1
|
Soimalaitong S, Nuchan P, Sangsawang A, Kovitvadhi U, Kovitvadhi S, Klaimala P, Srakaew N. Hemolymph responses of the Thai freshwater mussel Hyriopsis bialata exposed to atrazine. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138064. [PMID: 40158507 DOI: 10.1016/j.jhazmat.2025.138064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/04/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
An herbicide atrazine (ATZ) is widely applied in agricultural areas of several countries, including Thailand, and has predisposition to contamination in both terrestrial and aquatic environments, leading to deteriorating effects on non-target organisms. Bivalve hemolymph has gained considerable interest as a useful tool and a potential target for assessing and monitoring aquatic toxicity. The primary goal of this study was to determine time-course responses of biochemical, cellular, and functional traits of the hemolymph from Thai freshwater mussel Hyriopsis bialata exposed to ATZ. The mussels were dosed with environmentally-related (0.02 and 0.2 mg/L) and high (2 mg/L) concentrations of ATZ, while ATZ-untreated mussels served as an experimental control. The hemolymph was collected from the anterior adductor muscles over a 28-day exposure. Analysis of pooled hemolymph from the same treatment groups showed that ATZ had limited effects on the hemolymph parameters of the mussels although temporary inhibition was observed in terms of phagocytic activity and lysosomal membrane stability. Overall, the present study generally indicated tolerance of the hemolymph components upon ATZ exposure to the mussels and could lay groundwork on screening of promising hemolymph biomarkers for real-time, repetitive assessment of ATZ toxicity, thus revealing potential risks of ATZ to aquatic ecosystems.
Collapse
Affiliation(s)
- Sarocha Soimalaitong
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Pattanan Nuchan
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Akkarasiri Sangsawang
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Uthaiwan Kovitvadhi
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Satit Kovitvadhi
- Department of Agriculture, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Thonburi, Bangkok 10600, Thailand
| | - Pakasinee Klaimala
- Impact of Pesticide Use Subdivision, Pesticide Research Group, Agricultural Production Science Research and Development Office, Department of Agriculture, Ministry of Agriculture and Cooperatives, Chatuchak, Bangkok 10900, Thailand
| | - Nopparat Srakaew
- Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
2
|
Li CJ, Zhang QY, Zhang B, Liang HY, Ma LN, Salman M. Study on the response mechanism of MicroRNA novel-13 and novel-44 to Vibrio parahaemolyticus infection in Pinctada fucata martensii. BMC Vet Res 2025; 21:35. [PMID: 39856657 PMCID: PMC11760096 DOI: 10.1186/s12917-024-04467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Pinctada fucata martensii (P. f. martensii) is one of the main pearl oysters cultured in artificial seawater in China. However, it is highly susceptible to pathogen infection under intensive cultivation near the coast. MicroRNAs (miRNAs), as an innovative and potent regulator of immune function, play a pivotal role in the immune response of pearl oysters to external stimuli and are a potent marker for the response of P. f. martensii to infection. This study identified two novel miRNAs, novel-13 and novel-44, from the whole transcriptome of the P. f. martensii hemocyte before and after infection with Vibrio parahaemolyticus. The dual luciferase results showed that novel-13 negatively regulated LAAO and novel-44 negatively regulated ILK. The activity of antioxidant-related enzymes increased significantly in the synthetic miRNA (novel-13 and novel-44) inhibitors and decreased significantly in the synthetic miRNA mimics. In the challenge experiment, injection with miRNA inhibitor increased the relative survival percentage by 10% compared with the control group. In conclusion, the overexpression of novel-13 and novel-44 can decrease the activity of immune and antioxidant-related enzymes, possibly affecting immune regulation in P. f. martensii by negatively regulating the LAAO and ILK target genes.
Collapse
Affiliation(s)
- Chao Jie Li
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Qi Yuan Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Hai Ying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, Guangdong, 524088, China.
| | - Li Ning Ma
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Muhammad Salman
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
3
|
Dong F, Zhou J, Wu Y, Gao Z, Li W, Song Z. MicroRNAs in pancreatic cancer drug resistance: mechanisms and therapeutic potential. Front Cell Dev Biol 2025; 12:1499111. [PMID: 39882259 PMCID: PMC11774998 DOI: 10.3389/fcell.2024.1499111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Pancreatic cancer (PC) remains one of the most lethal malignancies, primarily due to its intrinsic resistance to conventional therapies. MicroRNAs (miRNAs), key regulators of gene expression, have been identified as crucial modulators of drug resistance mechanisms in this cancer type. This review synthesizes recent advancements in our understanding of how miRNAs influence treatment efficacy in PC. We have thoroughly summarized and discussed the complex role of miRNA in mediating drug resistance in PC treatment. By highlighting specific miRNAs that are implicated in drug resistance pathways, we provide insights into their functional mechanisms and interactions with key molecular targets. We also explore the potential of miRNA-based strategies as novel therapeutic approaches and diagnostic tools to overcome resistance and improve patient outcomes. Despite promising developments, challenges such as specificity, stability, and effective delivery of miRNA-based therapeutics remain. This review aims to offer a critical perspective on current research and propose future directions for leveraging miRNA-based interventions in the fight against PC.
Collapse
Affiliation(s)
- Fangying Dong
- Emergency Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jing Zhou
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yijie Wu
- Department of general practice, Taozhuang Branch of the First People’s Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Weiwei Li
- Emergency Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
4
|
Bedir EA, Said MM, Al Wakeel RA, Nasr-Allah AM, Abo-Al-Ela HG. A comparative study of the genetically improved Abbassa Nile tilapia strain (GIANT-G9) and a commercial strain in Egypt: growth vs. stress response. Vet Res Commun 2025; 49:75. [PMID: 39808210 PMCID: PMC11732967 DOI: 10.1007/s11259-024-10639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Selective breeding is a potent method for developing strains with enhanced traits. This study compared the growth performance and stress responses of the genetically improved Abbassa Nile tilapia strain (G9; GIANT-G9) with a local commercial strain over 12 weeks, followed by exposure to stressors including high ammonia (10 mg TAN/L), elevated temperature (37 °C), and both for three days. The GIANT-G9 showed superior growth, including greater weight gain, final weight, length gain, specific growth rate, and protein efficiency ratio, as well as a lower feed conversion ratio and condition factor compared to the commercial strain. The expression of growth hormone in the brain of the GIANT-G9 increased significantly after 6 weeks, although it slightly decreased after 12 weeks. Growth hormone receptor 1 expression also increased significantly after 6 weeks. Muscle insulin-like growth factors (igf1 and igf2) levels up-regulated significantly only after 12 weeks in the GIANT-G9. Under stress, serum enzymes (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase (ALP)) were significantly higher in the GIANT-G9, while the commercial strain had lower levels. No significant changes were observed in liver ALP activity among stressed strains. Under stress, the GIANT-G9 exhibited marked upregulation of splenic Toll-like receptors (tlr2, tlr9, tlr21), myeloid differentiation primary response protein 88 (myd88), nuclear factor kappa B (nf-κB), interleukin (il) 1β, and il6. Notably, il6 expression was higher than il1β in the spleen, with the opposite pattern in the head kidney. In response to immune stimulation, globulin levels significantly increased in the GIANT-G9 but with similar values to the stressed commercial strain. Myostatin expression increased in the spleen of the stressed GIANT-G9. The commercial strain exhibited the best liver catalase and superoxide dismutase activities under stress, while the GIANT-G9 showed increased liver glutathione-S-transferase (GST) activity after exposure to ammonia and temperature stress. Serum lysozyme activity increased in the stressed commercial strain and under temperature stress in the GIANT-G9 but decreased under other stress conditions. Overall, the stressed commercial strain demonstrated higher survivability than the stressed GIANT-G9. The study revealed significant interactions between strains and stress factors. The GIANT-G9 exhibited higher growth rates but lower antioxidant and immune capacities compared to the commercial strain at the juvenile stage of life and production cycle.
Collapse
Affiliation(s)
- Eman Ahmed Bedir
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt
| | - Mohamed Mohamed Said
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | | | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
| |
Collapse
|
5
|
Kim MS, Yang Z, Lee JS. In silico identification and characterization of microRNAs from rotifers, cladocerans, and copepods. MARINE POLLUTION BULLETIN 2024; 209:117098. [PMID: 39442355 DOI: 10.1016/j.marpolbul.2024.117098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate post-transcription and influence various biological processes across species. Despite various studies of miRNAs in vertebrates, plants, and other organisms, miRNA data in aquatic invertebrates are insufficient. In this study, we identified miRNAs from four aquatic invertebrate species that are widely used in aquatic toxicology: the rotifer Brachionus koreanus, the water flea Daphnia magna, the cyclopoid copepod Paracyclopina nana, and the harpacticoid copepod Tigriopus japonicus, using next-generation sequencing and in silico analysis. We identified total 188, 41, 47, and 100 miRNAs from each species, and target genes were predicted based on 3'-untranslated region information. Target prediction and functional annotation results provided the biological processes of these miRNAs in various development-related mechanisms, signaling transduction, and metabolism-related pathways. Moreover, the network between the miRNAs and their targets concerning defense-related and antioxidant genes suggests the suitability of miRNAs as biomarkers in ecotoxicological studies.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
6
|
Hamed S, El-Kassas S, Abo-Al-Ela HG, Abdo SE, Abou-Ismail UA, Mohamed RA. Temperature and feeding frequency: interactions with growth, immune response, and water quality in juvenile Nile tilapia. BMC Vet Res 2024; 20:520. [PMID: 39558328 PMCID: PMC11571909 DOI: 10.1186/s12917-024-04366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Water temperature and feeding frequency are critical abiotic factors regulating the growth and immune function of aquatic organisms. This study investigated the effects of water temperature and feeding frequency on growth and immune function in Nile tilapia (Oreochromis niloticus) over two months. A total of 360 juvenile fish (average weight: 20.00 ± 1.26 g) were divided into six groups, each with three replicates, based on a combination of three water temperatures (26, 28, and 30 °C) and two feeding frequencies (either 1 or 2 meals per day). RESULTS At 30 ºC and 28 ºC, water electrical conductivity and total dissolved salts increased, while total ammonia nitrogen and dissolved oxygen rose slightly in groups fed twice daily, with a significant interaction between temperature and feeding frequency. The group at 30 ºC with two meals per day showed the highest final body weight (FBW). The interaction between temperature and feeding frequency significantly influenced FBW, total feed intake, and body thickness. Fish at 30 ºC exhibited upregulated hepatic growth hormone receptor 1 and insulin-like growth factor 1, while those at 28 ºC with one meal per day, as well as those at 30 ºC regardless of meal frequency, also showed increased expression of hepatic fatty acid binding protein and intestinal cluster of differentiation 36. Fish at 30 ºC had upregulated leptin levels and downregulated cholecystokinin, while those at 26 ºC displayed the opposite trend, particularly with one meal daily. Higher temperatures significantly boosted serum IgM, superoxide dismutase (SOD), and lysozyme (LYZ) levels, with meal frequency also affecting malondialdehyde, IgM, and SOD levels. Additionally, 30 ºC enhanced the hepatic expression of mucin-like protein (muc), oligo-peptide transporter 1 (pept1), interleukin 1, nf-κB, complement C3, lyz, sod, catalase, and glutathione peroxidase, with twice-daily meals having a more pronounced effect. Conversely, 28 ºC with one meal per day upregulated some of these genes, such as muc, pept1, and sod. CONCLUSIONS Overall, 30 ºC with two meals per day significantly improved the growth and health of juvenile Nile tilapia, while 28 ºC with two meals maintained satisfactory performance.
Collapse
Affiliation(s)
- Sara Hamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Usama A Abou-Ismail
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, 35516, Egypt
| | - Radi A Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
7
|
Yan X, Wei P, Zhang X, Guan J, Li W, Zhang L, Zheng Y, Chen Y, Zhu P, He P, Peng J. miRNA-seq provides novel insight into the response to hyper- and hypo- salinity acclimation in Crassostrea hongkongensis. Gene 2024; 924:148555. [PMID: 38772515 DOI: 10.1016/j.gene.2024.148555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The Hong Kong oyster, Crassostrea hongkongensis, is a significant bivalve species with economic importance. It primarily inhabits the estuarine intertidal zones in southern China, making it susceptible to salinity fluctuations. Consequently, investigating the molecular mechanisms governing salinity regulation in C. hongkongensis is essential. In this study, we conducted miRNA-seq on C. hongkongensis to compare miRNA expression differences under varying salinities (5‰, 25‰, and 35‰). The miRNA sequencing revealed 51 known miRNAs and 95 novel miRNAs across nine small RNA libraries (S5, S25, and S35). Among these miRNAs, we identified 6 down-regulated differentially expressed (DE) miRNAs in response to hypo-salinity stress (5‰), while 1 up-regulated DE miRNA and 5 down-regulated DE miRNAs were associated with hyper-salinity stress (35‰). Additionally, we predicted 931 and 768 potential target genes for hypo- and hyper-salinity stress, respectively. Functional gene annotation indicated that the target genes under hypo-salinity stress were linked to vesicle-mediated transport and metal ion binding. Conversely, those under hyper-salinity stress were primarily involved in signal transduction and metabolic processes. These findings have provided insights into the regulatory role of miRNAs, their potential target genes and associated pathways in oyster hypo- and hyper-salinity stress, which establish a foundation for future studies on the roles of miRNAs in salinity acclimation mechanisms in C. hongkongensis.
Collapse
Affiliation(s)
- Xueyu Yan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, Guangxi 535011, China.
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Xingzhi Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Junliang Guan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Wei Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Li Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Yusi Zheng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Yongxian Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi 530021, China
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi 530021, China.
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi 530021, China.
| |
Collapse
|
8
|
Fouad AM, Abo-Al-Ela HG, Negm EA, Abdelhaseib M, Alian A, Abdelsater N, Said REM, Anwar FAS, Assar DH, Mohamed SAA. Impact of Polyonchobothrium magnum on health and gut microbial ecology of African catfish (Clarias gariepinus): Insights from morphological, molecular, and microbiological analyses. JOURNAL OF FISH DISEASES 2024:e14013. [PMID: 39239791 DOI: 10.1111/jfd.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Parasites pose significant challenges to aquaculture and fisheries industries. Our study focuses on the Polyonchobothrium magnum and African catfish to address a potential health issue in aquaculture, explore host-parasite interactions that can help develop effective management practices to ensure fish health and industry sustainability. P. magnum was isolated from the stomach of African catfish (Clarias gariepinus) as the primary site of infection, with a prevalence of 10%. Most affected fish were heavily infected (8 out of 10). Infection was confirmed by sequencing the PCR-targeted region of the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene, along with light and scanning electron microscopes. The parasite had an elongated scolex with deep bothria, a prominent apical disc wider than the scolex itself, and a four-lobed appearance. The scolex contained a central rostellum divided into two semicircles, bearing 26-30 hooks, with an average of 28. The apical disc had large hooks arranged in four quadrants, with 6-8 hooks each, averaging 7 per quadrant. No neck was observed. Phylogenetic analysis of our sequence showed a 100% match with isolates from Guangzhou, China. In infected fish, the anterior kidney showed increased expression levels of nuclear factor kappa B and lysozyme, but decreased levels of in major histocompatibility complex antigen II. Plasma analysis revealed a significant drop in superoxide dismutase, a rise in interleukin-1 beta, and lower IgM levels compared to non-infected controls. Non-infected fish displayed greater gut microbiota diversity, with dominant families including Moraxellaceae, Enterobacteriaceae, Fusobacteriaceae, and Caulobacteraceae, and prevalent genera such as Acinetobacter, Cetobacterium, and Brevundimonas. In contrast, infected fish exhibited very low diversity, with significantly higher proportions of Enterobacteriaceae (45.99%) and Aeromonadaceae (41.79%) compared to non-infected fish, which had 13.76% and 3.64% respectively. Cetobacterium somerae was prevalent in non-infected fish, while infected fish harboured Aeromonas fluvialis, Plesiomonas shigelloides, and Gallaecimonas xiamenensis. Overall, P. magnum disrupted the immune status and gut microbiota of the host, thereby impacting its health.
Collapse
Affiliation(s)
- Alamira Marzouk Fouad
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, Egypt
- Genetics and Genetic Engineering, Development of Animal Wealth, Faculty of Veterinary Medicine, Egyptian Chinese University, Cairo, Egypt
| | - Eman A Negm
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Maha Abdelhaseib
- Department of Food Hygiene, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Abdallah Alian
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Naser Abdelsater
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Fatma A S Anwar
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sara Abdel-Aal Mohamed
- Department of Parasitology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
He X, Liao Y, Shen Y, Shao J, Wang S, Bao Y. Transcriptomic analysis of mRNA and miRNA reveals new insights into the regulatory mechanisms of Anadara granosa responses to heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101311. [PMID: 39154435 DOI: 10.1016/j.cbd.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Temperature fluctuations resulting from climate change and global warming pose significant threats to various species. The blood clam, Anadara granosa, a commercially important marine bivalve, predominantly inhabits intertidal mudflats that are especially susceptible to elevated temperatures. This vulnerability has led to noticeable declines in the survival rates of A. granosa larvae, accompanied by an increase in malformations. Despite these observable trends, there is a lack of comprehensive research on the regulatory mechanisms underlying A. granosa's responses to heat stress. In this study, we examined the survival rates of A. granosa under varying high temperature conditions, selecting 34 °C as heat stress temperature. Enzyme activity assays have shed light on A. granosa's adaptive response to heat stress, revealing its ability to maintain redox balance and transition from aerobic to anaerobic metabolic pathways. Subsequently, mRNA and miRNA transcriptome analyses were conducted, elucidating several key responses of A. granosa to heat stress. These responses include the upregulation of transcription and protein synthesis, downregulation of proteasome activity, and metabolic pattern adjustments. Furthermore, we identified miRNA-mRNA networks implicated in heat stress responses, potentially serving as valuable candidate markers for A. granosa's heat stress response. Notably, we validated the involvement of agr-miR-3199 in A. granosa's heat stress response through its regulation of the target gene Foxj1. These findings not only deepen our understanding of the molecular mechanisms underlying the blood clam's response to heat stress but also offer valuable insights for enhancing heat stress resilience in the blood clam aquaculture industry. Moreover, they contribute to improved cultivation strategies for molluscs in the face of global warming and have significant implications for the conservation of marine resources and the preservation of ecological balance.
Collapse
Affiliation(s)
- Xin He
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yushan Liao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yiping Shen
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Junfa Shao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yongbo Bao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
10
|
Hamed S, El-Kassas S, Abo-Al-Ela HG, Abdo SE, Al Wakeel RA, Abou-Ismail UA, Mohamed RA. Interactive effects of water temperature and dietary protein on Nile tilapia: growth, immunity, and physiological health. BMC Vet Res 2024; 20:349. [PMID: 39113047 PMCID: PMC11304609 DOI: 10.1186/s12917-024-04198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 08/11/2024] Open
Abstract
Optimizing fish performance depends on several factors, with dietary protein levels and rearing temperature playing important roles. In this study, Nile tilapia fingerlings (Oreochromis niloticus) weighing an average of 20.00 ± 1.26 g were divided into nine groups (in three replicates). Each group was subjected to different water temperatures (26 °C, 28 °C, and 30 °C) and received one of three dietary protein levels (20%, 25%, and 30%) for two months. Our findings indicate that higher temperatures, particularly at 30 °C, increased water electrical conductivity and total dissolved salts, especially noticeable in fish fed 25% or 30% crude protein (CP). Lower total ammonia nitrogen levels were observed at 28 °C with 25% CP, 30 °C with 30% CP, and 26 °C with 30% CP. Hepatic growth hormone receptor 1 and insulin-like growth factor 1 expression gradually rose with higher dietary CP percentages in fish at 26 °C but declined in those at 30 °C, albeit remaining higher than in the 28 °C groups with 25% CP. Fish at 28 °C showed the best final body weights and growth performance when fed 20% or 25% CP, with no significant difference between these groups. Hepatic leptin expression did not differ significantly among groups, but hepatic fatty acid binding protein expression notably increased in fish fed 30% CP at both 26 °C and 30 °C compared to those at 28 °C with 25% CP. Within the same temperature group, fish fed 30% CP exhibited higher globulin levels, particularly thriving at 28 °C or 30 °C. Hepatic mucin-like protein expression significantly increased across all groups, especially in fish at 30 °C with 30% CP compared to those at 28 °C with 25% CP. Hepatic lysozyme expression also increased notably in fish at 30 °C with 30% CP. Notable changes in superoxide dismutase, catalase, and glutathione peroxidase expression were observed, with the highest serum superoxide dismutase and catalase activities recorded in fish at 30 °C with 25% CP. Overall, dietary protein levels of 25% and 30%, combined with temperatures of 28 °C and 30 °C, yielded favorable outcomes, particularly favoring 28 °C with 25% protein.
Collapse
Affiliation(s)
- Sara Hamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Seham El-Kassas
- Department of Animal Wealth Development, Animal, Poultry and Fish Breeding and Production, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Haitham G Abo-Al-Ela
- Department of Aquaculture, Genetics and Biotechnology, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
- Department of Animal Husbandry and Animal Wealth Development, Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt.
| | - Safaa E Abdo
- Department of Animal Wealth Development, Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Usama A Abou-Ismail
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St, P.O. Box 35516, Mansoura, Egypt
| | - Radi A Mohamed
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
11
|
Phan P, Fogarty CE, Eamens AL, Duke MG, McManus DP, Wang T, Cummins SF. ARGONAUTE2 Localizes to Sites of Sporocysts in the Schistosome-Infected Snail, Biomphalaria glabrata. Genes (Basel) 2024; 15:1023. [PMID: 39202383 PMCID: PMC11353429 DOI: 10.3390/genes15081023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
MicroRNAs (miRNAs) are a class of small regulatory RNA that are generated via core protein machinery. The miRNAs direct gene-silencing mechanisms to mediate an essential role in gene expression regulation. In mollusks, miRNAs have been demonstrated to be required to regulate gene expression in various biological processes, including normal development, immune responses, reproduction, and stress adaptation. In this study, we aimed to establishment the requirement of the miRNA pathway as part of the molecular response of exposure of Biomphalaria glabrata (snail host) to Schistosoma mansoni (trematode parasite). Initially, the core pieces of miRNA pathway protein machinery, i.e., Drosha, DGCR8, Exportin-5, Ran, and Dicer, together with the central RNA-induced silencing complex (RISC) effector protein Argonaute2 (Ago2) were elucidated from the B. glabrata genome. Following exposure of B. glabrata to S. mansoni miracidia, we identified significant expression up-regulation of all identified pieces of miRNA pathway protein machinery, except for Exportin-5, at 16 h post exposure. For Ago2, we went on to show that the Bgl-Ago2 protein was localized to regions surrounding the sporocysts in the digestive gland of infected snails 20 days post parasite exposure. In addition to documenting elevated miRNA pathway protein machinery expression at the early post-exposure time point, a total of 13 known B. glabrata miRNAs were significantly differentially expressed. Of these thirteen B. glabrata miRNAs responsive to S. mansoni miracidia exposure, five were significantly reduced in their abundance, and correspondingly, these five miRNAs were determined to putatively target six genes with significantly elevated expression and that have been previously associated with immune responses in other animal species, including humans. In conclusion, this study demonstrates the central importance of a functional miRNA pathway in snails, which potentially forms a critical component of the immune response of snails to parasite exposure. Further, the data reported in this study provide additional evidence of the complexity of the molecular response of B. glabrata to S. mansoni infection: a molecular response that could be targeted in the future to overcome parasite infection and, in turn, human schistosomiasis.
Collapse
Affiliation(s)
- Phong Phan
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (P.P.); (C.E.F.); (T.W.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Conor E. Fogarty
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (P.P.); (C.E.F.); (T.W.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia;
| | - Mary G. Duke
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (P.P.); (C.E.F.); (T.W.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia; (P.P.); (C.E.F.); (T.W.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
12
|
Gao C, Nie H. Exploring the Heat-Responsive miRNAs and their Target Gene Regulation in Ruditapes philippinarum Under Acute Heat Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:810-826. [PMID: 39046591 DOI: 10.1007/s10126-024-10348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential expression profile of miRNA under acute heat stress and identified a total of 46 known miRNAs and 80 novel miRNAs, three of which were detected to be significantly differentially expressed. We analyzed the functions of target genes regulated by differentially expressed miRNAs (DEMs) of R. philippinarum. The findings of the KEGG enrichment analysis revealed that 29 enriched pathways in the group were subjected to acute heat stress. Notably, fatty acid metabolism, FoxO signaling pathway, TGF-β signaling pathway, and ubiquitin-mediated proteolysis were found to play significant roles in response to acute heat stress. We established a regulatory map of DEMs and their target genes in response to heat stress and constructed the miRNA-mRNA regulation network. This study provides valuable insights into the response of R. philippinarum to high temperature, helping to understand its underlying molecular regulatory mechanisms under high-temperature stress.
Collapse
Affiliation(s)
- Changsheng Gao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
13
|
Liu Y, Dong Z, Chen K, Yang M, Shi N, Liao X. microRNA-mRNA Analysis Reveals Tissue-Specific Regulation of microRNA in Mangrove Clam ( Geloina erosa). BIOLOGY 2023; 12:1510. [PMID: 38132336 PMCID: PMC10740791 DOI: 10.3390/biology12121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Geloina erosa is an important benthic animal in the mangrove, serving as an indicator organism for coastal environmental pollution. This study aimed to investigate the tissue-specific expression of miRNAs and their regulatory roles in predicted targets in G. erosa. Through miRNA sequencing and co-expression network analysis, we extensively studied the miRNA expression in three tissues: gills, hepatopancreas, and muscle. The results revealed a total of 1412 miRNAs, comprising 1047 known miRNAs, and 365 newly predicted miRNAs. These miRNAs exhibited distinct tissue-specific expression patterns. In the miRNA target gene prediction, a total of 7404 potential predicted targets were identified, representing approximately 33% of all unique transcripts associated with miRNAs. Further co-expression network analysis revealed nine modules, each showing a positive correlation with specific tissues (gills, hepatopancreas, or muscle). The blue module showed a significant correlation with gills (r = 0.83, p-value = 0.006), the black module was significantly related to the hepatopancreas (r = 0.78, p-value = 0.01), and the purple module was significantly correlated with muscle (r = 0.83, p-value = 0.006). Within these modules, related miRNAs tended to cluster together, while their correlations with other modules were relatively weak. Functional enrichment analysis was performed on miRNAs and their predicted targets in each tissue. In the gills, miRNAs primarily regulate immune-related genes, substance transport, and cytoskeletal organization. In the hepatopancreas, miRNAs suppressed genes involved in shell formation and played a role in cellular motor activity and metabolism. In muscle, miRNAs participate in metabolism and photoreceptive processes, as well as immune regulation. In summary, this study provides valuable insights into the tissue-specific regulation of miRNAs in G. erosa, highlighting their potential roles in immune response, metabolism, and environmental adaptation. These findings offer important clues for understanding the molecular mechanisms and biological processes in G. erosa, laying the foundation for further validation and elucidation of these regulatory relationships.
Collapse
Affiliation(s)
- Yunqing Liu
- School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (Y.L.); (Z.D.)
| | - Ziheng Dong
- School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (Y.L.); (Z.D.)
| | - Kun Chen
- Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Academy of Marine Science (Guangxi Mangrove Research Center), Guangxi Academy of Science, Beihai 536007, China
| | - Mingliu Yang
- Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Academy of Marine Science (Guangxi Mangrove Research Center), Guangxi Academy of Science, Beihai 536007, China
| | - Nianfeng Shi
- School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China; (Y.L.); (Z.D.)
| | - Xin Liao
- Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Academy of Marine Science (Guangxi Mangrove Research Center), Guangxi Academy of Science, Beihai 536007, China
| |
Collapse
|
14
|
Chen H, Wang L, Wang L, Zhang H, Wang H, Song L. Synergistic modulation of neuroendocrine-inflammation pathway by microRNAs facilitates intertidal adaptation of molluscs. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109165. [PMID: 37839542 DOI: 10.1016/j.fsi.2023.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Neuroendocrine-immune system is an evolution-conserved regulatory network in maintaining the homeostasis of animals. While knowledge on the roles of neuroendocrine-immune system in the disease and stress responses of organisms is growing, the ecological roles of neuroendocrine-immune system, especially how it shapes the unique lifestyle of organisms remain insufficiently investigated. As an endemic and dominant mollusc in intertidal region, oysters have evolved with a primitive neuroendocrine-immune system and with a sessile lifestyle. Recently, a novel neuroendocrine-immune pathway, Ca2+/calmodulin (CaM)-nitrite oxide synthase (NOS)/nitrite oxide (NO)-tumor necrosis factor (TNF) pathway, is identified in oysters and found altered dynamically during aerial exposure, one common but challenging stresses for intertidal organisms and a decisive factor shaping their habitat. Since the pathway proves fatal in prolonged aerial exposure, we hypothesized that the activation/deactivation of pathway could be strictly modulated in adaptation to the sessile lifestyle of oysters. Here, a synergistic modulation on the Ca2+/CaM-NOS/NO-TNF pathway by four members of miR-92 family and two oyster-specific miRNAs was identified, which further hallmarks the resilience and survival strategy of oysters to aerial exposure. Briefly, these six miRNAs were down-regulating CgCaM24243 post-transcriptionally and deactivating the pathway during the early-stage of stress. However, a robust recession of these miRNAs occurred at the late-stage of stress, resulting in the reactivation of pathway and overwhelming accumulation of cytokines. These results demonstrated a complicated interaction between miRNAs and ancient neuroendocrine-immune system, which facilitates the environmental adaptation of intertidal oysters and provides novel insight on the function and evolution of neuroendocrine-immune system in ecological context.
Collapse
Affiliation(s)
- Hao Chen
- Center of Deep Sea Research, and CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Huan Zhang
- Center of Deep Sea Research, and CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hao Wang
- Center of Deep Sea Research, and CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laoshan Laboratory, Qingdao, 266235, China.
| |
Collapse
|
15
|
Shiry N, Derakhshesh N, Alavinia SJ, Pouladi M, Falco F, Faggio C. Anodonta cygnea, a freshwater swan mussel, exposed to diazinon: toxicity thresholds in behaviour and physiology. Vet Res Commun 2023; 47:1303-1319. [PMID: 36763184 DOI: 10.1007/s11259-023-10078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
Swan mussels (Anodonta cygnea) have been suggested as suitable bioindicators for the presence of pollutants in the environment. Application of the physiological and behavioral markers in these sessile species can be beneficial for environmental monitoring. The present study aimed to investigate the relationship between the behavioral disorders of movement and siphoning associated with the inhibition of tissue Acetylcholinesterase (AChE). For experiments, overally 120 bivalves of Anodonta cygnea (mean total length 80.33 ± 6.7 mm) were transported from the agricultural drains and canals in Sari county (Mazandaran Province, Iran) to our laboratory. First, the LC50-96 h of diazinon was estimated according to the Organization for Economic Co-operation and Development (OECD 1992) guideline with static water conditions. The sub-lethal toxicity pesticide experiments were conducted on the basis of the lowest observed effect concentration (LOEC) and the maximum acceptable toxicant concentration (MATC). The LC50-96 h, LOEC, and MATC values of diazinon were 85.2, 42.1, and 8.5 mg L- 1, respectively. Based on the observations of mussels' movement, the burrowing and displacement decreased with the concentration of toxicant in water. Moreover, the presence of diazinon in water and its exposure to experimental animals significantly reduces their siphoning rate. The RDA showed that the AChE activity had a higher correlation with the siphoning behavior than the movement behavior. The comparison of enzyme activity at different exposure and recovery times showed that there was a significant difference among the groups affected by the consumed pesticide (p = 0.001, between contrasts). The most remarkable morphometric characteristic was the siphon opening that was inversely correlated with the enzymatic activity. Studies in bioethics might benefit from paying attention to these traits that are directly related to the level of toxicity and behavioral adaptations required for animal survival.
Collapse
Affiliation(s)
- Nima Shiry
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran
| | - Negin Derakhshesh
- Iran Fisheries Organization, Administration of Khuzestan Province, Abadan, Iran
| | - Seyed Jalil Alavinia
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
- Department of Aquatic Animal Health, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mojtaba Pouladi
- Iran Fisheries Organization, Administration of Bushehr Province, Bushehr, Iran
| | - Francesca Falco
- National Research Council, Institute for Biological Resources and Marine Biotechnology (IRBIM), Mazara del Vallo, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
16
|
Chen X, Qiu L, Si X, Zhang X, Guo B, Liao Z, Yan X, Qi P. Exploring the Role of a Novel Interleukin-17 Homolog from Invertebrate Marine Mussel Mytilus coruscus in Innate Immune Response: Is Negative Regulation by Mc-Novel_miR_145 the Key? Int J Mol Sci 2023; 24:ijms24065928. [PMID: 36983002 PMCID: PMC10055819 DOI: 10.3390/ijms24065928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Interleukin-17 (IL-17) represents a class of proinflammatory cytokines involved in chronic inflammatory and degenerative disorders. Prior to this study, it was predicted that an IL-17 homolog could be targeted by Mc-novel_miR_145 to participate in the immune response of Mytilus coruscus. This study employed a variety of molecular and cell biology research methods to explore the association between Mc-novel_miR_145 and IL-17 homolog and their immunomodulatory effects. The bioinformatics prediction confirmed the affiliation of the IL-17 homolog with the mussel IL-17 family, followed by quantitative real-time PCR assays (qPCR) to demonstrate that McIL-17-3 was highly expressed in immune-associated tissues and responded to bacterial challenges. Results from luciferase reporter assays confirmed the potential of McIL-17-3 to activate downstream NF-κb and its targeting by Mc-novel_miR_145 in HEK293 cells. The study also produced McIL-17-3 antiserum and found that Mc-novel_miR_145 negatively regulates McIL-17-3 via western blotting and qPCR assays. Furthermore, flow cytometry analysis indicated that Mc-novel_miR_145 negatively regulated McIL-17-3 to alleviate LPS-induced apoptosis. Collectively, the current results showed that McIL-17-3 played an important role in molluscan immune defense against bacterial attack. Furthermore, McIL-17-3 was negatively regulated by Mc-novel_miR_145 to participate in LPS-induced apoptosis. Our findings provide new insights into noncoding RNA regulation in invertebrate models.
Collapse
Affiliation(s)
- Xinglu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Longmei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Xirui Si
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Xiaolin Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| |
Collapse
|
17
|
Pagano M, Fabrello J, Multisanti CR, Zicarelli G, Ciscato M, Boldrin F, Giacobbe S, Matozzo V, Faggio C. A first insight into haemocytes of Pinctada imbricata radiata: A morpho-functional characterization. Microsc Res Tech 2023; 86:368-377. [PMID: 36579679 DOI: 10.1002/jemt.24278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
The pearl oyster Pinctada imbricata radiata (Leach, 1814), from the Pacific Ocean, was one of the first species to reach via Suez the Mediterranean, colonizing the eastern basin and recently spreading to the western. The species showed to be able to adapt to a wide range of climatic, hydrological, and ecological conditions. Since 2000 it reached the Strait of Messina, where is now infesting the transitional waters of the oriented natural reserve "Laguna di Capo Peloro." Due to such resistance and adaptation ability, various assays were performed. Haemocyte morpho-functional aspects were evaluated in haemolymph samples fixed with 1% and 2% glutaraldehyde for optical and electron microscopy (TEM). The following assays were carried out: cell characterization using several dyes, detection of intra- and extracellular lipids, the capability of phagocytosis using the yeast Saccharomyces cerevisiae and to produce superoxide anion (O2- ). Detection of several enzymes, such as acid and alkaline phosphatase, arylsulfatase, chloro-acetylesterase and β-glucuronidase was also assessed. Cell count was demonstrated to be abundant with a mean of 8.263 × 106 mm2 ± 0.935 × 106 (SD). Two main cell populations were noticed: granulocytes and hyalocytes, both competent for phagocytosis, to produce O2- , and characterized by lipids. Based on the granule analysis, enzymatic activity was also demonstrated. The observations under TEM confirmed all the results obtained. This study supports the hypothesis that P. imbricata radiata can be usefully employed as a model organism in environmental biomonitoring. Moreover, since the species represent potential threats to native species and ecosystems, further insights into its biological adaptations in invaded ecosystems are recommended.
Collapse
Affiliation(s)
- Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giorgia Zicarelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Ciscato
- Department of Biology, University of Padova, Padova, Italy
| | | | - Salvatore Giacobbe
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
18
|
Martyniuk V, Khoma V, Matskiv T, Yunko K, Gnatyshyna L, Stoliar O, Faggio C. Combined effect of microplastic, salinomycin and heating on Unio tumidus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104068. [PMID: 36680920 DOI: 10.1016/j.etap.2023.104068] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microplastic (MP) and heating (T) suspected to modulate biological effects of aquatic contaminants. Salinomycin (Sal) is veterinary antibiotic and anticancer agent. The goal of this study was to examine the multistress effect of MP, Sal and T on the bioindicator bivalve mollusc. The Unio tumidus were treated with MP (1 mg L-1), Sal (0.6 µg L-1), their combination under 18° C (Mix) and 25° C (MixT) for 14 days. The digestive glands were analyzed. MP and Sal did not cause changes of Mn- and Cu,Zn-SOD, lipid peroxidation and Cyp-450-depended EROD levels, whereas catalase, GST and protein carbonyls (Sal-group) increased compared to control. In the Mix-group, enzymes, particularly EROD and GST (by 34% and 115% respectively) were up-regulated. However, in the MixT-group, they were corresponding to control or lesser (EROD, catalase). Our findings emphasize the need to take into account multistress interactions in the MP environmental risk assessment.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine; I. Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Kateryna Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine; I. Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 S Agata -Messina, Italy.
| |
Collapse
|
19
|
Farag MR, Abo-Al-Ela HG, Alagawany M, Azzam MM, El-Saadony MT, Rea S, Di Cerbo A, Nouh DS. Effect of Quercetin Nanoparticles on Hepatic and Intestinal Enzymes and Stress-Related Genes in Nile Tilapia Fish Exposed to Silver Nanoparticles. Biomedicines 2023; 11:663. [PMID: 36979642 PMCID: PMC10045288 DOI: 10.3390/biomedicines11030663] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Recently, nanotechnology has become an important research field involved in the improvement of animals' productivity, including aquaculture. In this field, silver nanoparticles (AgNPs) have gained interest as antibacterial, antiviral, and antifungal agents. On the other hand, their extensive use in other fields increased natural water pollution causing hazardous effects on aquatic organisms. Quercetin is a natural polyphenolic compound of many plants and vegetables, and it acts as a potent antioxidant and therapeutic agent in biological systems. The current study investigated the potential mitigative effect of quercetin nanoparticles (QNPs) against AgNPs-induced toxicity in Nile tilapia via investigating liver function markers, hepatic antioxidant status, apoptosis, and bioaccumulation of silver residues in hepatic tissue in addition to the whole-body chemical composition, hormonal assay, intestinal enzymes activity, and gut microbiota. Fish were grouped into: control fish, fish exposed to 1.98 mg L-1 AgNPs, fish that received 400 mg L-1 QNPs, and fish that received QNPs and AgNPs at the same concentrations. All groups were exposed for 60 days. The moisture and ash contents of the AgNP group were significantly higher than those of the other groups. In contrast, the crude lipid and protein decreased in the whole body. AgNPs significantly increased serum levels of ALT, AST, total cholesterol, and triglycerides and decreased glycogen and growth hormone (*** p < 0.001). The liver and intestinal enzymes' activities were significantly inhibited (*** p < 0.001), while the oxidative damage liver enzymes, intestinal bacterial and Aeromonas counts, and Ag residues in the liver were significantly increased (*** p < 0.001, and * p < 0.05). AgNPs also significantly upregulated the expression of hepatic Hsp70, caspase3, and p53 genes (* p < 0.05). These findings indicate the oxidative and hepatotoxic effects of AgNPs. QNPs enhanced and restored physiological parameters and health status under normal conditions and after exposure to AgNPs.
Collapse
Affiliation(s)
- Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Haitham G. Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud M. Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Stefano Rea
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Doaa S. Nouh
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
20
|
Dong F, Zheng M, Wang H, Jing C, He J, Liu S, Zhang W, Hu F. Comparative transcriptome analysis reveals immunotoxicology induced by three organic UV filters in Manila clam (Ruditapes philippinarum). MARINE POLLUTION BULLETIN 2022; 185:114313. [PMID: 36327937 DOI: 10.1016/j.marpolbul.2022.114313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Benzophenone-3 (BP-3), 4-methyl-benzylidene camphor (4-MBC) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are commonly used organic ultraviolet (UV) filters and are frequently detected in water environments. In the present study, we studied the potential adverse impacts of UV filter exposures in Ruditapes philippinarum by investigating transcriptomic profiles and non-specific immune enzyme activities. Transcriptome analysis showed that more genes were differentially regulated in EHMC-treated group, and down-regulated genes (2009) were significantly more than up-regulated ones (410) at day 7. Function annotation revealed that pathways "immune system", "cell growth and death" and "infectious diseases" were significantly enriched. Generally, combined qPCR and biochemical analyses demonstrated that short-term exposure to low dose of UV filters could activate immune responses, whereas the immune system would be restrained after prolonged exposure. Taken together, the present study firstly demonstrated the immunotoxicology induced by BP-3, 4-MBC and EHMC on R. philippinarum, indicating their potential threats to the survival of marine bivalves.
Collapse
Affiliation(s)
- Feilong Dong
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyan Zheng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Jing
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiabo He
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shangshu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
21
|
Sangkham S, Faikhaw O, Munkong N, Sakunkoo P, Arunlertaree C, Chavali M, Mousazadeh M, Tiwari A. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. MARINE POLLUTION BULLETIN 2022; 181:113832. [PMID: 35716489 DOI: 10.1016/j.marpolbul.2022.113832] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are emerging environmental pollutants, having a major ecotoxicological concern to humans and many other biotas, especially aquatic animals. The physical and chemical compositions of MPs majorly determine their ecotoxicological risks. However, comprehensive knowledge about the exposure routes and toxic effects of MPs/NPs on animals and human health is not fully known. Here this review focuses on the potential exposure routes, human health impacts, and toxicity response of MPs/NPs on human health, through reviewing the literature on studies conducted in different in vitro and in vivo experiments on organisms, human cells, and the human experimental exposure models. The current literature review has highlighted ingestion, inhalation, and dermal contacts as major exposure routes of MPs/NPs. Further, oxidative stress, cytotoxicity, DNA damage, inflammation, immune response, neurotoxicity, metabolic disruption, and ultimately affecting digestive systems, immunology, respiratory systems, reproductive systems, and nervous systems, as serious health consequences.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand.
| | - Orasai Faikhaw
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Pornpun Sakunkoo
- Department of Environmental Health, Occupational Health and Safety, Faculty of Public Health, Khon Kaen University, Muang District, Khon Kaen 40002, Thailand.
| | - Chumlong Arunlertaree
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science and Technology, Alliance University, Chandapura-Anekal Main Road, Bengaluru 562106, Karnataka, India
| | - Milad Mousazadeh
- Student research committee, Qazvin University of Medical Sciences, Qazvin, Iran; Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland; Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio, Finland
| |
Collapse
|
22
|
Zhao C, Xie R, Qian Q, Yan J, Wang H, Wang X. Triclosan induced zebrafish immunotoxicity by targeting miR-19a and its gene socs3b to activate IL-6/STAT3 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152916. [PMID: 34998771 DOI: 10.1016/j.scitotenv.2022.152916] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
As a broad-spectrum antibacterial agent, triclosan (TCS) has been confirmed to possess potential immunotoxicity to organisms, but the underlying mechanisms remains unclear. Herein, with the aid of transgenic zebrafish strains Tg (coro1A: EGFP) and Tg (rag2: DsRed), we intuitively observed acute TCS exposure caused the drastic differentiation, abnormal development and distribution of innate immune cells, as well as barriers to formation of adaptive immune T cells. These abnormalities implied occurrence of the cytokine storm, which was further evidenced by expression changes of immune-related genes, and functional biomarkers. Based on transcriptome deep sequencing, target gene prediction and dual luciferase validation, the highly conservative and up-regulated miR-19a was chosen as the research target. Under TCS exposure, miR-19a up-regulation triggered down-regulation of its target gene socs3b, and simultaneously activated the downstream IL-6/STAT3 signaling pathway. Artificial over-expression and knock-down of miR-19a was realized by microinjecting agomir and antagomir, respectively, in 1-2-cell embryos. The miR-19a up-regulation inhibited socs3b expression to activate IL-6/STAT3 pathway, and yielded abnormal changes in the functional cytokine biomarkers, along with the sharp activation of immune responses. These findings disclose the molecular mechanisms regarding TCS-induced immunotoxicity, and offer important theoretical guidance for healthy safety evaluation and disease early warning from TCS pollution.
Collapse
Affiliation(s)
- Chenxi Zhao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruihui Xie
- Food & Drug Inspection and Testing Center of Puyang City, Puyang 457000, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuedong Wang
- College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
23
|
Hu Z, Song H, Feng J, Zhou C, Yang MJ, Shi P, Yu ZL, Li YR, Guo YJ, Li HZ, Wang SY, Xue JH, Zhang T. Genome-wide analysis of the hard clam mitogen-activated protein kinase kinase gene family and their transcriptional profiles under abiotic stress. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105606. [PMID: 35316650 DOI: 10.1016/j.marenvres.2022.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Mitogen-activated protein kinase kinase (MAPKK) was the hub component of the Mitogen-activated protein kinase (MAPK) signaling pathway and played an important role in the cellular response to environmental stress. In this study, we identified five MmMAPKK genes in hard clam Mercenaria mercenaria and found that all MmMAPKK genes contain a conserved protein kinase domain. The MmMAPKK genes derived from dispersed duplication were unevenly distributed in three chromosomes. Although the genome size was highly variable among different bivalve mollusks, the number of MAPKK genes was relatively stable. Phylogenetic analysis showed that bivalve MAPKK was divided into five clades, and amino acid sequences of MAPKK from the same clade consisted of similar conserved motifs. The syntenic analysis demonstrated that MmMAPKKs had the highest number of homologous gene pairs with Cyclina sinensis. MmMAPKKs were ubiquitously expressed in all examined tissues, and all MmMAPKK genes were highly expressed in the ovary. MmMAPKK genes showed stress-specific expression under envirionmental stress. MmMAPKK7 showed an upregulated in heat and heat plus hypoxia stress while MmMAPKK1 showed an upregulated in hypoxic stress groups. Dynamic changes of MmMAPKK7, MmMAPKK6 and MmMAPKK1 in hemocytes were observed in response to air exposure. MmMAPKK4 significantly downregulated after air exposure for five days. MmMAPKK7 and MmMAPKK6 might participate in adaptation to low salinity stress. Our results provided useful information about MAPKK and laid a foundation for further studies on MAPKK evolution in the bivalve.
Collapse
Affiliation(s)
- Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Jie Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Zheng-Lin Yu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yong-Ren Li
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yong-Jun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Hai-Zhou Li
- Shandong Fu Han Ocean Sci-Tech Co., Ltd, Haiyang, 265100, China
| | - Su-Yao Wang
- Qingdao No.58 High School Shandong Province, Qingdao, 262000, China
| | - Jiang-Han Xue
- The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| |
Collapse
|
24
|
Bai CM, Zhang X, Venier P, Gu L, Li YN, Wang CM, Xin LS, Rosani U. Paired miRNA and RNA sequencing provides a first insight into molecular defense mechanisms of Scapharca broughtonii during ostreid herpesvirus-1 infection. FISH & SHELLFISH IMMUNOLOGY 2022; 122:225-233. [PMID: 35150830 DOI: 10.1016/j.fsi.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Ostreid herpesvirus 1 (OsHV-1) infection caused mortalities with relevant economic losses in bivalve aquaculture industry worldwide. Initially described as an oyster pathogen, OsHV-1 can infect other bivalve species, like the blood clam Scapharca broughtonii. However, at present, little is known about the molecular interactions during OsHV-1 infection in the blood clam. We produced paired miRNA and total RNA-seq data to investigate the blood clam transcriptional changes from 0 to 72 h after experimental infection with OsHV-1. High-throughput miRNA sequencing of 24 libraries revealed 580 conserved and 270 new blood clam miRNAs, whereas no genuine miRNA was identified for OsHV-1. Total 88-203 differently expressed miRNAs were identified per time point, mostly up-regulated and mainly targeting metabolic pathways. Most of the blood clam mRNAs, in contrast, were down-regulated up to 60 h post-injection, with the trend analysis revealing the activation of immune genes only when comparing the early and latest stage of infection. Taken together, paired short and long RNA data suggested a miRNA-mediated down-regulation of host metabolic and energetic processes as a possible antiviral strategy during early infection stages, whereas antiviral pathways appeared upregulated only at late infection.
Collapse
Affiliation(s)
- Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiang Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries, Tianjin Agriculture University, Tianjin, 300380, China
| | - Paola Venier
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Li Gu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries, Tianjin Agriculture University, Tianjin, 300380, China
| | - Ya-Nan Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chong-Ming Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lu-Sheng Xin
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Umberto Rosani
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
25
|
Mohammadi G, Karimi AA, Hafezieh M, Dawood MAO, Abo-Al-Ela HG. Pistachio hull polysaccharide protects Nile tilapia against LPS-induced excessive inflammatory responses and oxidative stress, possibly via TLR2 and Nrf2 signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2022; 121:276-284. [PMID: 34968712 DOI: 10.1016/j.fsi.2021.12.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 05/26/2023]
Abstract
Polysaccharides are polymeric carbohydrates found in living organisms, which have several physiological functions. In the present study, Nile tilapia (Oreochromis niloticus) were fed diets containing three levels (0%, 0.2%, and 0.6%) of Pistacia vera hull polysaccharide (PHP) for 45 days and then injected with PBS or bacterial lipopolysaccharide (LPS). Before the LPS challenge, Nile tilapia fed 0.2% and 0.6% PHP showed significantly increased mean final weight and weight gain compared to those received 0% PHP. The specific growth rate and feed conversion ratio were significantly improved in the treatment fed 0.6% PHP compared to the remaining groups. After LPS challenge, the activities of liver antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase exhibited the highest values in the 0.6% PHP group. Malondialdehyde (MDA) levels were significantly augmented in the model (fed 0% PHP diet and injected with LPS) and 0.2% PHP groups compared to the control. However, MDA showed decreased levels in the 0.6% PHP group. LPS induced higher mRNA and/or protein levels of Toll-like receptor 2 (TLR2), nuclear factor kappa B (NF-κB), myeloid differentiation primary response protein 88 (Myd88), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interferon γ (IFN-γ) in Nile tilapia liver. However, PHP administration significantly upregulated the expression of interleukin 10 (IL-10), nuclear erythroid 2-related factor 2 (Nrf2), SOD, and CAT, but markedly suppressed TLR2, NF-κB, Myd88, and pro-inflammatory cytokine expression and/or production in the liver. The findings of the current study indicated that PHP has positive effects on growth performance, immune gene-related expression, and antioxidative activities. We can conclude that PHP can attenuate LPS-induced oxidative stress and inflammatory responses in vivo, possibly via induction of Nrf2 and blockade of TLR2/Myd88/NF-κB pathways in Nile tilapia.
Collapse
Affiliation(s)
- Ghasem Mohammadi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran; Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Akbar Karimi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahmoud Hafezieh
- Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43518, Egypt.
| |
Collapse
|
26
|
Between the Devil and the Deep Blue Sea: Non-Coding RNAs Associated with Transmissible Cancers in Tasmanian Devil, Domestic Dog and Bivalves. Noncoding RNA 2021; 7:ncrna7040072. [PMID: 34842768 PMCID: PMC8628904 DOI: 10.3390/ncrna7040072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Currently there are nine known examples of transmissible cancers in nature. They have been observed in domestic dog, Tasmanian devil, and six bivalve species. These tumours can overcome host immune defences and spread to other members of the same species. Non-coding RNAs (ncRNAs) are known to play roles in tumorigenesis and immune system evasion. Despite their potential importance in transmissible cancers, there have been no studies on ncRNA function in this context to date. Here, we present possible applications of the CRISPR/Cas system to study the RNA biology of transmissible cancers. Specifically, we explore how ncRNAs may play a role in the immortality and immune evasion ability of these tumours.
Collapse
|
27
|
Świacka K, Smolarz K, Maculewicz J, Michnowska A, Caban M. Exposure of Mytilus trossulus to diclofenac and 4'-hydroxydiclofenac: Uptake, bioconcentration and mass balance for the evaluation of their environmental fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148172. [PMID: 34412396 DOI: 10.1016/j.scitotenv.2021.148172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DIC) is one of the most widely consumed drugs in the world, and its presence in the environment as well as potential effects on organisms are the subject of numerous recent scientific works. However, it is becoming clear that the risk posed by pharmaceuticals in the environment needs to be viewed more broadly and their numerous derivatives should also be considered. In fact, already published results confirm that the transformation products of NSAIDs including DIC may cause a variety of potentially negative effects on marine organisms, sometimes showing increased biological activity. To date, however, little is known about bioconcentration of DIC and DIC metabolites and the role of sex in this process. Therefore, the present study for the first time evaluates sex-related differences in DIC bioconcentration and estimates bioconcentration potential of DIC metabolite, 4-OH DIC, in the Mytilus trossulus tissues. In the experiment lasting 7 days, mussels were exposed to DIC and 4-OH DIC at concentrations 68.22 and 20.85 μg/L, respectively. Our study confirms that DIC can be taken up by organisms not only in its native form, but also as a metabolite, and metabolised further. Furthermore, in the present work, mass balance was performed and the stability of both studied compounds under experimental conditions was analysed. Obtained results suggest that DIC is more stable than its derivative under the tested conditions, but further analyses of the environmental fate of these compounds are necessary.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Alicja Michnowska
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
28
|
Burgos-Aceves MA, Abo-Al-Ela HG, Faggio C. Impact of phthalates and bisphenols plasticizers on haemocyte immune function of aquatic invertebrates: A review on physiological, biochemical, and genomic aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126426. [PMID: 34166954 DOI: 10.1016/j.jhazmat.2021.126426] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The invertebrate innate immunity is a crucial characteristic that represents a valuable basis for studying common biological responses to environmental pollutants. Cell defence mechanisms are key players in protecting the organism from infections and foreign materials. Many haemocyte-associated immunological parameters have been reported to be immunologically sensitive to aquatic toxins (natural or artificial). Environmental plastic pollution poses a global threat to ecosystems and human health due to plastic vast and extensive use as additives in various consumer products. In recent years, studies have been done to evaluate the effects of plasticizers on humans and the environment, and their transmission and presence in water, air, and indoor dust, and so forth. Hence, the development of biomarkers that evaluate biological responses to different pollutants are essential to obtain important information on plasticizers' sublethal effects. This review analyses the current advances in the adverse effects of plasticizers (as emerging contaminants), such as immunological response disruption. The review also shows a critical analysis of the effects of the most widely used plasticizers on haemocytes. The advantages of an integrative approach that uses chemical, genetic, and immunomarker assays to monitor toxicity are highlighted. All these factors are imperative to ponder when designing toxicity studies to recognize the potential effects of plasticizers like bisphenol A and phthalates.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
29
|
Burgos-Aceves MA, Migliaccio V, Di Gregorio I, Paolella G, Lepretti M, Faggio C, Lionetti L. 1,1,1-trichloro-2,2-bis (p-chlorophenyl)-ethane (DDT) and 1,1-Dichloro-2,2-bis (p, p'-chlorophenyl) ethylene (DDE) as endocrine disruptors in human and wildlife: A possible implication of mitochondria. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103684. [PMID: 34052433 DOI: 10.1016/j.etap.2021.103684] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
1,1,1-trichloro-2,2-bis (p-chlorophenyl)-ethane (DDT) and its main metabolite 1,1-Dichloro-2,2-bis (p, p'-chlorophenyl) ethylene (DDE) act as endocrine disruptors in humans and wildlife. Immunomodulatory functions have also been attributed to both xenobiotics. DDT was banned in the 1970s due to its toxicity, but it is still produced and used for indoor residual spraying with disease vector control purposes. Due to their persistence and lipophilic properties, DDT and DDE can bioaccumulate through the food chain, being stored in organisms' adipose depots. Their endocrine disruptor function is mediated by agonist or antagonist interaction with nuclear receptors. Present review aimed to provide an overview of how DDT and DDE exposure impacts reproductive and immune systems with estrogen-disrupting action in humans and wildlife. Studies showing DDT and DDE impact on mitochondrial function and apoptosis pathway will also be reviewed, suggesting the hypothesis of direct action on mitochondrial steroid receptors.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Migliaccio
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Ilaria Di Gregorio
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Lillà Lionetti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
30
|
Capo X, Rubio M, Solomando A, Alomar C, Compa M, Sureda A, Deudero S. Microplastic intake and enzymatic responses in Mytilus galloprovincialis reared at the vicinities of an aquaculture station. CHEMOSPHERE 2021; 280:130575. [PMID: 33957472 DOI: 10.1016/j.chemosphere.2021.130575] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture is a potential source of microplastics (MPs) that could be strong stressors for marine organisms. In this study, we evaluated the effects of MPs derived from aquaculture in antioxidant defences and oxidative stress markers in gills of Mytilus galloprovincialis. Mussels were distributed in three areas with different impacts: inside aquaculture cages, Control 1 (located inside Andratx harbour) and Control 2 (located in a no-anthropized area). Samples were obtained along three different time periods in May (T0), July (T60) and in September (T120). At each sampling period, mussels' biometric measurements were taken, and tissue samples were kept frozen for biochemical determinations and to determine the intake of MPs. An increase in MPs intake was detected throughout the study, and this increase was significantly higher in samples from the aquaculture cages. Similarly, antioxidant enzyme activities (catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase) were significantly higher in samples from cages at T120. Additionally, a similar tendency was observed in glutathione-s-transferase, with a higher activity in the aquaculture cages at T60 and T120. Malondialdehyde and carbonyl protein derivates as a marker of oxidative damage were also measured and samples from aquaculture cages presented higher oxidative stress markers, mainly in T120. In conclusion, living in environments exposed to aquaculture activities at sea may imply a higher intake of MPs which in turn might cause an antioxidant response in M. galloprovincialis which is not enough to avoid oxidative damage.
Collapse
Affiliation(s)
- X Capo
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain.
| | - M Rubio
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - A Solomando
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain; Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - C Alomar
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - M Compa
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - A Sureda
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - S Deudero
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
31
|
Huang JH, Jiao YH, Li L, Li DW, Li HY, Yang WD. Small RNA analysis of Perna viridis after exposure to Prorocentrum lima, a DSP toxins-producing dinoflagellate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105950. [PMID: 34474269 DOI: 10.1016/j.aquatox.2021.105950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Diarrheic shellfish poisoning toxins (DSP toxins) are a set of the most important phycotoxins produced by some dinoflagellates. Studies have shown that DSP toxins have various toxicities such as genotoxicity, cytotoxicity, and immunotoxicity to bivalve mollusks. However, these toxicities appear decreasing with exposure time and concentration of DSP toxins. The underlying mechanism involved remains unclear. In this study, small RNA sequencing was performed in the digestive gland of the mussel Perna viridis after exposure to DSP toxins-producing dinoflagellate Prorocentrum lima for different time periods. The potential roles of miRNAs in response and detoxification to DSP toxins in the mussel were analyzed. Small RNA sequencing of 12 samples from 72 individuals was conducted by BGISEQ-500. A total of 123 mature miRNAs were identified, including 90 conserved miRNAs and 33 potential novel miRNAs. After exposure to P. lima, multiple important miRNAs displayed some alterations. Further miRNA target prediction revealed some important genes involved in cytoskeleton, apoptosis, complement system and immune stress. qPCR demonstrated that miR-71_5, miR-750_1 and novel_mir4 were significantly up-regulated at 6 h after exposure to P. lima, while miR-100_2 was significantly down-regulated after 96 h of exposure. Accordingly, putative target genes of these differentially expressed miRNAs experienced some changes. After 6 h of DSP toxins exposure, NHLRC2 and C1q-like were significantly down-regulated. After 96 h of DSP toxins exposure, NHLRC2 was significantly up-regulated. It is reasonable to speculate that the mussel P. viridis might respond to DSP toxins through miR-750_1, novel_mir4 and miR-71_5 regulating the expression of relevant target genes involved in apoptosis, cytoskeleton, and immune response, etc. This study might provide new clues to uncover the toxic response of bivalve to DSP toxins and lay a foundation for revealing the roles of miRNAs in the environmental adaptation in shellfish.
Collapse
Affiliation(s)
- Jia-Hui Huang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Yu-Hu Jiao
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Li Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
32
|
Bacha O, Khazri A, Mezni A, Mezni A, Touaylia S. Protective effect of the Spirulina platensis against toxicity induced by Diuron exposure in Mytilus galloprovincialis. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:778-786. [PMID: 34541976 DOI: 10.1080/15226514.2021.1975640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diuron herbicide is widely used for weeds control in many kinds of cultivations. It reaches the waterbodies through various fate routes and can adversely threaten non-target organism. The current study was carried out to evaluate the antioxidant activity of Spirulina as feed additive against the toxicity of Diuron concentrations (40 and 80 µg/L) on the edible mollusk Mytilus galloprovincialis during seven days of exposure. Oxidative stress biomarkers were applied on mussel gills and digestive gland, investigating changes in enzymes activities such as catalase (CAT), Glutathione-S-transferase (GST) and Acetylcholinesterase (AChE) and the Malondialdehyde level (MDA). The obtained results show that diuron altered oxidative stress biomarkers in both organs, gills and digestive gland. Performed principle component analysis (PCA) highlighted relationship between biomarkers involved in functional response. Spirulina platensis supplemented diet (1 mg/L), completely ameliorated diuron-induced oxidative stress in mussel tissues. Thus, Spirulina seems to be a promising microalgae and eco-friendly tool helping the health recovery of aquatic animals subjected to environmental stressors.
Collapse
Affiliation(s)
- Ons Bacha
- Laboratoire de biosurveillance de l'environnement (LBE), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Tunisie
| | - Abdelhafidh Khazri
- Laboratoire de biosurveillance de l'environnement (LBE), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Tunisie
| | - Ali Mezni
- Laboratoire de biosurveillance de l'environnement (LBE), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Tunisie
| | - Amine Mezni
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Samir Touaylia
- Laboratoire de biosurveillance de l'environnement (LBE), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Tunisie
| |
Collapse
|
33
|
Javanshir Khoei A, Rezaei K. Toxicity of titanium nano-oxide nanoparticles (TiO2) on the pacific oyster, Crassostrea gigas: immunity and antioxidant defence. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1864649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Kiadokht Rezaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
34
|
Abo-Al-Ela HG, El-Kassas S, El-Naggar K, Abdo SE, Jahejo AR, Al Wakeel RA. Stress and immunity in poultry: light management and nanotechnology as effective immune enhancers to fight stress. Cell Stress Chaperones 2021; 26:457-472. [PMID: 33847921 PMCID: PMC8065079 DOI: 10.1007/s12192-021-01204-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
The poultry industry plays a significant role in boosting the economy of several countries, particularly developing countries, and acts as a good, cheap, and affordable source of animal protein. A stress-free environment is the main target in poultry production. There are several stressors, such as cold stress, heat stress, high stocking density, and diseases that can affect birds and cause several deleterious changes. Stress reduces feed intake and growth, as well as impairs immune response and function, resulting in high disease susceptibility. These effects are correlated with higher corticosteroid levels that modulate several immune pathways such as cytokine-cytokine receptor interaction and Toll-like receptor signaling along with induction of excessive production of reactive oxygen species (ROS) and thus oxidative stress. Several approaches have been considered to boost bird immunity to overcome stress-associated effects. Of these, dietary supplementation of certain nutrients and management modifications, such as light management, are commonly considered. Dietary supplementations improve bird immunity by improving the development of lymphoid tissues and triggering beneficial immune modulators and responses. Since nano-minerals have higher bioavailability compared to inorganic or organic forms, they are highly recommended to be included in the bird's diet during stress. Additionally, light management is considered a cheap and safe approach to control stress. Changing light from continuous to intermittent and using monochromatic light instead of the normal light improve bird performance and health. Such changes in light management are associated with a reduction of ROS production and increased antioxidant production. In this review, we discuss the impact of stress on the immune system of birds and the transcriptome of oxidative stress and immune-related genes, in addition, how nano-minerals supplementations and light system modulate or mitigate stress-associated effects.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43518, Egypt.
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Rasha A Al Wakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
35
|
Abo-Al-Ela HG. The emerging regulatory roles of noncoding RNAs in immune function of fish: MicroRNAs versus long noncoding RNAs. Mol Genet Genomics 2021; 296:765-781. [PMID: 33904988 DOI: 10.1007/s00438-021-01786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The genome could be considered as raw data expressed in proteins and various types of noncoding RNAs (ncRNAs). However, a large portion of the genome is dedicated to ncRNAs, which in turn represent a considerable amount of the transcriptome. ncRNAs are modulated on levels of type and amount whenever any physiological process occurs or as a response to external modulators. ncRNAs, typically forming complexes with other partners, are key molecules that influence diverse cellular processes. Based on the knowledge of mammalian biology, ncRNAs are known to regulate and control diverse trafficking pathways and cellular activities. Long noncoding RNAs (lncRNAs) notably have diverse and more regulatory roles than microRNAs. Expanding these studies on fish has derived the same conclusion with relevance to other species, including invertebrates, explored the potentials to harness such types of RNA to further understand the biology of such organisms, and opened gates for applying recent technologies, such as RNA interference and delivering micromolecules as microRNAs to living cells and possibly to target organs. These technologies should improve aquaculture productivity and fish health, as well as help understand fish biology.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, 43518, Suez, Egypt.
| |
Collapse
|
36
|
Abo-Al-Ela HG. RNA Interference in Aquaculture: A Small Tool for Big Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4343-4355. [PMID: 33835783 DOI: 10.1021/acs.jafc.1c00268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For decades, the tight regulatory functions of DNA and RNA have been the focus of extensive research with the goal of harnessing RNA molecules (e.g., microRNA and small interfering RNA) to control gene expression and to study biological functions. RNA interference (RNAi) has shown evidence of mediating gene expression, has been utilized to study functional genomics, and recently has potential in therapeutic agents. RNAi is a natural mechanism and a well-studied tool that can be used to silence specific genes. This method is also used in aquaculture as a research tool and to enhance immune responses. RNAi methods do have their limitations (e.g., immune triggering); efficient and easy-to-use RNAi methods for large-scale applications need further development. Despite these limitations, RNAi methods have been successfully used in aquaculture, in particular shrimp. This review discusses the uses of RNAi in aquaculture, such as immune- and production-related issues and the possible limitations that may hinder the application of RNAi in the aquaculture industry. Our challenge is to develop a highly potent in vivo RNAi delivery platform that could complete the desired action with minimal side effects and which can be applied on a large-scale with relatively little expense in the aquaculture industry.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| |
Collapse
|
37
|
The effect of acute heat stress on the innate immune function of rainbow trout based on the transcriptome. J Therm Biol 2021; 96:102834. [PMID: 33627272 DOI: 10.1016/j.jtherbio.2021.102834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/09/2020] [Accepted: 01/02/2021] [Indexed: 01/21/2023]
Abstract
Heat stress is a condition in which the body's homeostasis is disturbed as a result of the rise in water temperature, resulting in the decline or even death of growth, immunity, and other functions. The mechanisms directing this response are not fully understood. To better characterize the effects of acute heat stress on the innate immune function of rainbow trout, we identified differentially regulated messenger RNA (mRNA) and non-coding RNA (ncRNA) in rainbow trout exposed to acute heat stress. Next-generation RNA sequencing and comprehensive bioinformatics analysis were conducted to characterize the transcriptome profiles, including mRNA, microRNA (miRNA), and long non-coding RNA (lncRNA). The head kidney of rainbow trout were exposed to acute heat stress at 22.5 °C for 24 h. A total of 2605 lncRNAs, 214 miRNAs, and 5608 mRNAs were identified as differentially regulated. Among these expressed genes differentially, 45 lncRNAs and 2 target genes, as well as 38 miRNAs and 14 target genes were significantly enriched in the innate immune response of rainbow trout. LncRNA is used as competitive endogenous RNA (ceRNA) to construct the ceRNA-miRNA-mRNA interaction network. Enrichment analysis of the Kyoto encyclopedia of genes and genomes (KEGG) of ceRNA, the differentially expressed genes related to the innate immune function of rainbow trout, were significantly enriched in the signaling pathway mediated by mitogen-activated protein kinase (MAPK). Overall, these analyses showed the effects of heat stress on the innate immune function in rainbow trout at the transcriptome level, providing a theoretical basis to improve the production and breeding of rainbow trout and the selection of new heat-resistant varieties.
Collapse
|
38
|
Impact of Neonicotinoids to Aquatic Invertebrates—In Vitro Studies on Mytilus galloprovincialis: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100801] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of pesticides in agriculture has always had a strong impact on environmental contamination. Since the 1990s, neonicotinoids have grown increasingly more popular, targeting specific receptors for insects, especially bees, which is why the use of some neonicotinoids has been banned. Much is known about the effects they have on insects, but very little about the effect they can have on non-target organisms. Several studies have shown how these neonicotinoids interact negatively with the normal physiology of aquatic organisms. For the genus Mytilus, even though the neonicotinoids did not show an interaction with specific receptors, a chronic and acute exposure to them causes damage. In these animals, a reduced production of byssus, alteration of the normal antioxidant systems and tissue damage have been found. Therefore, an analysis of the entire ecosystem in which the pollutant enters is of great importance in evaluating any possible alterations.
Collapse
|