1
|
Hu R, Shi G, Wu C, Jiao Y, Li Y, Qi A, Li Y, Zhang Q, Liu Q, Wang K, Huang M. Paraquat exposure triggers amyloid-β and α-synuclein aggregation in the prefrontal cortex of mice: Suppression of microglial phagocytosis via IL-17A. Int Immunopharmacol 2025; 157:114746. [PMID: 40300355 DOI: 10.1016/j.intimp.2025.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/30/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025]
Abstract
Paraquat (PQ), an environmental neurotoxin, has been demonstrated to induce pathological protein aggregation and thus neurotoxicity. Nevertheless, the exact mechanisms remain elusive. In this investigation, we explored the involvement of interleukin-17A (IL-17 A) in the aggregation of amyloid-β (Aβ) and α-synuclein (α-syn) induced by PQ. Combining in vitro and in vivo, we explored whether PQ leads to Aβ and α-syn aggregation through IL-17 A-mediated reduction in microglia phagocytosis, thereby aggravating neurotoxicity. The results demonstrated that low-dose PQ continuous exposure significantly elevated IL-17 A levels in the peripheral blood serum and prefrontal cortical regions of mice. It also suppressed microglial phagocytosis of pathological proteins and promoted the aggregation of Aβ and α-syn in the prefrontal cortex. These changes ultimately resulted in depression, anxiety, and cognitive impairments. Mechanistically, IL-17 A inhibited the expression of the microglial phagocytic receptor CD36, impairing the microglial ability to clear Aβ and α-syn. Furthermore, administering an anti-IL-17 A effectively restored microglial phagocytosis in PQ-exposed mice, reduced Aβ and α-syn aggregation in prefrontal cortical areas, and alleviated behavioral deficits. In conclusion, this paper highlights IL-17 A as a pivotal mediator in PQ-induced neurotoxicity. It provides a potential target for developing novel therapeutic strategies against neurodegenerative pathologies induced by such environmental toxicants.
Collapse
Affiliation(s)
- Rong Hu
- School of Public Health, Ningxia Medical University, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Chenyang Wu
- School of Public Health, Ningxia Medical University, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Yuxuan Jiao
- School of Public Health, Ningxia Medical University, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Yonghang Li
- School of Public Health, Ningxia Medical University, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Ai Qi
- School of Public Health, Ningxia Medical University, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Yujing Li
- School of Public Health, Ningxia Medical University, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Qianrong Zhang
- School of Public Health, Ningxia Medical University, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Qi Liu
- School of Public Health, Ningxia Medical University, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Kaidong Wang
- School of Public Health, Ningxia Medical University, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Min Huang
- School of Public Health, Ningxia Medical University, Ningxia 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
2
|
Liu T, Zheng F, Liu L, Zhou H, Shen T, Li Y, Zhang W. Paraquat disrupts the blood-brain barrier by increasing IL-6 expression and oxidative stress through the activation of PI3K/AKT signaling pathway. Open Med (Wars) 2024; 19:20241020. [PMID: 39291284 PMCID: PMC11406143 DOI: 10.1515/med-2024-1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
Background Paraquat (PQ) is a frequently used herbicide with neurotoxic effects after acute or chronic exposure. Although in vitro evidence supports the PQ toxicity to dopamine cells, its in vivo effects (especially the chronic exposure) remain ambiguous. In this study, we investigated the effect of chronic PQ exposure on the blood-brain barrier (BBB) damage and the underlying mechanisms. Methods Adult male Sprague Dawley rats and primary human brain microvascular endothelial (PHBME) cells were exposed to PQ as the animal and cell models. Evans Blue staining and hematoxylin & eosin staining were conducted to examine the BBB and brain tissue damages. The inflammatory cytokines were quantified via enzyme linked immunosorbent assay. The changes of PI3K/AKT signaling pathway were detected by western blot. Results PQ exposure can cause significant pathological lesions in the brain tissues and the BBB. IL-6 and reactive oxygen species levels were found to be significantly upregulated after PQ exposure in both the animal and cell models. PQ treatment could arrest the cell proliferation and migration in PHBME cells. PQ treatment promoted the phosphorylation of PI3K and AKT, and the application of PI3K inhibitor could attenuate PQ-induced IL-6 production, oxidative stress, BBB disruption, and brain tissue damage. Conclusion Our study demonstrated that chronic PQ exposure could impair the BBB function and induce brain tissue damage. The overactivation of the PI3K/AKT pathway, consequent upregulation of IL-6 production, and increased oxidative stress appear to mediate the inflammatory damage resulting from PQ exposure.
Collapse
Affiliation(s)
- Tao Liu
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Kunming, 650000, Yunnan, China
| | - Fenshuang Zheng
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Kunming, 650000, Yunnan, China
| | - Lin Liu
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Kunming, 650000, Yunnan, China
| | - Hua Zhou
- Department of Emergency Medicine, People's Hospital of Yuxi City, Yuxi, 653100, Yunnan, China
| | - Tao Shen
- Department of Emergency Medicine, People's Hospital of Gejiu City, Gejiu, 661000, Yunnan, China
| | - Yanping Li
- Department of Emergency Medicine, People's Hospital of Gejiu City, Gejiu, 661000, Yunnan, China
| | - Wei Zhang
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, No. 176, Youth Road, Kunming, 650000, Yunnan, China
| |
Collapse
|
3
|
Sarbaz P, Beigoli S, Payami B, Eshaghi Ghalibaf MH, Amirahmadi S, Hosseini M, Boskabady MH. Curcuma longa impact on behavioral, brain oxidative stress, and systemic inflammation in rats exposed to inhaled paraquat. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2024; 16:287-298. [DOI: 10.1007/s13530-024-00225-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2024] [Indexed: 03/05/2025]
|
4
|
Toltin AC, Belkadi A, Gamba LM, Hossain MM. The Preventive Effects of Salubrinal against Pyrethroid-Induced Disruption of Adult Hippocampal Neurogenesis in Mice. Int J Mol Sci 2023; 24:15614. [PMID: 37958604 PMCID: PMC10648946 DOI: 10.3390/ijms242115614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Environmental factors, including pesticide exposure, have been identified as substantial contributors to neurodegeneration and cognitive impairments. Previously, we demonstrated that repeated exposure to deltamethrin induces endoplasmic reticulum (ER) stress, reduces hippocampal neurogenesis, and impairs cognition in adult mice. Here, we investigated the potential relationship between ER stress and hippocampal neurogenesis following exposure to deltamethrin, utilizing both pharmacological and genetic approaches. To investigate whether ER stress is associated with inhibition of neurogenesis, mice were given two intraperitoneal injections of eIf2α inhibitor salubrinal (1 mg/kg) at 24 h and 30 min prior to the oral administration of deltamethrin (3 mg/kg). Salubrinal prevented hippocampal ER stress, as indicated by decreased levels of C/EBP-homologous protein (CHOP) and transcription factor 4 (ATF4) and attenuated deltamethrin-induced reductions in BrdU-, Ki-67-, and DCX-positive cells in the dentate gyrus (DG) of the hippocampus. To further explore the relationship between ER stress and adult neurogenesis, we used caspase-12 knockout (KO) mice. The caspase-12 KO mice exhibited significant protection against deltamethrin-induced reduction of BrdU-, Ki-67-, and DCX-positive cells in the hippocampus. In addition, deltamethrin exposure led to a notable upregulation of CHOP and caspase-12 expression in a significant portion of BrdU- and Ki-67-positive cells in WT mice. Conversely, both salubrinal-treated mice and caspase-12 KO mice exhibited a considerably lower number of CHOP-positive cells in the hippocampus. Together, these findings suggest that exposure to the insecticide deltamethrin triggers ER stress-mediated suppression of adult hippocampal neurogenesis, which may subsequently contribute to learning and memory deficits in mice.
Collapse
Affiliation(s)
| | | | | | - Muhammad M. Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
5
|
Duan W, Liu C, Zhou J, Yu Q, Duan Y, Zhang T, Li Y, Fu G, Sun Y, Tian J, Xia Z, Yang Y, Liu Y, Xu S. Upregulation of mitochondrial calcium uniporter contributes to paraquat-induced neuropathology linked to Parkinson's disease via imbalanced OPA1 processing. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131369. [PMID: 37086674 DOI: 10.1016/j.jhazmat.2023.131369] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Paraquat (PQ) is the most widely used herbicide in agriculture worldwide and has been considered a high-risk environmental factor for Parkinson's disease (PD). Chronic PQ exposure selectively induces dopaminergic neuron loss, the hallmark pathologic feature of PD, resulting in Parkinson-like movement disorders. However, the underlying mechanisms remain unclear. Here, we demonstrated that repetitive PQ exposure caused dopaminergic neuron loss, dopamine deficiency and motor deficits dose-dependently in mice. Accordingly, mitochondrial calcium uniporter (MCU) was highly expressed in PQ-exposed mice and neuronal cells. Importantly, MCU knockout (KO) effectively rescued PQ-induced dopaminergic neuron loss and motor deficits in mice. Genetic and pharmacological inhibition of MCU alleviated PQ-induced mitochondrial dysfunction and neuronal death in vitro. Mechanistically, PQ exposure triggered mitochondrial fragmentation via imbalance of the optic atrophy 1 (OPA1) processing manifested by cleavage of L-OPA1 to S-OPA1, which was reversed by inhibition of MCU. Notably, the upregulation of MCU was mediated by miR-129-1-3p posttranscriptionally, and overexpression of miR-129-1-3p could rebalance OPA1 processing and attenuate mitochondrial dysfunction and neuronal death induced by PQ exposure. Consequently, our work uncovers an essential role of MCU and a novel molecular mechanism, miR-MCU-OPA1, in PQ-induced pathogenesis of PD, providing a potential target and strategy for environmental neurotoxins-induced PD treatment.
Collapse
Affiliation(s)
- Weixia Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Cong Liu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Jie Zhou
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qin Yu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Yu Duan
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Tian Zhang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yuanyuan Li
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Guanyan Fu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Yapei Sun
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiacheng Tian
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhiqin Xia
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingli Yang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yongseng Liu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China
| | - Shangcheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China; Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China.
| |
Collapse
|
6
|
Cresto N, Forner-Piquer I, Baig A, Chatterjee M, Perroy J, Goracci J, Marchi N. Pesticides at brain borders: Impact on the blood-brain barrier, neuroinflammation, and neurological risk trajectories. CHEMOSPHERE 2023; 324:138251. [PMID: 36878369 DOI: 10.1016/j.chemosphere.2023.138251] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks. We examine the evidence supporting a link between pre- and postnatal pesticide exposure, neuroinflammatory responses, and time-depend vulnerability footprints in the brain. Because of the pathological influence of BBB damage and inflammation on neuronal transmission from early development, varying exposures to pesticides could represent a danger, perhaps accelerating adverse neurological trajectories during aging. Refining our understanding of how pesticides influence brain barriers and borders could enable the implementation of pesticide-specific regulatory measures directly relevant to environmental neuroethics, the exposome, and one-health frameworks.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Asma Baig
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Mousumi Chatterjee
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
7
|
Yang HM, Wang YL, Liu CY, Zhou YT, Zhang XF. A time-course study of microglial activation and dopaminergic neuron loss in the substantia nigra of mice with paraquat-induced Parkinson's disease. Food Chem Toxicol 2022; 164:113018. [DOI: 10.1016/j.fct.2022.113018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022]
|
8
|
Photothermal card reader assay using the commercial colloidal gold test strip for the rapid quantitative detection of food hazards. Mikrochim Acta 2022; 189:112. [PMID: 35190918 DOI: 10.1007/s00604-022-05193-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
Abstract
The simple and rapid commercial colloidal gold test strip can only be used for qualitative or semi-quantitative detection, accompanied by weak detectability and false negative experimental results. Herein, a photothermal test strip assay which combined test strip with a portable photothermal card reader was established to achieve quantitative detection with excellent detectability. According to the photothermal effect produced by gold nanoparticles (GNPs) captured on the test line, the signal could be recorded by the reader. Thirteen food hazards including veterinary drug residues and pesticide residues were tested; the photothermal detectability in actual samples were about 23 (methyl parathion), 7 (enrofloxacin), 6 (sarafloxacin), 8 (sulfadiazine), 12 (sulfamethazine), 7 (paraquat), 6 (malachite green), 11 (amantadine), 13 (nitrofurazone), 6 (diethylstilbestrol), 12 (estriol), 21 (estrone), and 26 (17β-estradiol) times better than the visual detectability. Our results demonstrated that the photothermal test strip assay could be used for sensitive, rapid, and quantitative detection of residues of food hazards.
Collapse
|
9
|
Merighi A, Gionchiglia N, Granato A, Lossi L. The Phosphorylated Form of the Histone H2AX (γH2AX) in the Brain from Embryonic Life to Old Age. Molecules 2021; 26:7198. [PMID: 34885784 PMCID: PMC8659122 DOI: 10.3390/molecules26237198] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The γ phosphorylated form of the histone H2AX (γH2AX) was described more than 40 years ago and it was demonstrated that phosphorylation of H2AX was one of the first cellular responses to DNA damage. Since then, γH2AX has been implicated in diverse cellular functions in normal and pathological cells. In the first part of this review, we will briefly describe the intervention of H2AX in the DNA damage response (DDR) and its role in some pivotal cellular events, such as regulation of cell cycle checkpoints, genomic instability, cell growth, mitosis, embryogenesis, and apoptosis. Then, in the main part of this contribution, we will discuss the involvement of γH2AX in the normal and pathological central nervous system, with particular attention to the differences in the DDR between immature and mature neurons, and to the significance of H2AX phosphorylation in neurogenesis and neuronal cell death. The emerging picture is that H2AX is a pleiotropic molecule with an array of yet not fully understood functions in the brain, from embryonic life to old age.
Collapse
Affiliation(s)
| | | | | | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, I-10095 Grugliasco, Italy; (A.M.); (N.G.); (A.G.)
| |
Collapse
|
10
|
Chen J, Su Y, Lin F, Iqbal M, Mehmood K, Zhang H, Shi D. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112711. [PMID: 34455184 DOI: 10.1016/j.ecoenv.2021.112711] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/07/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Paraquat (PQ) is a cheap and an effective herbicide, which is widely being used worldwide to remove weeds in cultivated crop fields. However, it can cause soil and water pollution, and pose serious harm to the environment and organisms. Several countries have started to limit or prohibit the use of PQ because of the increasing number of human deaths. Its toxicity can damage the organisms with a multi-target mechanism, which has not been fully understood yet. That is why it is hard to treat as well. The current research on PQ focuses on its targeted organ, the lungs, in which PQ mostly trigger pulmonary fibrosis. While there is a lack of systematic research, there are few studies published discussing its toxic effects at systematic level. This review summarizes the major damages caused by PQ in different organisms and partial mechanisms by which it causes these damages. For this purpose, we consulted several research articles that studied the toxicity of PQ in various tissues. We also listed some drugs that can be used to alleviate the toxicity of PQ. However, at present, the effectiveness of these drugs is still being explored in animal experiments and the study of their mechanism will also help in understanding the poisoning mechanism of PQ, which will ultimately lead to effective treatment in future.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|