriously threating animal and human health. Looking for appropriate methods that decrease their bioavailability in the environment is crucial. Microbially induced carbonate precipitation (MICP) has been proposed as a promising bioremediation method to immobilize contaminating metals in a sustainable, eco-friendly, and energy saving manner. However, its performance is always affected by many factors in practical application, both intrinsic and external. This paper mainly introduced ureolytic bacteria-induced carbonate precipitation and its implements in HM bioremediation. The mechanism of HM immobilization and in-situ application strategies (that is, biostimulation and bioaugmentation) of MICP are briefly discussed. The bacterial strains, culture media, as well as HMs characteristics, pH and temperature, etc. are all critical factors that control the success of MICP in HM bioremediation. The survivability and tolerance of ureolytic bacteria under harsh conditions, especially in HM contaminated areas, have been a bottleneck for an effective application of MICP in bioremediation. The effective strategies for enhancing tolerance of bacteria to HMs and improving the MICP performance were categorized to provide an in-depth overview of various biotechnological approaches. Finally, the technical barriers and future outlook are discussed. This review may provide insights into controlling MICP treatment technique for further field applications, in order to enable better control and performance in the complex and ever-changing environmental systems.
Collapse
Affiliation(s)
- Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China,*Correspondence: Wenchao Zhang,
| | - Hong Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ruyue Xu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Haichen Qin
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Hengwei Liu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Kun Zhao
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Insitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Qi X, Xiao S, Chen X, Ali I, Gou J, Wang D, Zhu B, Zhu W, Shang R, Han M. Biochar-based microbial agent reduces U and Cd accumulation in vegetables and improves rhizosphere microecology. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129147. [PMID: 35643000 DOI: 10.1016/j.jhazmat.2022.129147] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial remediation of heavy metals in soil has been widely studied. However, bioremediation efficiency is limited in practical applications because of nutritional deficiency, low efficiency, and competition with indigenous microorganisms. Herein, we prepared a biochar-based microbial agent (BMA) by immobilizing the microbial agent (MA, containing Bacillus subtilis, Bacillus cereus, and Citrobacter sp.) on biochar for the remediation of U and Cd in soil. The results showed that BMA increased soil organic matter, cation exchange capacity, and fluorescein diacetate hydrolysis activity and dehydrogenase activity by 58.7%, 38.2%, 42.9%, and 51.1%. The availability of U and Cd were significantly decreased by 67.4% and 54.2% in BMA amended soil, thereby reducing their accumulation in vegetables. BMA greatly promoted vegetable growth. Additionally, BMA significantly altered the structure and function of rhizosphere soil microbial communities. Coincidently, more abundant ecologically beneficial bacteria like Nitrospira, Nitrosomonas, Lysobacter, and Bacillus were observed, whereas plant pathogenic fungi like Fusarium and Alternaria reduced in BMA amended soil. The network analysis revealed that BMA amendment increased the tightness and complexity of microbial communities. Importantly, the compatibility of niches and microbial species within co-occurrence network was enhanced after BMA addition. These findings provide a promising strategy for suppressing heavy metal accumulation in vegetables and promoting their growth.
Collapse
Affiliation(s)
- Xin Qi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shiqi Xiao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Analytical Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; State Defense Key Laboratory of Fundamental Science on Nuclear Wastes and Environment, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Imran Ali
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; State Defense Key Laboratory of Fundamental Science on Nuclear Wastes and Environment, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jialei Gou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; State Defense Key Laboratory of Fundamental Science on Nuclear Wastes and Environment, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Bo Zhu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Wenkun Zhu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Ran Shang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Mengwei Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
14
|
Younas H, Nazir A, Bareen FE. Application of microbe-impregnated tannery solid waste biochar in soil enhances growth performance of sunflower. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57669-57687. [PMID: 35355176 DOI: 10.1007/s11356-022-19913-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Synergistic effect of biochar and microbes in soil enhances performance of plants. Hazardous tannery solid waste can be reduced by one-third in volume by conversion to biochar. A greenhouse trial was set up with soil having different doses of metal resistant microbe-impregnated biochar (MIBC) prepared from tannery solid waste. Consortia of autochthonous strains of Trichoderma and Bacillus were inoculated on BC and the behavior and fate of metals were evaluated for their bioavailability to sunflower. Sunflower was grown in pots for 80 days having six different amendments of tannery solid waste biochar (0-10% w/w) with and without Trichoderma and Bacillus consortia and its morphological and biochemical attributes as well as metal uptake were observed. The results illustrated that application of BC at 2% rate without inoculation increased the shoot length and dry biomass by 19.8% and 77.4%, respectively, while plant growth and performance were reduced at higher amendments of BC. However, application of MIBC with Trichoderma or/and Bacillus consortium significantly improved the plant attributes at all levels of amendment. The results indicated that MIBC having Trichoderma and Bacillus consortia at 10% rate increased shoot length and dry biomass by 65.3% and 516% compared to control without BC. Application of BC without inoculation reduced the uptake of Cu, Fe, and Ni and increased the mobilization of all other metals for uptake in sunflower. Mobilization and uptake of Cd, Cr, Cu, Ni, Pb, and Zn decreased with MIBC having Trichoderma and Bacillus consortia whereas that of Fe and Mg were noted. A considerable decrease in proline and total phenolic content was demonstrated by MIBC-grown sunflower. The data of metal fractionation in BC also supported the above findings. Therefore, MIBC can be used as a promising option for enhancing growth performance and ensuring the physiological safety of sunflower as an energy crop.
Collapse
Affiliation(s)
- Hajira Younas
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Aisha Nazir
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Firdaus-E Bareen
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan.
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, 54000, Pakistan.
| |
Collapse
|
15
|
Wang C, Hao L, Sun X, Yang Y, Yin Q, Li M. Response mechanism of psychrotolerant Bacillus cereus D2 towards Ni (II) toxicity and involvement of amino acids in Ni (II) toxicity reduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128363. [PMID: 35183050 DOI: 10.1016/j.jhazmat.2022.128363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The toxic effect of Nickel (Ni (II)) on humans and animals has been previously addressed. Owing to the important application of psychrotolerant bacteria in Ni (II) damage remediation in contamination sites at low temperatures, the response mechanism of psychrotolerant bacteria to Ni (II) toxicity must be elucidated. Therefore, the effect of Ni (II) toxicity on a psychrotolerant Bacillus cereus D2 was studied, showing a way to alleviate the Ni (II) toxicity in strain D2. The results showed that strain D2 growth was completely inhibited at a concentration of 100 mg/L of Ni (II). The main effects of Ni (II) toxicity on strain D2 were membrane damage and reactive oxygen species-dependent oxidative stress. Additionally, Ni (II) toxicity resulted in dysregulation of the cell cycle in strain D2. Furthermore, metabolomic analysis showed that the biosynthesis of amino acids and ABC transporters were significantly affected, and the relative abundance of seven important amino acids changed in a concentration-dependent manner. Addition of 20 mM or 5 mM amino acids to 100 mg/L Ni (II)-treated strain D2 restored its growth. This study provides insights into the way to alleviate the Ni (II) toxicity in strain D2, thus contributing to the development of bioremediation strategies.
Collapse
Affiliation(s)
- Chunli Wang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China; College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Xiaotong Sun
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yi Yang
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Qiuxia Yin
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Mingtang Li
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
16
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
17
|
Liu J, Ali A, Su J, Wu Z, Zhang R, Xiong R. Simultaneous removal of calcium, fluoride, nickel, and nitrate using microbial induced calcium precipitation in a biological immobilization reactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125776. [PMID: 33836330 DOI: 10.1016/j.jhazmat.2021.125776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
In this research, an immobilized biofilm reactor was established for the simultaneous removal of calcium (Ca2+), fluoride (F-), nickel (Ni2+), and nitrate (NO3--N) by microbial induced calcium precipitation (MICP). The operating parameters of the reactor, hydraulic retention time (HRT: 4, 8, and 12 h), influent Ca2+ concentration (36.0, 108.0, and 180.0 mg L-1), and influent Ni2+ concentration (0.0, 3.0, and 6.0 mg L-1) were discussed. Under the HRT of 12 h, influent Ca2+ concentration of 180.0 mg L-1, and influent Ni2+ concentration of 3.0 mg L-1, the removal ratios of Ca2+, F-, Ni2+, and NO3--N reached 45.31%, 79.55%, 85.11%, and 55.29%, respectively, which was the reactor stable operation performance. The SEM revealed the morphology of calcium-precipitated bio-crystals. XPS showed the Ca2+ and Ni2+ precipitate components and XRD further revealed the formation of CaCO3, Ca5(PO4)3OH, and NiCO3 precipitation. Nitrogen (N2) was the main gas produced in the reactor. Fluorescence spectroscopy manifested that extracellular polymers played an important role in the organism nucleation. High-throughput sequencing exhibited that Acinetobacter sp. H12 was the dominant bacterial group. This study provided a new insight for simultaneous remediation of Ca2+, F-, Ni2+, and NO3--N in water bodies.
Collapse
Affiliation(s)
- Jiaran Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Renbo Xiong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
18
|
Li H, Yang R, Hao L, Wang C, Li M. CspB and CspC are induced upon cold shock in Bacillus cereus strain D2. Can J Microbiol 2021; 67:703-712. [PMID: 34058099 DOI: 10.1139/cjm-2021-0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus cereus D2, a psychrotrophic strain, plays an essential role in the restoration of heavy metal-contaminated soils, especially at low temperatures. However, the cold shock response mechanisms of this strain are unclear. In this study, the cold shock response of B. cereus D2 was characterized; as per the Arrhenius curve, 10 °C was chosen as the cold shock temperature. Six cold shock-like proteins were found and temporarily named cold shock protein (Csp)1-6; the respective genes were cloned and identified. Quantitative real-time PCR results showed that csp1, csp2, csp3, and csp6 were overexpressed under cold shock conditions. Interestingly, after cloning the respective encoding genes into pET-28a (+) vector and their subsequent transformation into E. coli BL21 (DE3), the strains expressing Csp2 and Csp6 grew faster at 10 °C, showing a large number of bacteria. These results suggest that Csp2 and Csp6 are the major cold shock proteins in B. cereus D2. Of note, the comparison of amino acid sequences and structures showed that Csp2 and Csp6 belong to the CspB and CspC families, respectively. Additionally, we show that the number of hydrophobic residues is not a determining feature of major Csps, while, on the other hand, the formation of an α-helix in the context of a leucine residue is the most dominant difference between major, and other Bacillus and E. coli Csps.
Collapse
Affiliation(s)
- Haoyang Li
- Jilin Agricultural University, 85112, Changchun, China;
| | - Rui Yang
- Jilin University, 12510, Changchun, China;
| | - Linlin Hao
- Jilin University, 12510, Changchun, China;
| | | | - Mingtang Li
- Jilin Agricultural University, 85112, Changchun, China, 130018;
| |
Collapse
|
19
|
Zamulina IV, Gorovtsov AV, Minkina TM, Mandzhieva SS, Bauer TV, Burachevskaya MV. The influence of long-term Zn and Cu contamination in Spolic Technosols on water-soluble organic matter and soil biological activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111471. [PMID: 33068982 DOI: 10.1016/j.ecoenv.2020.111471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Potentially toxic elements (PTE) pollution has a pronounced negative effect on the soil and its components. The characteristics of soil organic matter and the activity of soil enzymes can serve as sensitive indicators of the degree of changes occurring in the soil. This study aims to assess the effect of long-term severe soil contamination with Zn and Cu on water-soluble organic matter (WSOM) and the associated changes in the biochemical activity of microorganisms. The total content of Zn and Cu in the studied soils varies greatly: Zn from 118 to 65,311 mg/kg, Cu from 52 to 437 mg/kg. The content of WSOM was determined using cold and hot extraction. It was revealed that the WSOM, extracted with cold water is a sensitive indicator reflecting the nature of the interaction of Zn and Cu with it. With an increase in the Cu and Zn content, the amount of WSOM extracted with cold water increases due to rise in the complex-bound metal compounds associated with it. The content of complex-bound compounds Zn in Spolic Technosols reaches 50% of the total metal content. It is shown that one of the biogeochemical mechanisms of microorganisms' adaptation to metal contamination is clearly manifested by the increase in the content of WSOM. The precipitation of metal carbonates develops in the soil which reduces the mobility and toxicity of PTE. Due to this mechanism, a decrease in the activity of dehydrogenases and urease was not prominent in all studied soils, despite the very high level of pollution and the transformation of organic matter. The study of the relationship of PTE with the most easily transformed part of WSOM and the activity of soil enzymes is of great importance for an objective assessment of possible environmental risks.
Collapse
Affiliation(s)
- Inna V Zamulina
- Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | | | - Tatiana M Minkina
- Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | | | - Tatiana V Bauer
- Southern Federal University, Rostov-on-Don 344090, Russian Federation; Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don 344006, Russian Federation
| | | |
Collapse
|