1
|
Feiler MO, Odiko E, Nie J, Yucel R, Lehman HK, Kulick ER, Spiegel N, Khan AI, Turella J. Pediatric lead exposure and risk of influenza and pneumonia in an underrepresented, urban sample. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178963. [PMID: 40022982 DOI: 10.1016/j.scitotenv.2025.178963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
The present objective was to estimate the association between childhood blood lead concentrations (BLC) and clinical diagnoses of influenza or pneumonia among a large, low-income, underrepresented cohort of children using a retrospective design. Medical records were pulled from the Temple University Hospital System (TUHS) located in inner-city Philadelphia, PA from 2010 to 2020. All children ≤14 years of age with an available lead value in their medical records were included in the analysis (N = 14,217). Lead exposure was measured via BLC as reported in the medical records through screening practices. Respiratory outcomes, influenza and pneumonia, were measured from ICD codes. Log-binomial regression models were fit to estimate the prevalence ratios and 95 % confidence intervals for the associations between BLC and influenza or pneumonia. Poisson regression models were fit to estimate the associations between BLC and counts of influenza or pneumonia recurrence. Additional models examined sexually dimorphic associations between BLC and outcomes. Compared to children with a BLC <1 μg/dL, children with a BLC of 1-3.4 μg/dL had 172 % higher risk (95 % CI: 1.74, 4.59), and children with a BLC ≥3.5 μg/dL had 101 % higher risk (95 % CI: 1.19, 3.39) of pneumonia diagnosis. No statistically significant findings were observed for influenza. Risk for pneumonia was higher among males compared to females, and risk for influenza was stronger among females. Observed findings indicate that underrepresented, impoverished children are at high-risk for these associations, indicating significant public health and clinical implications.
Collapse
Affiliation(s)
- Marina Oktapodas Feiler
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States of America; Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States of America.
| | - Eva Odiko
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States of America
| | - Jing Nie
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States of America
| | - Recai Yucel
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States of America
| | - Heather K Lehman
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - Erin R Kulick
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States of America
| | - Nitzana Spiegel
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States of America
| | - Adil I Khan
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - John Turella
- Bioinformatics Core, Center for Biostatistics and Epidemiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
2
|
Shi X, Wang X, Zhang J, Dang Y, Ouyang C, Pan J, Yang A, Hu X. Associations of mixed metal exposure with chronic kidney disease from NHANES 2011-2018. Sci Rep 2024; 14:13062. [PMID: 38844557 PMCID: PMC11156859 DOI: 10.1038/s41598-024-63858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Metals have been proved to be one of risk factors for chronic kidney disease (CKD) and diabetes, but the effect of mixed metal co-exposure and potential interaction between metals are still unclear. We assessed the urine and whole blood levels of cadmium (Cd), manganese (Mn), lead (Pb), mercury (Hg), and renal function in 3080 adults from National Health and Nutrition Survey (NHANES) (2011-2018) to explore the effect of mixed metal exposure on CKD especially in people with type 2 diabetes mellitus (T2DM). Weighted quantile sum regression model and Bayesian Kernel Machine Regression model were used to evaluate the overall exposure impact of metal mixture and potential interaction between metals. The results showed that the exposure to mixed metals was significantly associated with an increased risk of CKD in blood glucose stratification, with the risk of CKD being 1.58 (1.26,1.99) times in urine and 1.67 (1.19,2.34) times in whole blood higher in individuals exposed to high concentrations of the metal mixture compared to those exposed to low concentrations. The effect of urine metal mixture was elevated magnitude in stratified analysis. There were interactions between urine Pb and Cd, Pb and Mn, Pb and Hg, Cd and Mn, Cd and Hg, and blood Pb and Hg, Mn and Cd, Mn and Pb, Mn and Hg on the risk of CKD in patients with T2DM and no significant interaction between metals was observed in non-diabetics. In summary, mixed metal exposure increased the risk of CKD in patients with T2DM, and there were complex interactions between metals. More in-depth studies are needed to explore the mechanism and demonstrate the causal relationship.
Collapse
MESH Headings
- Humans
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/epidemiology
- Renal Insufficiency, Chronic/urine
- Female
- Male
- Middle Aged
- Nutrition Surveys
- Adult
- Environmental Exposure/adverse effects
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Cadmium/blood
- Cadmium/urine
- Cadmium/adverse effects
- Cadmium/toxicity
- Risk Factors
- Lead/blood
- Lead/urine
- Lead/toxicity
- Metals, Heavy/blood
- Metals, Heavy/urine
- Metals, Heavy/adverse effects
- Metals, Heavy/toxicity
- Aged
- Metals/urine
- Metals/blood
- Metals/adverse effects
- Manganese/urine
- Manganese/blood
- Manganese/adverse effects
- Bayes Theorem
Collapse
Affiliation(s)
- Xiaoru Shi
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Xiao Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Jia Zhang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Ying Dang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Changping Ouyang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Jinhua Pan
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xiaobin Hu
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
3
|
Feiler MO, Kulick ER, Sinclair K, Spiegel N, Habel S, Castello OG. Toxic metals and pediatric clinical immune dysfunction: A systematic review of the epidemiological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172303. [PMID: 38599398 DOI: 10.1016/j.scitotenv.2024.172303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Children are at high risk for exposure to toxic metals and are vulnerable to their effects. Significant research has been conducted evaluating the role of these metals on immune dysfunction, characterized by biologic and clinical outcomes. However, there are inconsistencies in these studies. The objective of the present review is to critically evaluate the existing literature on the association between toxic metals (lead, mercury, arsenic, and cadmium) and pediatric immune dysfunction. METHODS Seven databases (PubMed (NLM), Embase (Elsevier), CINAHL (Ebsco), Web of Science (Clarivate Analytics), ProQuest Public Health Database, and ProQuest Environmental Science Collection) were searched following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in February 2024. Rayaan software identified duplicates and screened by title and abstract in a blinded and independent review process. The remaining full texts were reviewed for content and summarized. Exclusions during the title, abstract, and full-text reviews included: 1) not original research, 2) not epidemiology, 3) did not include toxic metals, 4) did not examine an immune health outcome, or 5) not pediatric (>18 years). This systematic review protocol followed the PRISMA guidelines. Rayaan was used to screen records using title and abstract by two blinded and independent reviewers. This process was repeated for full-text article screening selection. RESULTS The search criteria produced 7906 search results; 2456 duplicate articles were removed across search engines. In the final review, 79 studies were included which evaluated the association between toxic metals and outcomes indicative of pediatric immune dysregulation. CONCLUSIONS The existing literature suggests an association between toxic metals and pediatric immune dysregulation. Given the imminent threat of infectious diseases demonstrated by the recent COVID-19 epidemic in addition to increases in allergic disease, understanding how ubiquitous exposure to these metals in early life can impact immune response, infection risk, and vaccine response is imperative.
Collapse
Affiliation(s)
- Marina Oktapodas Feiler
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, United States of America; Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America.
| | - Erin R Kulick
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Krystin Sinclair
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Nitzana Spiegel
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Sonia Habel
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Olivia Given Castello
- Charles Library, Temple University Libraries, Temple University, United States of America
| |
Collapse
|
4
|
Harshitha P, Bose K, Dsouza HS. Influence of lead-induced toxicity on the inflammatory cytokines. Toxicology 2024; 503:153771. [PMID: 38452865 DOI: 10.1016/j.tox.2024.153771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Lead (Pb2+) is a hazardous heavy metal that is pervasive in the human environment as a result of anthropogenic activity, and poses serious health risks, particularly in children. Due to its innumerable unique physical and chemical properties, it has various applications; therefore, it has become a common environmental pollutant. Lead may cause oxidative stress, and accumulating evidence indicates that oxidative stress influences the pathophysiology of lead poisoning, also called plumbism. The immune system is continually exposed to various environmental pathogens and xenobiotics, including heavy metals such as lead, and appears to be one of the most vulnerable targets. After being exposed to lead, cells are subjected to oxidative stress as a result of reactive oxygen species (ROS) production. When the generation and consumption of ROS are out of equilibrium, various cell structures, particularly phospholipids are disrupted leading to lipid peroxidation. Various inflammatory signalling pathways are activated as a consequence, along with reduced disease resistance, inflammation, autoimmunity, sensitization and disruption of the cell-mediated and humoral immune systems. Lead negatively affects the metabolism of cytokines, including the interleukins IL-2, IL-1b, IL-6, IL-4, IL-8, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN), as well as the expression and functioning of inflammatory enzymes such as cyclooxygenases. However, the cause of toxicity depends on the kind of lead, dosage, route of entry, exposure period, age, host and genetic predisposition.
Collapse
Affiliation(s)
- P Harshitha
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kalpita Bose
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
5
|
Decharat S, Phethuayluk P. Quality and risk assessment of lead and cadmium in drinking water for child development centres use in Phatthalung province, Thailand. Environ Anal Health Toxicol 2023; 38:e2023020-0. [PMID: 38298039 PMCID: PMC10834074 DOI: 10.5620/eaht.2023020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/04/2023] [Indexed: 02/02/2024] Open
Abstract
The purpose of this cross-sectional study and research was to evaluate the health risks to children in relation to the concentration of lead and cadmium in drinking water. Samples were collected between 1 May 2020 and 15 October 2020. Thirty-three child development centres, Phatthalung province, Thailand. Two hundred and ten drinking water samples were taken, consisting of 66 bottled water samples, 66 tap water samples, 66 filtered tap water samples and 12 raw water samples for using in the child development centres. Concentrations of lead and cadmium were identified by graphite furnace atomic absorption spectrometry. The concentration of cadmium in bottled water samples, tap water samples, filtered tap water samples, and raw water samples ranged from nd - 0.0020mg/L, nd - 0.0049 mg/L, nd - 0.0018 mg/L and nd - 0.0049 mg/L. The summation of the total hazard index of bottled water samples, tap water samples, filtered tap water, and raw water samples was less than 1, was considered health-protective. The results will provide the direct evidence needed by child development centres managers to warn learners about the health risk of drinking water among children.
Collapse
Affiliation(s)
- Somsiri Decharat
- Department of Occupational health and Safety, Faculty of Health and Sports Science, Thaksin University, Phattalung Province 93210, Thailand
| | - Piriyalux Phethuayluk
- Department of Public Health, Faculty of Health and Sports Science, Thaksin University, Phattalung Province 93210, Thailand
| |
Collapse
|
6
|
Zheng K, Zeng Z, Tian Q, Huang J, Zhong Q, Huo X. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161691. [PMID: 36669659 DOI: 10.1016/j.scitotenv.2023.161691] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Heavy metals exist widely in daily life, and exposure to heavy metals caused by environmental pollution has become a serious public health problem worldwide. Due to children's age-specific behavioral characteristics and imperfect physical function, the adverse health effects of heavy metals on children are much higher than in adults. Studies have found that heavy metal exposure is associated with low immune function in children. Although there are reviews describing the evidence for the adverse effects of heavy metal exposure on the immune system in children, the summary of evidence from epidemiological studies involving the level of immune molecules is not comprehensive. Therefore, this review summarizes the current epidemiological study on the effect of heavy metal exposure on childhood immune function from multiple perspectives, emphasizing its risks to the health of children's immune systems. It focuses on the effects of six heavy metals (lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), nickel (Ni), and manganese (Mn)) on children's innate immune cells, lymphocytes and their subpopulations, cytokines, total and specific immunoglobulins, and explores the immunotoxicological effects of heavy metals. The review finds that exposure to heavy metals, particularly Pb, Cd, As, and Hg, not only reduced lymphocyte numbers and suppressed adaptive immune responses in children, but also altered the innate immune response to impair the body's ability to fight pathogens. Epidemiological evidence suggests that heavy metal exposure alters cytokine levels and is associated with the development of inflammatory responses in children. Pb, As, and Hg exposure was associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Cd, Ni and Mn showed activation effects on the immune response to childhood vaccination. Exposure age, sex, nutritional status, and co-exposure may influence the effects of heavy metals on immune function in children.
Collapse
Affiliation(s)
- Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jintao Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
7
|
Ventre S, Desai G, Roberson R, Kordas K. Toxic metal exposures from infant diets: Risk prevention strategies for caregivers and health care professionals. Curr Probl Pediatr Adolesc Health Care 2022; 52:101276. [PMID: 36266220 DOI: 10.1016/j.cppeds.2022.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Concerns are growing regarding the presence of toxic elements such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) in the ingredients and prepared foods for infants and young children. There are few clear, evidence-based, guidelines on the maximum tolerable limits of toxicants in foods and little understanding of toxicant exposure or adverse health effects attributable to dietary exposure. Caregivers are faced with the burden of making decisions about which foods to select, how often to feed them to their children, and what foods to limit. This article reviews the current literature and existing recommendations on dietary exposure to toxic elements in children under 2 years of age, and their health effects in early childhood-focusing on growth, neurodevelopment, and immune function. The article also outlines best practices for healthcare providers to address the concerns of toxic element exposure through the diet in young children. Several foods consistently appear in the literature as potential sources of toxic element exposure. Contaminated drinking and cooking water, including water used to prepare infant formula, could also be a major exposure source. In the absence of stronger evidence on effects of dietary modification, exclusive breastfeeding until six months of age, followed by a diverse diet are some strategies to reduce dietary toxic element exposure while ensuring an adequate and balanced nutrient intake. Healthcare providers can support families by sharing information and encouraging blood Pb testing, the only element for which such testing is currently recommended.
Collapse
Affiliation(s)
- Sarah Ventre
- Department of Pediatrics, University at Buffalo, USA; New York State Children's Environmental Health Center, USA.
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| | | | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| |
Collapse
|
8
|
Bulka CM, Eaves LA, Gardner AJ, Parsons PJ, Galusha AL, Roell KR, Smeester L, O’Shea TM, Fry RC. Prenatal exposure to multiple metallic and metalloid trace elements and the risk of bacterial sepsis in extremely low gestational age newborns: A prospective cohort study. FRONTIERS IN EPIDEMIOLOGY 2022; 2:958389. [PMID: 36405975 PMCID: PMC9674331 DOI: 10.3389/fepid.2022.958389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Prenatal exposures to metallic and metalloid trace elements have been linked to altered immune function in animal studies, but few epidemiologic studies have investigated immunological effects in humans. We evaluated the risk of bacterial sepsis (an extreme immune response to bacterial infection) in relation to prenatal metal/metalloid exposures, individually and jointly, within a US-based cohort of infants born extremely preterm. METHODS We analyzed data from 269 participants in the US-based ELGAN cohort, which enrolled infants delivered at <28 weeks' gestation (2002-2004). Concentrations of 8 trace elements-including 4 non-essential and 4 essential-were measured using inductively coupled plasma tandem mass spectrometry in umbilical cord tissue, reflecting in utero fetal exposures. The infants were followed from birth to postnatal day 28 with bacterial blood culture results reported weekly to detect sepsis. Discrete-time hazard and quantile g-computation models were fit to estimate associations for individual trace elements and their mixtures with sepsis incidence. RESULTS Approximately 30% of the extremely preterm infants developed sepsis during the follow-up period (median follow-up: 2 weeks). After adjustment for potential confounders, no trace element was individually associated with sepsis risk. However, there was some evidence of a non-monotonic relationship for cadmium, with hazard ratios (HRs) for the second, third, and fourth (highest) quartiles being 1.13 (95% CI: 0.51-2.54), 1.94 (95% CI: 0.87-4.32), and 1.88 (95% CI: 0.90-3.93), respectively. The HRs for a quartile increase in concentrations of all 8 elements, all 4 non-essential elements, and all 4 essential elements were 0.92 (95% CI: 0.68-1.25), 1.19 (95% CI: 0.92-1.55), and 0.77 (95% CI: 0.57-1.06). Cadmium had the greatest positive contribution whereas arsenic, copper, and selenium had the greatest negative contributions to the mixture associations. CONCLUSIONS We found some evidence that greater prenatal exposure to cadmium was associated with an increased the risk of bacterial sepsis in extremely preterm infants. However, this risk was counteracted by a combination of arsenic, copper, and selenium. Future studies are needed to confirm these findings and to evaluate the potential for nutritional interventions to prevent sepsis in high-risk infants.
Collapse
Affiliation(s)
- Catherine M. Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amaree J. Gardner
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Patrick J. Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, United States
| | - Aubrey L. Galusha
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, United States
| | - Kyle R. Roell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Neamtu RI, Craina M, Dahma G, Popescu AV, Erimescu AG, Citu I, Dobrescu A, Horhat FG, Vulcanescu DD, Gorun F, Bernad ES, Motoc A, Citu IC. Heavy metal ion concentration in the amniotic fluid of preterm and term pregnancies from two cities with different industrial output. Exp Ther Med 2022; 23:111. [PMID: 34970334 PMCID: PMC8713173 DOI: 10.3892/etm.2021.11034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
The growth and development of the fetus is a complex phenomenon that can be influenced by several variables. High quantities of heavy metal ions in the amniotic fluid have been linked to poor health, especially in industrial, polluted and poor areas. The aim of the present study was to assess the differences in the concentration of these ions between preterm (weeks 15-37) and term pregnancies (starting at week 37). Another objective was to compare pregnancies from two cities with different industry levels. Two sample lots from two Romanian cities were analyzed. A total of 100 patients from Timisoara were compared with 60 from Petrosani, a heavy industry city in Romania. Demographic data were collected, and amniocentesis was performed on all women. Lead (Pb), copper (Cu), nickel (Ni), cadmium (Cd), arsenic (As), iron (Fe) and zinc (Zn) concentrations were assessed. Descriptive and analytical statistics were performed using the Mann-Whitney U test for non-parametric data and the Fisher's exact test for categorical data. In addition, categorical data was represented graphically. In the Timisoara cohort, the differences in heavy metal concentrations between preterm and term pregnancies were not statistically significant. In the Petrosani cohort, however, the concentrations of Zn (P=0.02606) and Cd (P=0.01512) were higher in preterm than in term pregnancies. When comparing the two cohorts as a whole, the concentration of Pb (P=0.04513), Cd (P=0.00002), As (P=0.03027) and Zn (P<0.00001) were higher in the patients from Petrosani than in those from Timisoara. Only Cu concentrations were higher in the Timisoara cohort (P<0.00001). The concentrations of Ni (P=0.78150) and Fe (P=0.44540) did not differ statistically. Thus, amniocentesis is an important diagnostic and exploratory tool in determining differences in the concentrations of elements such as heavy metal ions. Research over a longer period of time should be carried out to examine the relation between heavy metal ions concentration and possible postnatal health outcomes.
Collapse
Affiliation(s)
- Radu Ionut Neamtu
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marius Craina
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - George Dahma
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alin Viorel Popescu
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adelina Geanina Erimescu
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioana Citu
- Department of Internal Medicine I, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Amadeus Dobrescu
- Department of Surgery, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (Multi-Rez), Microbiology Department, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania.,Clinical Laboratory, 'Louis Turcanu' Emergency Hospital for Children, 300011 Timisoara, Romania
| | - Dan Dumitru Vulcanescu
- Multidisciplinary Research Center on Antimicrobial Resistance (Multi-Rez), Microbiology Department, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania.,Clinical Laboratory, 'Louis Turcanu' Emergency Hospital for Children, 300011 Timisoara, Romania
| | - Florin Gorun
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Elena Silvia Bernad
- Department of Internal Medicine I, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Andrei Motoc
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania.,Department of Anatomy and Embryology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioan Cosmin Citu
- Department of Obstetrics-Gynecology and Neonatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
10
|
Exposome and foetoplacental vascular dysfunction in gestational diabetes mellitus. Mol Aspects Med 2021; 87:101019. [PMID: 34483008 DOI: 10.1016/j.mam.2021.101019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
A balanced communication between the mother, placenta and foetus is crucial to reach a successful pregnancy. Several windows of exposure to environmental toxins are present during pregnancy. When the women metabolic status is affected by a disease or environmental toxin, the foetus is impacted and may result in altered development and growth. Gestational diabetes mellitus (GDM) is a disease of pregnancy characterised by abnormal glucose metabolism affecting the mother and foetus. This disease of pregnancy associates with postnatal consequences for the child and the mother. The whole endogenous and exogenous environmental factors is defined as the exposome. Endogenous insults conform to the endo-exposome, and disruptors contained in the immediate environment are the ecto-exposome. Some components of the endo-exposome, such as Selenium, vitamins D and B12, adenosine, and a high-fat diet, and ecto-exposome, such as the heavy metals Arsenic, Mercury, Lead and Copper, and per- and polyfluoroakyl substances, result in adverse pregnancies, including an elevated risk of GDM or gestational diabesity. The impact of the exposome on the human placenta's vascular physiology and function in GDM and gestational diabesity is reviewed.
Collapse
|