1
|
Wang S, Zhang X, Zhou Q, Liu Z, Xu Z. Magnetic hypercrosslinked polymer microspheres for the detection, spatial distribution, source identification and potential risks assessment of five polycyclic aromatic hydrocarbons in city river of plateau lake, Southwest China. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135026. [PMID: 38925056 DOI: 10.1016/j.jhazmat.2024.135026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have long been globally distributed, and almost worldwide people are exposed to varying degrees of PAHs. Aqueous medium is an important transmission route of PAHs, but the detection of PAHs in aqueous environment has been a challenge. Herein, a magnetic hypercrosslinked polymer microsphere (Fe3O4@SiO2-PS@HCP) was developed for the effective detection of PAHs. Under the effect of multiple factors (hydrophilicity, intermolecular force and molecular volume), Fe3O4@SiO2-PS@HCP shows excellent performance on the enrichment of five PAHs in aqueous environment. Fe3O4@SiO2-PS@HCP was used to capture PAHs in city river of plateau lake. In-depth data analysis showed that factory activities and traffic emissions are the main pollution sources of PAHs. Ecological, carcinogenic and non-carcinogenic risks are almost within the safe range. The carcinogenic and non-carcinogenic risks of PAHs in children are higher than adults, which needs to be taken seriously. This method breaks the dilemma that it is difficult to enrich weakly hydrophilic pollutants in aqueous media, and complements important pathways for tracing sources of pollutants and assessing associated risks. It brings methodological enlightenment into the development of environmental pollution and human health risk assessment methodology.
Collapse
Affiliation(s)
- Sitao Wang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaolan Zhang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingqing Zhou
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
2
|
Wei Q, Dong Q, Pu H. Multiplex Surface-Enhanced Raman Scattering: An Emerging Tool for Multicomponent Detection of Food Contaminants. BIOSENSORS 2023; 13:296. [PMID: 36832062 PMCID: PMC9954132 DOI: 10.3390/bios13020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
For survival and quality of human life, the search for better ways to ensure food safety is constant. However, food contaminants still threaten human health throughout the food chain. In particular, food systems are often polluted with multiple contaminants simultaneously, which can cause synergistic effects and greatly increase food toxicity. Therefore, the establishment of multiple food contaminant detection methods is significant in food safety control. The surface-enhanced Raman scattering (SERS) technique has emerged as a potent candidate for the detection of multicomponents simultaneously. The current review focuses on the SERS-based strategies in multicomponent detection, including the combination of chromatography methods, chemometrics, and microfluidic engineering with the SERS technique. Furthermore, recent applications of SERS in the detection of multiple foodborne bacteria, pesticides, veterinary drugs, food adulterants, mycotoxins and polycyclic aromatic hydrocarbons are summarized. Finally, challenges and future prospects for the SERS-based detection of multiple food contaminants are discussed to provide research orientation for further.
Collapse
Affiliation(s)
- Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qirong Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
3
|
Liu D, Ji J, Guo X, Gou S, Chen X. Syringe Paper-Based Analytical Device for Thiamazole Detection by Hedysarum Polysaccharides-Mediated Silver Nanoparticles. MICROMACHINES 2023; 14:350. [PMID: 36838050 PMCID: PMC9962882 DOI: 10.3390/mi14020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
In this paper, silver nanoparticles (AgNPs) were successfully green-synthesized for the first time using Hedysarum polysaccharide (HPS) as a reducing agent, stabilizer, and modifier (HPS-AgNP). Thiamazole could induce the aggregation of HPS-AgNPs in the residue on a cellulose membrane. A syringe paper-based analytical device was creatively established to ensure the tightness, stability, and good repeatability of the test. The color information remaining on the cellulose membrane was converted into gray values using ImageJ software. Hence, the linear regression curve for thiamazole was established as y = 1 + 0.179x with a detection limit (LOD) of 24.6 nM in the relatively wide range of 0.1~10 μM. This syringe paper-based analytical device was successfully applied to the biological samples.
Collapse
|
4
|
Innovative Application of SERS in Food Quality and Safety: A Brief Review of Recent Trends. Foods 2022; 11:foods11142097. [PMID: 35885344 PMCID: PMC9322305 DOI: 10.3390/foods11142097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Innovative application of surface-enhanced Raman scattering (SERS) for rapid and nondestructive analyses has been gaining increasing attention for food safety and quality. SERS is based on inelastic scattering enhancement from molecules located near nanostructured metallic surfaces and has many advantages, including ultrasensitive detection and simple protocols. Current SERS-based quality analysis contains composition and structural information that can be used to establish an electronic file of the food samples for subsequent reference and traceability. SERS is a promising technique for the detection of chemical, biological, and harmful metal contaminants, as well as for food poisoning, and allergen identification using label-free or label-based methods, based on metals and semiconductors as substrates. Recognition elements, including immunosensors, aptasensors, or molecularly imprinted polymers, can be linked to SERS tags to specifically identify targeted contaminants and perform authenticity analysis. Herein, we highlight recent studies on SERS-based quality and safety analysis for different foods categories spanning the whole food chain, ‘from farm to table’ and processing, genetically modified food, and novel foods. Moreover, SERS detection is a potential tool that ensures food safety in an easy, rapid, reliable, and nondestructive manner during the COVID-19 pandemic.
Collapse
|
5
|
Ma J, Xu L, Zhang Y, Dong L, Gu C, Wei G, Jiang T. Multifunctional SERS chip mediated by black phosphorus@gold-silver nanocomposites inserted in bilayer membrane for in-situ detection and degradation of hazardous materials. J Colloid Interface Sci 2022; 626:787-802. [PMID: 35820214 DOI: 10.1016/j.jcis.2022.06.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
Self-cleaning surface-enhanced Raman scattering (SERS) substrates dependent on versatile two-dimensional semiconductors offer an efficient channel for the sensitive monitoring and timely degradation of hazardous molecules. Herein, a kind of sophisticated SERS-active nanocomposites was developed by incorporating Au-Ag nanoparticles onto black phosphorus (BP) nanosheets via photo-induced self-reduction. Combining the substantial electromagnetic "hot spots" triggered by bimetallic plasma coupling effect and the efficient charge transfer from BP to probe molecules, the proposed nanocomposites featured attractive SERS enhancement, facilitating a limit of detection down to 4.5 × 10-10 M. Attributed to the remarkable restriction of electron-hole recombination stemming from "Schottky contact", the photocatalytic activity of BP was prominently boosted, demonstrating a complete degradation time as short as 65 min. Furthermore, the disgusting instability of BP was considerably hindered by inserting the nanocomposites into various bilayer matrices with diverse hardness and viscosity inspired by cling film principle. Moreover, a significantly elevated collection rate high to 93.1% for in-situ detection was also achieved by the as-manufactured flexible SERS chips based on tape. This study illustrates a clear perspective for the development of versatile BP-based SERS chips which might facilitate sensitive analysis and treatment of perilous contaminants in complicated real-life scenarios.
Collapse
Affiliation(s)
- Jiali Ma
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Lanxin Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Yongling Zhang
- GongQing Institute of Science and Technology, Gongqingcheng 332020, Jiangxi, PR China
| | - Liyan Dong
- Materials Institute of Atomic and Molecular Science, Shanxi University of Science and Technology, Xian 710021, Shanxi, PR China
| | - Chenjie Gu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Guodong Wei
- Materials Institute of Atomic and Molecular Science, Shanxi University of Science and Technology, Xian 710021, Shanxi, PR China.
| | - Tao Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
6
|
Sahu A, Singh P, Singh P, Singh Gahlot AP, Mehrotra R. Simple and rapid biogenic synthesis of colloidal silver and gold nanoparticles using Aegle marmelos fruit for SERS detection of DNA. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aman Sahu
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Parul Singh
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Pankaj Singh
- Department of Physics, Deshbandhu College, University of Delhi, New Delhi, India
| | | | - Ranjana Mehrotra
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| |
Collapse
|
7
|
Wang C, Sun Y, Zhou Y, Cui Y, Yao W, Yu H, Guo Y, Xie Y. Dynamic monitoring oxidation process of nut oils through Raman technology combined with PLSR and RF-PLSR model. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Zhou C, Pan Y, Ge S, Coulon F, Yang Z. Rapid methods for antimicrobial resistance diagnosis in contaminated soils for effective remediation strategy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, Vega-Fernández L, Montes de Oca-Vásquez G, Vega-Baudrit JR. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1763. [PMID: 32906575 PMCID: PMC7558319 DOI: 10.3390/nano10091763] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022]
Abstract
Currently, metal nanoparticles have varied uses for different medical, pharmaceutical, and agricultural applications. Nanobiotechnology, combined with green chemistry, has great potential for the development of novel and necessary products that benefit human health, environment, and industries. Green chemistry has an important role due to its contribution to unconventional synthesis methods of gold and silver nanoparticles from plant extracts, which have exhibited antimicrobial potential, among other outstanding properties. Biodiversity-rich countries need to collect and convert knowledge from biological resources into processes, compounds, methods, and tools, which need to be achieved along with sustainable use and exploitation of biological diversity. Therefore, this paper describes the relevant reported green synthesis of gold and silver nanoparticles from plant extracts and their capacity as antimicrobial agents within the agricultural field for fighting against bacterial and fungal pathogens that can cause plant, waterborne, and foodborne diseases. Moreover, this work makes a brief review of nanoparticles' contribution to water treatment and the development of "environmentally-friendly" nanofertilizers, nanopesticides, and nanoherbicides, as well as presenting the harmful effects of nanoparticles accumulation in plants and soils.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (J.U.-Á.); (G.M.d.O.-V.)
| | - Karla Alfaro-Aguilar
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (K.A.-A.); (L.V.-F.)
| | - Jeisson Ugalde-Álvarez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (J.U.-Á.); (G.M.d.O.-V.)
| | - Laura Vega-Fernández
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (K.A.-A.); (L.V.-F.)
| | - Gabriela Montes de Oca-Vásquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (J.U.-Á.); (G.M.d.O.-V.)
| | - José Roberto Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (J.U.-Á.); (G.M.d.O.-V.)
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (K.A.-A.); (L.V.-F.)
| |
Collapse
|