1
|
Nisar N, Fareed A, Naqvi STA, Zeb BS, Amin BAZ, Khurshid G, Zaffar H. Biodegradation Study of Used Engine Oil by Free and Immobilized Cells of the Pseudomonas oleovorans Strain NMA and Their Growth Kinetics. ACS OMEGA 2025; 10:541-549. [PMID: 39829463 PMCID: PMC11740249 DOI: 10.1021/acsomega.4c06964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Used engine oil is considered to be one of the high-risk pollutants, and if introduced untreated in the environment, it threatens the whole ecosystem. Therefore, there is a need to find some rapid and efficient methods for the remediation of used engine oil. The present study aimed to isolate indigenous bacterial strains having the capability to degrade used engine oil. The enrichment technique was employed for the isolation of bacterial strains, which were identified by the 16S rRNA technique. As biosurfactants play a vital role in the degradation process, the activity was determined by standard protocols. The bacterial strain was isolated by the enrichment technique and identified as the Pseudomonas oleovorans strain NMA. The bacterial isolate has the ability to utilize used engine oil as the sole source of energy. The biodegradation experiment revealed that both free and immobilized cells degrade used engine oil, but immobilized cells showed the best biodegradation result, with 98-99% degradation efficiency in 7 days of incubation irrespective of all oil concentrations. For the analysis of degraded products, gas chromatography-mass spectrometry (GC-MS) was performed, which indicates that the treated samples do not carry the major engine components, i.e., methyl hexane, pyrene, and phytane, which confirmed that these were transformed by the bacterial activity. Monod kinetics further confirmed that the isolated bacterium utilizes used engine oil as the sole source of energy. These findings clearly indicate the potential of the bacterium NMA to degrade used engine oil with high kinetics, converting it into nontoxic products, and thus be a potential candidate for remediation at contaminated sites.
Collapse
Affiliation(s)
- Nimra Nisar
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Anum Fareed
- Department
of Biotechnology, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Syed Tatheer Alam Naqvi
- Department
of Biotechnology, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Bibi Saima Zeb
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Bilal Ahmad Zafar Amin
- Energy
Research Center, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Ghazal Khurshid
- Department
of Biotechnology, COMSATS University Islamabad,
Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Habiba Zaffar
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
2
|
Silva Monteiro JP, da Silva AF, Delgado Duarte RT, José Giachini A. Exploring Novel Fungal-Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation. TOXICS 2024; 12:913. [PMID: 39771128 PMCID: PMC11728489 DOI: 10.3390/toxics12120913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified. The drop collapse test indicated that all fungal and four bacterial strains were capable of producing biosurfactants with a surface tension reduction of ≥20%. Quantitative analysis of extracellular laccase production revealed superior enzyme activity among the bacterial strains, particularly for Stenotrophomonas maltophilia P05R11. Following antagonistic testing, four compatible consortia were formulated. The degradation analysis of PAHs and TPH (C5-C40) present in diesel oil revealed a significantly higher degradation capacity for the consortia compared to isolated strains. The best results were observed for a mixed bacterial-fungal consortium, composed of Trichoderma koningiopsis P05R2, Serratia marcescens P10R19 and Burkholderia cepacia P05R9, with a degradation spectrum of ≥91% for all eleven PAHs analyzed, removing 93.61% of total PAHs, and 93.52% of TPH (C5-C40). Furthermore, this study presents the first report of T. koningiopsis as a candidate for bioremediation of petroleum hydrocarbons.
Collapse
Affiliation(s)
- João Paulo Silva Monteiro
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| | - André Felipe da Silva
- Bioprocess and Biotechnology Engineering Undergraduate Program, Federal University of Tocantins, Gurupi 77402-970, TO, Brazil;
| | - Rubens Tadeu Delgado Duarte
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| | - Admir José Giachini
- Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina—Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil; (R.T.D.D.); (A.J.G.)
| |
Collapse
|
3
|
Petra de Oliveira Barros V, Macedo Silva JR, Maciel Melo VM, Terceiro PS, Nunes de Oliveira I, Duarte de Freitas J, Francisco da Silva Moura O, Xavier de Araújo-Júnior J, Erlanny da Silva Rodrigues E, Maraschin M, Thompson FL, Landell MF. Biosurfactants production by marine yeasts isolated from zoanthids and characterization of an emulsifier produced by Yarrowia lipolytica LMS 24B. CHEMOSPHERE 2024; 355:141807. [PMID: 38552803 DOI: 10.1016/j.chemosphere.2024.141807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
The present study investigates the potential for biosurfactant production of 19 marine yeast species obtained from zoanthids. Using the emulsification index test to screen the samples produced by the marine yeasts, we verified that five isolates exhibited an emulsification index ≥50%. Additional tests were performed on such isolates, including oil displacement, drop collapse, Parafilm M assay, and surface tension measurement. The tolerance of produced biosurfactants for environmental conditions was also analyzed, especially considering the media's temperature, pH, and salinity. Moreover, the surfactant's ability to emulsify different hydrocarbon sources and to metabolize kerosene as the sole carbon source was evaluated in vitro. Our results demonstrate that yeast biosurfactants can emulsify hydrocarbon sources under different physicochemical conditions and metabolize kerosene as a carbon source. Considering the Yarrowia lipolytica LMS 24B as the yeast model for biosurfactant production from the cell's wall biomass, emulsification indexes of 61.2% were obtained, even at a high temperature of 120 °C. Furthermore, the Fourier-transform middle infrared spectroscopy (FTIR) analysis of the biosurfactant's chemical composition revealed the presence of distinct functional groups assigned to a glycoprotein complex. Considering the status of developing new bioproducts and bioprocesses nowadays, our findings bring a new perspective to biosurfactant production by marine yeasts, especially Y. lipolytica LMS 24B. In particular, the presented results validate the relevance of marine environments as valuable sources of genetic resources, i.e., yeast strains capable of metabolizing and emulsifying petroleum derivatives.
Collapse
Affiliation(s)
- Vitória Petra de Oliveira Barros
- Graduate Program in Genetics. Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Vânia Maria Maciel Melo
- Department of Biology, Microbial Ecology and Biotechnology Laboratory (Lembiotech), Fortaleza, CE, Brazil
| | | | | | | | | | | | | | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Melissa Fontes Landell
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, Brazil.
| |
Collapse
|
4
|
Shettar PS, Hiremath MB. GC-MS analysis and anti-oxidant activity of bioactive compounds of Simarouba glauca leaf extracts. Nat Prod Res 2024:1-10. [PMID: 38651517 DOI: 10.1080/14786419.2024.2344737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The aim of this study is to analyse the phytochemical composition, anti-oxidant activity, FT-IR and GC-MS analysis of Simarouba glauca leaf extracts. The chloroform extract exhibited highest T.P.C. (139.82 ± 0.06 mg/g GAE) and highest T.F.C. (41.95 ± 0.50 mg/g QE). The GC-MS analysis confirmed the presence of ten compounds in acetone extract and twenty-two compounds in methanol extract. The GC-MS analysis of acetone fraction showed the major peaks such as Glycerine (13.20%), 1,1,1-trichloro-2-methyl-2-propanol (8.92%), Cyclohexanol,2-methyl-5-(1-methylethenyl)- (6.09%), Tetradecane, 2,6,10-trimethyl (7.68%) and Phytol (7.53%). Some of these compounds exhibit anti-oxidant activities. GC-MS analysis of methanol fraction exhibited the presence of following compounds: Undecane (8.52%), 2,3-Trimethylene-4-pyrone (1.79%), cis-Sinapyl alcohol (2.33%) and Umckalin (1.19%). The acetone and methanol fractions exhibited higher percentage of inhibition in DPPH assay. The overall results of this study indicate that the acetone and methanol fractions have been demonstrated to be efficacious against various diseases.
Collapse
Affiliation(s)
- Priyadarshini S Shettar
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, India
| | - Murigendra B Hiremath
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
5
|
Ni Z, Gong Z, Song L, Jia C, Zhang X. Adaptation strategies and functional transitions of microbial community in pyrene-contaminated soils promoted by lead with Pseudomonas veronii and its extracellular polymeric substances. CHEMOSPHERE 2024; 351:141139. [PMID: 38185422 DOI: 10.1016/j.chemosphere.2024.141139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Pyrene was designated as a remediation target in this study, and low contamination of lead (Pb) was set to induce heavy metal stress. Pseudomonas veronii and its extracellular polymeric substances (EPSs) were chosen for biofortification, with the aim of elucidating the structural, metabolic, and functional responses of soil microbial communities. Community analysis of soil microorganisms using high-throughput sequencing showed that the co-addition of P. veronii and EPSs resulted in an increase in relative abundance of phyla associated with pyrene degradation, and formed a symbiotic system dominated by Firmicutes and Proteobacteria, which involved in pyrene metabolism. Co-occurrence network analysis revealed that the module containing P. veronii was the only one exhibiting a positive correlation between bacterial abundance and pyrene removal, indicating the potential of bioaugmentation in enriching functional taxa. Biofortification also enhanced the abundance of functional gene linked to EPS production (biofilm formation-Pseudomonas aeruginosa) and pyrene degradation. Furthermore, 17 potential functional bacteria were screened out using random forest algorithm. Lead contamination further promoted the growth of Proteobacteria, intensified cooperative associations among bacteria, and increased the abundance of bacteria with positive correlation with pyrene degradation. The results offer novel perspectives on alterations in microbial communities resulting from the synergistic impact of heavy metal stress and biofortification.
Collapse
Affiliation(s)
- Zijun Ni
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Lei Song
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
6
|
Naaz T, Kumari S, Sharma K, Singh V, Khan AA, Pandit S, Priya K, Jadhav DA. Bioremediation of hydrocarbon by co-culturing of biosurfactant-producing bacteria in microbial fuel cell with Fe 2O 3-modified anode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119768. [PMID: 38100858 DOI: 10.1016/j.jenvman.2023.119768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The most common type of environmental contamination is petroleum hydrocarbons. Sustainable and environmentally friendly treatment strategies must be explored in light of the increasing challenges of toxic and critical wastewater contamination. This paper deals with the bacteria-producing biosurfactant and their employment in the bioremediation of hydrocarbon-containing waste through a microbial fuel cell (MFC) with Pseudomonas aeruginosa (exoelectrogen) as co-culture for simultaneous power generation. Staphylococcus aureus is isolated from hydrocarbon-contaminated soil and is effective in hydrocarbon degradation by utilizing hydrocarbon (engine oil) as the only carbon source. The biosurfactant was purified using silica-gel column chromatography and characterised through FTIR and GCMS, which showed its glycolipid nature. The isolated strains are later employed in the MFCs for the degradation of the hydrocarbon and power production simultaneously which has shown a power density of 6.4 W/m3 with a 93% engine oil degradation rate. A biogenic Fe2O3 nanoparticle (NP) was synthesized using Bambusa arundinacea shoot extract for anode modification. It increased the power output by 37% and gave the power density of 10.2 W/m3. Thus, simultaneous hydrocarbon bioremediation from oil-contamination and energy recovery can be achieved effectively in MFC with modified anode.
Collapse
Affiliation(s)
- Tahseena Naaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Kalpana Sharma
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Vandana Singh
- Department of Microbiology, School of Allied Health Sciences, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India.
| | - Kanu Priya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India.
| | - Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea.
| |
Collapse
|
7
|
Lobo CB, Correa Deza MA, Arnau GV, Ferrero MA, Juárez Tomás MS. Dibenzothiophene removal by environmental bacteria with differential accumulation of intracellular inorganic polyphosphate. BIORESOURCE TECHNOLOGY 2023; 387:129582. [PMID: 37506945 DOI: 10.1016/j.biortech.2023.129582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Dibenzothiophene (DBT), which belongs to the group of polycyclic aromatic heterocycles of sulfur, is a model substance to study the removal of sulfur compounds from oil due to its recalcitrance to traditional and specific removal processes. The aim of this work was to evaluate DBT bioremoval by environmental bacteria and its relationship with polyphosphate (polyP) accumulation, cell surface characteristics and bioemulsifying activity. Pseudomonas sp. P26 achieved the highest DBT removal percentage (48%) after 7 days of incubation. Moreover, positive correlations were estimated between DBT removal and bioemulsifying activity and biofilm formation. A strain-dependent relationship between the content of intracellular polyP and the presence of DBT in the culture medium was also demonstrated. The study of these bacterial characteristics, which could promote DBT transformation, is a first approach to select DBT-removing bacteria, in order to develop bioformulations that are able to contribute to desulfurization processes of petroleum-derived pollutants in the future.
Collapse
Affiliation(s)
- Constanza Belén Lobo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, San Miguel de Tucumán (T4001MVB), Tucumán, Argentina.
| | - María Alejandra Correa Deza
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, San Miguel de Tucumán (T4001MVB), Tucumán, Argentina.
| | - Gonzalo Víctor Arnau
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, San Miguel de Tucumán (T4001MVB), Tucumán, Argentina.
| | - Marcela Alejandra Ferrero
- YPF Tecnología (Y-TEC), Av. del Petróleo Argentino (RP10) S/N entre 129 y 143 (1923), Berisso, Buenos Aires, Argentina.
| | - María Silvina Juárez Tomás
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, San Miguel de Tucumán (T4001MVB), Tucumán, Argentina.
| |
Collapse
|
8
|
Zhou X, Liu T, Zhang S, Kang B, Duan X, Yan Y, Feng L, Chen Y. Metagenomic insight of fluorene-boosted sludge acidogenic fermentation: Metabolic transformation of amino acids and monosaccharides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161122. [PMID: 36587690 DOI: 10.1016/j.scitotenv.2022.161122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Fluorene (Flu) occurs widely in various environments and its toxicity to organisms is well-known. However, the impact of Flu on complicated biochemical processes involving functional microbial community has been reported rarely. In this study, the facilitation of Flu on the volatile fatty acids (VFAs) generation executed by acidogenic microbial population during sludge acidogenic fermentation (37 °C, SRT = 8 d, pH = 10.0) was investigated. The accumulation of VFAs (particularly acetic acid) increased initially and then declined with the increasing of Flu concentration (0-500 mg/kg dry sludge), which reached a maximum (3211.1 mg COD/L) as Flu content was 200 mg/kg dry sludge. The Flu-enhanced VFAs production was primarily attributed to the shift of hydrolysis/acidification, as well as the corresponding functional microbial community and the activity of enzymes. Based on the metagenomics analysis, the conversion of organic substrates, i.e. amino acid and monosaccharide, into VFAs embraced in hydrolysis/acidification shaped by Flu was constructed at the genetic level. The relative abundances of genes included in aminotransfer and deamination process of amino acid and glycolysis of monosaccharide into VFA-precursors (pyruvate, acetyl-CoA and propionyl-CoA), and the further formation of VFAs were improved due to the Flu presence. This study shed light on the Flu-affected microbial processes at the molecular biology level during acidogenic fermentation and was of great significance in resource recovery of sludge containing persistent organic pollutants.
Collapse
Affiliation(s)
- Xiaoxuan Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Tao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Shengyi Zhang
- Staff Education and Training Center Bohai, Drilling Engineering Co., Ltd, China National Petroleum Corporation, 8 Second Street, Economic and Technological Development Zone, Tianjin 300450, PR China
| | - Bo Kang
- School of Resource and Environmental Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province 230009, PR China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Yuanyuan Yan
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, PR China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
9
|
Daku AB, AL-Mhanna SB, Abu Bakar R, Nurul AA. Glycolipids isolation and characterization from natural source: A review. J LIQ CHROMATOGR R T 2023. [DOI: 10.1080/10826076.2023.2165097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Abubakar Bishir Daku
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
- Department of Human Physiology, Faculty of Basic Medical Sciences, Federal University, Dutse, Nigeria
| | - Sameer Badri AL-Mhanna
- School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Ruzilawati Abu Bakar
- School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| |
Collapse
|
10
|
Marzuki I, Rosmiati R, Mustafa A, Sahabuddin S, Tarunamulia T, Susianingsih E, Hendrajat EA, Sahrijanna A, Muslimin M, Ratnawati E, Kamariah K, Nisaa K, Herlambang S, Gunawan S, Santi IS, Isnawan BH, Kaseng ES, Septiningsih E, Asaf R, Athirah A, Basri B. Potential Utilization of Bacterial Consortium of Symbionts Marine Sponges in Removing Polyaromatic Hydrocarbons and Heavy Metals, Review. BIOLOGY 2023; 12:86. [PMID: 36671778 PMCID: PMC9855174 DOI: 10.3390/biology12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
Toxic materials in waste generally contain several components of the global trending pollutant category, especially PAHs and heavy metals. Bioremediation technology for waste management that utilizes microorganisms (bacteria) has not been fully capable of breaking down these toxic materials into simple and environmentally friendly chemical products. This review paper examines the potential application of a consortium of marine sponge symbionts with high performance and efficiency in removing PAHs and heavy metal contaminants. The method was carried out through a review of several related research articles by the author and published by other researchers. The results of the study conclude that the development of global trending pollutant (GTP) bioremediation technology could be carried out to increase the efficiency of remediation. Several types of marine sponge symbiont bacteria, hydrocarbonoclastic (R-1), metalloclastic (R-2), and metallo-hydro-carbonoclastic (R-3), have the potential to be applied to improve waste removal performance. A consortium of crystalline bacterial preparations is required to mobilize into GTP-exposed sites rapidly. Bacterial symbionts of marine sponges can be traced mainly to sea sponges, whose body surface is covered with mucus.
Collapse
Affiliation(s)
- Ismail Marzuki
- Department of Chemical Engineering, Fajar University, Makassar 90231, South Sulawesi, Indonesia
| | - Rosmiati Rosmiati
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Akhmad Mustafa
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Sahabuddin Sahabuddin
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Tarunamulia Tarunamulia
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Endang Susianingsih
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Erfan Andi Hendrajat
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Andi Sahrijanna
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Muslimin Muslimin
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Erna Ratnawati
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Kamariah Kamariah
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Khairun Nisaa
- Research Center for Fishery National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Susila Herlambang
- Soil Science Departement of Agriculture Faculty Universitas Pembangunan Nasional Veteran, Yogyakarta 55283, DI Yogyakarta, Indonesia
| | - Sri Gunawan
- Department of Agrotechnology, Institut Pertanian Stiper, Yogyakarta 55283, DI Yogyakarta, Indonesia
| | - Idum Satia Santi
- Department of Agrotechnology, Institut Pertanian Stiper, Yogyakarta 55283, DI Yogyakarta, Indonesia
| | - Bambang Heri Isnawan
- Department of Agrotechnology, Universitas Muhammadiyah Yogyakarta, Bantul 55183, DI Yogyakarta, Indonesia
| | - Ernawati Syahruddin Kaseng
- Agricultural Technology Education Department, Faculty of Engineering, Makassar State University, Makassar 90222, South Sulawesi, Indonesia
| | - Early Septiningsih
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Ruzkiah Asaf
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Admi Athirah
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency, Cibinong 16911, West Java, Indonesia
| | - Basri Basri
- Institute of Health Science (STIK), Makassar 90231, South Sulawesi, Indonesia
| |
Collapse
|
11
|
Braz LM, Salazar-Bryam AM, Andrade GSS, Tambourgi EB. Optimization and characterization of rhamnolipids produced by Pseudomonas aeruginosa ATCC 9027 using molasses as a substrate. World J Microbiol Biotechnol 2022; 39:51. [PMID: 36544076 DOI: 10.1007/s11274-022-03494-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
The present study aims to evaluate the growth potential of the P. aeruginosa ATCC9027 strain with molasses as the sole carbon source to produce rhamnolipids. The influence of the cultivation time and substrate concentration on biosurfactant production was investigated by using a complete 3-level factorial design, with the rhamnolipid concentration as the variable response. The strain was able to produce the biosurfactant in all design conditions tested, producing 758.04 mg/L rhamnolipids with 7% v/v substrate concentration in a cultivation time of 120 h. The substrate concentration used in the cultivation step directly influenced the biosurfactant production, and, even with the decrease in biomass growth, the biosurfactant production continued to increase. High Performance Liquid Chromatography (HPLC) revealed the presence of 62.3% mono- (RL1) and 37.6% di-rhamnolipids (RL3). The stability tests showed that the biosurfactant has good performance in extreme conditions of temperature, pH and saline concentration. The emulsification index was also evaluated for several oils and hydrocarbons, obtaining emulsification rates of up to 84.9% for the burnt motor oil. In addition, rhamnolipid showed a good ability to remove spilled oil from the sand, removing 58.51% of burnt motor oil and 70.09% of post-frying soybean oil. The results indicate that molasses, an agro-industrial residue abundant in Brazil, can be used as the only carbon source for quality rhamnolipid production when under optimized conditions, therefore presenting itself as a management option for this residue and, at the same time, providing the production product with high added value.
Collapse
Affiliation(s)
- Letícia Martini Braz
- State University of Campinas, Av. Albert Einstein, 500, Cidade Universitária Zeferino Vaz, Campinas, SP, CEP: 13083-852, Brazil.
| | - Ana María Salazar-Bryam
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro, SP, CEP: 13506-900, Brazil
| | - Grazielle Santos Silva Andrade
- Federal University of Alfenas, Rodovia José Aurélio Vilela, 11999 (BR 267 Km 533) Cidade Universitária, Poços de Caldas, MG, CEP: 37715-400, Brazil
| | - Elias Basille Tambourgi
- State University of Campinas, Av. Albert Einstein, 500, Cidade Universitária Zeferino Vaz, Campinas, SP, CEP: 13083-852, Brazil
| |
Collapse
|
12
|
Kalvandi S, Garousin H, Pourbabaee AA, Farahbakhsh M. The release of petroleum hydrocarbons from a saline-sodic soil by the new biosurfactant-producing strain of Bacillus sp. Sci Rep 2022; 12:19770. [PMID: 36396722 PMCID: PMC9672099 DOI: 10.1038/s41598-022-24321-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Adsorption of old-aged petroleum hydrocarbons to the soil solid phase, which causes biosurfactant loss of performance, is among the limiting factors for the remediation of the saline-sodic soils contaminated with petroleum. Therefore, to find a functional biosurfactant in oil-contaminated saline-sodic soils, the efficiency of 39 bacteria isolated from petroleum-contaminated soils was evaluated. The strains were cultured in the Bushnell-Haas medium, and the produced biosurfactants and bioemulsifiers in this medium were extracted using chloroform/methanol and ethyl acetate extraction methods, respectively. Their partial purification was performed by column chromatography, and eventually, their performance in releasing TPH from the contaminated soil was evaluated. The soil test results revealed that the highest TPH releases due to the effects of the biosurfactants and bioemulsifier produced from SHA302, SH21, and SH72 isolates were 42.4% ± 0.2, 21.6% ± 0.15 and 24.3% ± 0.91, respectively. Based on the 16S rRNA gene sequence, the SHA302 strain showed 93.98% phylogenetic similarity with Bacillus pumilus strain ATCC 7061. The Fourier transform infrared spectroscopy and thin-layer chromatography results proved that the biosurfactants produced by isolates SHA302, SH21 and SH72 showed lipopeptide, glycolipoprotein and glycoprotein natures, respectively. The performance of the biosurfactant produced by SHA302 isolate indicated that it could be used as a good candidate for releasing TPH from saline-sodic soils with old contamination and facilitating the degradation of hydrocarbons.
Collapse
Affiliation(s)
- Sahar Kalvandi
- grid.46072.370000 0004 0612 7950Biology and Biotechnology Lab, Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hamidreza Garousin
- grid.46072.370000 0004 0612 7950Biology and Biotechnology Lab, Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ail Pourbabaee
- grid.46072.370000 0004 0612 7950Biology and Biotechnology Lab, Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohsen Farahbakhsh
- grid.46072.370000 0004 0612 7950Biology and Biotechnology Lab, Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
13
|
Hentati D, Abed RMM, Abotalib N, El Nayal AM, Ashraf I, Ismail W. Biotreatment of oily sludge by a bacterial consortium: Effect of bioprocess conditions on biodegradation efficiency and bacterial community structure. Front Microbiol 2022; 13:998076. [PMID: 36212842 PMCID: PMC9532598 DOI: 10.3389/fmicb.2022.998076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
We studied the biodegradation of oily sludge generated by a petroleum plant in Bahrain by a bacterial consortium (termed as AK6) under different bioprocess conditions. Biodegradation of petroleum hydrocarbons in oily sludge (C11-C29) increased from 24% after two days to 99% after 9 days of incubation in cultures containing 5% (w/v) of oily sludge at 40°C. When the nitrogen source was excluded from the batch cultures, hydrocarbon biodegradation dropped to 45% within 7 days. The hydrocarbon biodegradation decreased also by increasing the salinity to 3% and the temperature above 40°C. AK6 tolerated up to 50% (w/v) oily sludge and degraded 60% of the dichloromethane-extractable oil fraction. Illumina-MiSeq analyses revealed that the AK6 consortium was mainly composed of Gammaproteobacteria (ca. 98% of total sequences), with most sequences belonging to Klebsiella (77.6% of total sequences), Enterobacter (16.7%) and Salmonella (5%). Prominent shifts in the bacterial composition of the consortium were observed when the temperature and initial sludge concentration increased, and the nitrogen source was excluded, favoring sequences belonging to Pseudomonas and Stenotrophomonas. The AK6 consortium is endowed with a strong oily sludge tolerance and biodegradation capability under different bioprocess conditions, where Pseudomonas spp. appear to be crucial for hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Dorra Hentati
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Raeid M. M. Abed
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Nasser Abotalib
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Ashraf M. El Nayal
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | | | - Wael Ismail
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
- *Correspondence: Wael Ismail,
| |
Collapse
|
14
|
Manucharova NA, Bolshakova MA, Babich TL, Tourova TP, Semenova EM, Yanovich AS, Poltaraus AB, Stepanov AL, Nazina TN. Microbial Degraders of Petroleum and Polycyclic Aromatic Hydrocarbons from Sod-Podzolic Soil. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Marzuki I, Asaf R, Paena M, Athirah A, Nisaa K, Ahmad R, Kamaruddin M. Anthracene and Pyrene Biodegradation Performance of Marine Sponge Symbiont Bacteria Consortium. Molecules 2021; 26:6851. [PMID: 34833943 PMCID: PMC8624637 DOI: 10.3390/molecules26226851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Every petroleum-processing plant produces sewage sludge containing several types of polycyclic aromatic hydrocarbons (PAHs). The degradation of PAHs via physical, biological, and chemical methods is not yet efficient. Among biological methods, the use of marine sponge symbiont bacteria is considered an alternative and promising approach in the degradation of and reduction in PAHs. This study aimed to explore the potential performance of a consortium of sponge symbiont bacteria in degrading anthracene and pyrene. Three bacterial species (Bacillus pumilus strain GLB197, Pseudomonas stutzeri strain SLG510A3-8, and Acinetobacter calcoaceticus strain SLCDA 976) were mixed to form the consortium. The interaction between the bacterial consortium suspension and PAH components was measured at 5 day intervals for 25 days. The biodegradation performance of bacteria on PAH samples was determined on the basis of five biodegradation parameters. The analysis results showed a decrease in the concentration of anthracene (21.89%) and pyrene (7.71%), equivalent to a ratio of 3:1, followed by a decrease in the abundance of anthracene (60.30%) and pyrene (27.52%), equivalent to a ratio of 2:1. The level of pyrene degradation was lower than that of the anthracene due to fact that pyrene is more toxic and has a more stable molecular structure, which hinders its metabolism by bacterial cells. The products from the biodegradation of the two PAHs are alcohols, aldehydes, carboxylic acids, and a small proportion of aromatic hydrocarbon components.
Collapse
Affiliation(s)
- Ismail Marzuki
- Department of Chemical Engineering, Fajar University, Makassar 90231, Indonesia
| | - Ruzkiah Asaf
- Research Center for Brackish Aquaculture Fisheries and Extension Fisheries, Maros 90512, Indonesia; (R.A.); (M.P.); (A.A.)
| | - Mudian Paena
- Research Center for Brackish Aquaculture Fisheries and Extension Fisheries, Maros 90512, Indonesia; (R.A.); (M.P.); (A.A.)
| | - Admi Athirah
- Research Center for Brackish Aquaculture Fisheries and Extension Fisheries, Maros 90512, Indonesia; (R.A.); (M.P.); (A.A.)
| | - Khairun Nisaa
- Fishery Faculty, Cokroaminoto University of Makassar, Makassar 90245, Indonesia;
| | - Rasheed Ahmad
- Departement of Chemistry, Airlangga University, Surabaya 60115, Indonesia;
| | - Mudyawati Kamaruddin
- Postgraduate Program, Department of Medical Laboratory Science, Muhammadiyah Semarang University, Semarang 50273, Indonesia;
| |
Collapse
|
16
|
Shen X, Wan Y, Dong W, Wei Y, Li T. Experimental study on the biodegradation of naphthalene and phenanthrene by functional bacterial strains in the riparian soil of a binary system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112603. [PMID: 34371457 DOI: 10.1016/j.ecoenv.2021.112603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (Nap) and phenanthrene (Phe) are organic pollutants of concern owing to their toxicity, carcinogenicity, and teratogenicity. Biodegradation is considered the most economical and efficient process to remediate Nap and Phe. The riparian zone between a river and a riparian aquifer, which is rich in indigenous microorganisms, may be important for PAH remediation. However, few studies have evaluated the ability of indigenous microorganisms to remove Nap and Phe. In this study, focusing on the typical PAHs (Nap and Phe) as target pollutants, the genus-level community structure of Nap- and Phe-degrading bacteria was identified. Batch static and dynamic biodegradation experiments were conducted to explore the biodegradation mechanisms of Nap and Phe in the riparian zone and identify the factors influencing Nap and Phe biodegradation in the binary system (i.e., where Nap and Phe are simultaneously present). According to the genus-level community structure test results, the dominant bacterial genus in the binary system was mainly the Phe-degrading bacteria. The Nap and Phe-biodegradation percentages were 19.20% lower and 19.49% higher, respectively, in the binary system than in the unitary system. The results indicated that functional bacteria can degrade Nap and Phe, and that Nap weakly promoted Phe biodegradation. Additionally, the initial Nap and Phe concentration ratio, hydraulic gradient, and temperature affected Nap and Phe biodegradation. Dynamic biodegradation experiments showed that the biodegradation percentage decreased as the hydraulic gradient increased, and biodegradation percentage of Phe was always higher than that of Nap. According to the results of the dynamic laboratory experiments, the removal percentages of Nap and Phe by indigenous riparian-zone microorganisms were 6.21-16.73% and 13.95-24.45%, respectively. The findings in this study will be useful for alleviation of Nap and Phe pollution in groundwater and will facilitate determination of appropriate treatment measures for groundwater exposed to this type of pollution.
Collapse
Affiliation(s)
- Xiaofang Shen
- College of Construction Engineering, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Yuyu Wan
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China.
| | - Yujie Wei
- College of Construction Engineering, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Tong Li
- College of Construction Engineering, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
17
|
Effect of pyrene and phenanthrene in shaping bacterial communities in seagrass meadows sediments. Arch Microbiol 2021; 203:4259-4272. [PMID: 34100100 DOI: 10.1007/s00203-021-02410-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), originating from anthropogenic and natural sources, are highly concerned environmental pollutants. This study investigated the impact of two model PAHs (pyrene and phenanthrene) on bacterial community succession in the seagrass meadows sediment in a lab-scale microcosm. Halophila ovalis sediment slurry microcosms were established, one group was placed as a control, and the other two were treated with pyrene and phenanthrene. Bacterial community succession in response to respective PAHs was investigated by 16S rRNA amplicon sequencing. The results demonstrated that bacterial diversity decrease in each microcosm during the incubation process; however, the composition of bacterial communities in each microcosm was significantly different. Proteobacteria (37-89%), Firmicutes (9-41%), and Bacteroides (7-21%) were the predominant group at the phylum levels. Their abundance varies during the incubation process. Several previously reported hydrocarbon-degrading genera, such as Pseudomonas, Spinghobium, Sphingobacterium, Mycobacterium, Pseudoxanthomonas, Idiomarina, Stenotrophomonas, were detected in higher abundance in pyrene- and phenanthrene-treated microcosms. However, these genera were distinctly distributed in the pyrene and phenanthrene treatments, suggesting that certain bacterial groups favorably degrade different PAHs. Statistical analyses, such as ANOSIM and PERMANOVA, also revealed that significant differences existed among the treatments' bacterial consortia (P < 0.05). This work showed that polycyclic aromatic hydrocarbon significantly affects bacterial community succession, and different PAHs might influence the bacterial community succession differently.
Collapse
|
18
|
Cauduro GP, Leal AL, Marmitt M, de Ávila LG, Kern G, Quadros PD, Mahenthiralingam E, Valiati VH. New benzo(a)pyrene-degrading strains of the Burkholderia cepacia complex prospected from activated sludge in a petrochemical wastewater treatment plant. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:163. [PMID: 33675444 DOI: 10.1007/s10661-021-08952-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The prospection of bacteria that are resistant to polyaromatic hydrocarbons (PAH) of activated sludge from a Petrochemical Wastewater Treatment Plant (WWTP) allows investigating potential biodegraders of PAH. For this purpose, sludge samples were cultured with benzo(a)pyrene and/or naphthalene as carbon sources. The recovered isolates were characterized by biochemical methods and identified based on the analysis of the sequence of three genes: 16S, recA and gyrB. The isolated strains were shown to be capable of producing surfactants, which are important for compound degradation. The ability to reduce benzo(a)pyrene in vitro was tested by gas chromatography. After 20 days of experiment, the consortium that was enriched with 1 mg/L of benzo(a)pyrene was able to reduce 30% of the compound when compared to a control without bacteria. The four isolated strains that significantly reduced benzo(a)pyrene belong to the Burkholderia cepacia complex and were identified within the consortium as the species B. cenocepacia IIIa, B. vietnamiensis, B. cepacia, and B. multivorans. This finding demonstrates the biotechnological potential of the B. cepacia complex strains for use in wastewater treatment and bioremediation. Previous studies on hydrocarbon-degrading strains focused mainly on contaminated soil or marine areas. In this work, the strains were prospected from activated sludge in a WWTP and showed the potential of indigenous samples to be used in both improving treatment systems and bioremediation of areas contaminated with petrochemical waste.
Collapse
Affiliation(s)
- Guilherme Pinto Cauduro
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Ana Lusia Leal
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) Polo Petroquímico do Sul, Triunfo, RS, Brazil
| | - Marcela Marmitt
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Letícia Gomes de Ávila
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) Polo Petroquímico do Sul, Triunfo, RS, Brazil
| | - Gabriela Kern
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Patrícia Dörr Quadros
- Laboratório de Biodeterioração de Combustíveis e Biocombustíveis, UFRGS, Brazil Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Victor Hugo Valiati
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil.
| |
Collapse
|