1
|
Núñez MDP, López Loveira EG, Domínguez SE, Calfayan LM, Itria RF, Butler M. Assessment of nicotine and degradation products in cigarette butts leachates after detoxification by white rot fungi. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138059. [PMID: 40163991 DOI: 10.1016/j.jhazmat.2025.138059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Cigarette butts (CBs) are widespread hazardous waste contaminating the environment due to the recalcitrance of the filter and the toxicity of the contaminants leached. This paper evaluated through analysis of contaminants and toxicity bioassays on Raphanus sativus seeds, the ability of four fungal strains of white rot fungi to treat cigarette butts, including 2 native strains of Trametes sp. (strains BAFC 4765 and BAFC 4767), one of Irpex lacteus (strain BAFC 4766) and one commercial strain of Pleurotus ostreatus (strain BAFC 2034). Each strain was grown in a medium of water-soaked CBs in axenic conditions at Erlenmeyer-scale during six weeks, analyzing leachate samples periodically by HPLC-MSn. Temporal evolution of nicotine as well as the transformations of tobacco alkaloids and other contaminants generated by the different fungal treatments were characterized. Nicotine was degraded significantly by the end of the treatments although variations were found among the fungal strains, proposing a degradation mechanism based on the 12 tobacco alkaloid transformation products identified. Leachates from CBs showed a total inhibition of germination on Raphanus sativus seeds whereas those obtained after 6 weeks of treatment displayed a significant decrease of phytotoxicity (7-20 % inhibition of germination) exhibiting sublethal effects. The results obtained in this work support the development of CBs fungal treatment for waste detoxification on a larger scale.
Collapse
Affiliation(s)
- María Del Pilar Núñez
- Laboratorio de Micología Experimental y Liquenología, InMiBo UBA-CONICET, Departamento de Biodiversidad y Biología, Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina
| | - Elsa Gabriela López Loveira
- Instituto de Investigación e Ingeniería Ambiental (3iA), Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Sofía Eugenia Domínguez
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Laura Mariel Calfayan
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Raúl Fabio Itria
- Laboratorio de Micología Experimental y Liquenología, InMiBo UBA-CONICET, Departamento de Biodiversidad y Biología, Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina; Instituto Nacional de Tecnología Industrial (INTI), Avenida General Paz 5445, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Matías Butler
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina.
| |
Collapse
|
2
|
Cheng Y, Bai Y, Yao H, Wang X, Yuan Y, He X, Lv S, You X, Zheng H, Li Y. Reduction of tobacco alkaloid bioaccumulation in pea shoots: A comparative study of biochar derived from cow dung and maize straw. CHEMOSPHERE 2024; 368:143633. [PMID: 39489304 DOI: 10.1016/j.chemosphere.2024.143633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Tobacco alkaloids in tobacco-cultivated soils pose potential risks for succeeding crops, due to their allelopathy and toxicity. Effects of biochar on the dissipation of tobacco alkaloids in soil-crop systems remain poorly understood. In this study, a 40-day pot experiment was conducted to explore the effect of cow dung biochar (CDBC) and maize straw biochar (MSBC) on the uptake of nicotine and nornicotine by pea (Pisum sativum L.) and their dissipation in an agricultural soil. The results revealed that the bioaccumulation of nicotine and nornicotine by pea shoots in the soils added with CDBC and MSBC at 1.5% and 3.0% significantly decreased by 46.97-79.13% and 33.64-71.59%, respectively. CDBC more effectively decreased the uptake and bioaccumulation of nicotine and nornicotine by pea shoots than MSBC due to the higher soil pH and nutrient content. In addition, the enhanced relative abundances of soil nicotine-degrading bacteria belonging to the genera Arthrobacter and Gemmatimonas also contributed to the decreasing uptake of nicotine by pea plants. The decreased bioavailability in the soils due to the increased adsorption was the key factor for the reduced bioaccumulation of tobacco alkaloids. This study provides guidance to protect subsequent crops in tobacco-cultivated soil from tobacco alkaloids with biochar.
Collapse
Affiliation(s)
- Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Qingdao Agricultural Microbial Seed Industry Technology Innovation Center, Qingdao, 266101, China
| | - Yuxiang Bai
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650231, China
| | - Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Qingdao Agricultural Microbial Seed Industry Technology Innovation Center, Qingdao, 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Qingdao Agricultural Microbial Seed Industry Technology Innovation Center, Qingdao, 266101, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Qingdao Agricultural Microbial Seed Industry Technology Innovation Center, Qingdao, 266101, China
| | - Xiaojian He
- China Tobacco Yunnan Industrial Co., LTD, Kunming, 650231, China
| | - Shibao Lv
- Qujing Branch of Yunnan Tobacco Company, Qujing, 655000, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Hao Zheng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
3
|
Jia M, Wang X, Zhu X, Du Y, Zhou P, Wang G, Wang N, Bai Y. Accumulation of coumaric acid is a key factor in tobacco continuous cropping obstacles. FRONTIERS IN PLANT SCIENCE 2024; 15:1477324. [PMID: 39529931 PMCID: PMC11552174 DOI: 10.3389/fpls.2024.1477324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Introduction Phenolic acids are believed to play a significant role in tobacco continuous cropping obstacles, but the strength and potential mechanisms of different phenolic acids remain unclear. Methods This study evaluated the allelopathic effects of six phenolic acids that exhibited cumulative effects in our previous research. Different concentrations of phenolic acids with the strongest allelopathic effects were added to potting soil to explore their impacts on tobacco growth and physiological characteristics, as well as on soil chemical properties and microbial community structure. Results The results showed that coumaric acid exhibited the strongest direct allelopathic effect. Exogenous coumaric acid significantly reduced soil pH and shifted the soil microbial community from bacteria-dominated to fungi-dominated. Simultaneously, the abundance of bacteria related to nutrient utilization (e.g., Flavisolibacter, Methylobacterium) and fungi related to disease resistance (e.g., Fusicolla, Clonostachys) gradually decreased, along with a reduction in soil catalase, urease, invertase, and acid phosphatase activities. Leaf MDA levels increased continuously with higher concentrations of coumaric acid, while the root resistance hormone (jasmonic acid and the jasmonate-isoleucine complex) levels show the opposite trend. Discussion Coumaric acid may inhibit tobacco growth by influencing the physiological processes in tobacco plants directly and the broader soil microecological balance indirectly. This study provides theoretical guidance for precise mitigation of continuous cropping obstacles in future tobacco cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | - Ge Wang
- College of Tobacco Science, Yunnan Agricultural University,
Kunming, China
| | - Na Wang
- College of Tobacco Science, Yunnan Agricultural University,
Kunming, China
| | - Yuxiang Bai
- College of Tobacco Science, Yunnan Agricultural University,
Kunming, China
| |
Collapse
|
4
|
Johnston C, Leong SY, Teape C, Liesaputra V, Oey I. Low-intensity pulsed electric field processing prior to germination improves in vitro digestibility of faba bean (Vicia faba L.) flour and its derived products: A case study on legume-enriched wheat bread. Food Chem 2024; 449:139321. [PMID: 38615637 DOI: 10.1016/j.foodchem.2024.139321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
This study investigated the effect of low-intensity pulsed electric field (PEF) (0.3-0.7 kV/cm) and/or germination (0-72 h, 20 °C) on faba beans prior to flour- and breadmaking. PEF (0.5 and 0.7 kV/cm) had no significant effect on the germination performance of faba bean but had a positive effect on in vitro starch and protein hydrolysis of PEF-treated beans germinated for 72 h. The incorporation of flour from soaked, germinated, PEF-treated, and PEF-treated+germinated faba beans into wheat bread, at 30% mass level, improved the nutritional composition (total starch and protein contents) and protein digestibility but it reduced the specific volume and increased the density, brownness, and hardness of the bread. This finding shows for the first time that PEF-treatment (<0.7 kV/cm) of faba beans followed by germination (72 h) improved in vitro starch and protein hydrolysis of its flour and the protein digestibility at gastric phase of its enriched wheat bread.
Collapse
Affiliation(s)
- Courtney Johnston
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; Riddet Institute, Palmerston North 4442, New Zealand.
| | - Sze Ying Leong
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; Riddet Institute, Palmerston North 4442, New Zealand.
| | - Callum Teape
- School of Computing, University of Otago, Dunedin 9054, New Zealand.
| | | | - Indrawati Oey
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; Riddet Institute, Palmerston North 4442, New Zealand.
| |
Collapse
|
5
|
Boots B, Green DS, Wright ACM, Olah-Kovacs B, Tovey L. Ecotoxicological effects of leachate from e-cigarettes and e-liquid on the performance of perennial ryegrass (Loliumperenne). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123888. [PMID: 38548156 DOI: 10.1016/j.envpol.2024.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Once littered, disposable e-cigarettes present a complex type of waste in the environment. They typically contain a lithium battery, electronics to produce vapour and remnant e-liquid, all of which could leach into the environment. The effects of littered e-cigarettes are not well understood, and they have not been tested in terrestrial ecosystems. To address this, an experiment was set up to assess how leachate from e-cigarettes with or without a battery, but also e-liquid on its own can alter fundamental physical characteristics of Lolium perenne (perennial ryegrass) when irrigated with contaminated water. After 31 days, shoot length of L. perenne was not measurably affected, but the biomass was significantly reduced by 30% when e-liquid, and 24% when leachate from intact e-cigarettes was present compared to control plants. Plants grown with leachate or e-liquid displayed a significant level of early senescence of leaf apices, and the chlorophyll content was increased. Furthermore, root biomass was significantly less (29-46%) compared to the control. Leachate from used disposable e-cigarettes can affect the performance of plants when entering the soil ecosystem, therefore stricter regulations are needed to prevent this new type of electronic litter from becoming more widespread.
Collapse
Affiliation(s)
- Bas Boots
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, United Kingdom.
| | - Dannielle S Green
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, United Kingdom
| | - Amy C M Wright
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, United Kingdom
| | - Brigitta Olah-Kovacs
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, United Kingdom
| | - Louise Tovey
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, United Kingdom
| |
Collapse
|
6
|
Wu M, Northen TR, Ding Y. Stressing the importance of plant specialized metabolites: omics-based approaches for discovering specialized metabolism in plant stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1272363. [PMID: 38023861 PMCID: PMC10663375 DOI: 10.3389/fpls.2023.1272363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Plants produce a diverse range of specialized metabolites that play pivotal roles in mediating environmental interactions and stress adaptation. These unique chemical compounds also hold significant agricultural, medicinal, and industrial values. Despite the expanding knowledge of their functions in plant stress interactions, understanding the intricate biosynthetic pathways of these natural products remains challenging due to gene and pathway redundancy, multifunctionality of proteins, and the activity of enzymes with broad substrate specificity. In the past decade, substantial progress in genomics, transcriptomics, metabolomics, and proteomics has made the exploration of plant specialized metabolism more feasible than ever before. Notably, recent advances in integrative multi-omics and computational approaches, along with other technologies, are accelerating the discovery of plant specialized metabolism. In this review, we present a summary of the recent progress in the discovery of plant stress-related specialized metabolites. Emphasis is placed on the application of advanced omics-based approaches and other techniques in studying plant stress-related specialized metabolism. Additionally, we discuss the high-throughput methods for gene functional characterization. These advances hold great promise for harnessing the potential of specialized metabolites to enhance plant stress resilience in the future.
Collapse
Affiliation(s)
- Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Trent R. Northen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yezhang Ding
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
7
|
Agathokleous E, Sonne C, Benelli G, Calabrese EJ, Guedes RNC. Low-dose chemical stimulation and pest resistance threaten global crop production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162989. [PMID: 36948307 DOI: 10.1016/j.scitotenv.2023.162989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
Pesticide resistance increases and threatens crop production sustainability. Chemical contamination contributes to the development of pest resistance to pesticides, in part by causing stimulatory effects on pests at low sub-toxic doses and facilitating the spread of resistance genes. This article discusses hormesis and low-dose biological stimulation and their relevance to crop pest resistance. It highlights that a holistic approach is needed to tackle pest resistance to pesticides and reduce imbalance in accessing food and improving food security in accordance with the UN's Sustainable Development Goals. Among others, the effects of sub-toxic doses of pesticides should be considered when assessing the impact of synthetic and natural pesticides, while the promotion of alternative agronomical practices is needed to decrease the use of agrochemicals. Potential alternative solutions include camo-cropping, exogenous application of phytochemicals that are pest-suppressing or -repelling and/or attractive to carnivorous arthropods and other pest natural enemies, and nano-technological innovations. Moreover, to facilitate tackling of pesticide resistance in poorer countries, less technology-demanding and low-cost practices are needed. These include mixed cropping systems, diversification of cultures, use of 'push-pull cropping', incorporation of flower strips into cultivations, modification of microenvironment, and application of beneficial microorganisms and insects. However, there are still numerous open questions, and more research is needed to address the ecological and environmental effects of many of these potential solutions, with special reference to trophic webs.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
8
|
Wang Y, Luo X, Chu P, Shi H, Wang R, Li J, Zheng S. Cultivation and application of nicotine-degrading bacteria and environmental functioning in tobacco planting soil. BIORESOUR BIOPROCESS 2023; 10:10. [PMID: 38647817 PMCID: PMC10992035 DOI: 10.1186/s40643-023-00630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Nicotine, a toxic and addictive alkaloid from tobacco, is an environmental pollutant. However, nicotine-degrading bacteria (NDB) and their function in tobacco planting soil are not fully understood. First, 52 NDB strains belonging to seven genera were isolated from tobacco soil. The most dominant genera were Flavobacterium (36.5%), Pseudomonas (30.8%), and Arthrobacter (15.4%), and Chitinophaga and Flavobacterium have not been previously reported. Then, two efficient NDB strains, Arthrobacter nitrophenolicus ND6 and Stenotrophomonas geniculata ND16, were screened and inoculated in the compost fertilizer from tobacco waste. The nicotine concentrations were reduced from 1.5 mg/g (DW) to below the safety threshold of 0.5 mg/g. Furthermore, strain ND6 followed the pyridine pathway of nicotine degradation, but the degrading pathway in strain ND16 could not be determined according to genomic analysis and color change. Finally, the abundance of nicotine-degrading genes in tobacco rhizosphere soil was investigated via metagenomic analysis. Five key genes, ndhA, nctB, kdhL, nboR, and dhponh, represent the whole process of nicotine degradation, and their abundance positively correlated with soil nicotine concentrations (p < 0.05). In conclusion, various NDB including unknown species live in tobacco soil and degrade nicotine efficiently. Some key nicotine-degrading genes could be used in monitoring nicotine degradation in the environment. The fermentation of compost from tobacco waste is a promising application of efficient NDB.
Collapse
Affiliation(s)
- Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiangyan Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Peng Chu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Heli Shi
- Enshi Branch, Hubei Tobacco Company, Enshi, 445000, Hubei, People's Republic of China
| | - Rui Wang
- Enshi Branch, Hubei Tobacco Company, Enshi, 445000, Hubei, People's Republic of China
| | - Jiale Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
9
|
|
10
|
Abstract
Two massive wastes are cigarette butts (CB) and stone wool (SW), both representing a threat to the environment. Although the cellulose acetate filters (CAF) in CB are long-term degradable, SW soilless substrates are not. Here, a soilless substrate for growing ornamental plants was manufactured with CAF and compared to commercial SW substrate. CB treatment consisted of a washing in boiling water with a dramatic reduction of pollutants in CAF. Then, cleaned filters were separated, dried, carded to fibers, and subsequently compacted into plugs. The trace pollutants in recycled CAF substrate did not negatively affect the germination of Spartium junceum L. and Lavandula angustifolia Miller seeds as well as the root development of Salvia officinalis L. and Salvia rosmarinus Schleid. stem cuttings. Plants grown in recycled CAF showed a differential species-dependent change of pigments in comparison with those in SW, without compromising their photosynthesis performance. Overall, the results demonstrated that these plants can be well established and grow in recycled CAF, as comparable to SW substrate. This study highlights a novel and promising solution in CAF recycling by turning this litter into an efficient soilless substrate for growing ornamental plants, thus limiting the use of SW and indirectly decreasing its industrial waste flow.
Collapse
|
11
|
Martins GA, Corrêa LB, Guidoni LLC, Lucia T, Gerber MD, Silva FMR, Corrêa EK. Toxicity and physicochemical parameters of composts including distinct residues from agribusiness and slaughterhouse sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 138:75-82. [PMID: 34871883 DOI: 10.1016/j.wasman.2021.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Composting is useful for treatment of residues from agribusiness, but the potential toxicity of the final compost should be evaluated before its agricultural destination. The objective of this study was to evaluate the physicochemical characteristics and the toxicity of agribusiness residues using onion seeds as bioindicators. All tested treatments were composed by sludge from a swine slaughterhouse and sawdust. Besides the control, which included no additional materials, the other treatments included aviary bedding, rice husk and residue from tobacco industries as structuring materials. After 120 days of composting, for all treatments, the temperature inside the composting piles approached the environmental temperature, the physicochemical parameters indicated that the composts were stabilized and, except for the treatment including tobacco residues, that could be used for agriculture without impairing plant germination. Although the treatments including tobacco residues and rice husk showed evidence of cytotoxicity and genotoxicity at the beginning of the composting period, that was not observed for the treatment including aviary bedding. Such potential toxicity was not observed at the end of composting for any of the tested treatments.
Collapse
Affiliation(s)
- G A Martins
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - L B Corrêa
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - L L C Guidoni
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil; ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - T Lucia
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - M D Gerber
- Instituto Federal de Educação, Ciência e Tecnologia Sul-Rio-Grandense, Pelotas, RS, Brazil
| | - F M R Silva
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - E K Corrêa
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
12
|
Erofeeva EA. Environmental hormesis of non-specific and specific adaptive mechanisms in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150059. [PMID: 34508935 DOI: 10.1016/j.scitotenv.2021.150059] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 05/17/2023]
Abstract
Adaptive responses of plants are important not only for local processes in populations and communities but also for global processes in the biosphere through the primary production of ecosystems. In recent years, the concept of environmental hormesis has been increasingly used to explain the adaptive responses of living organisms, including plants, to low doses of natural factors, both abiotic and biotic, as well as various anthropogenic impacts. However, the issues of whether plant hormesis is similar/different when it is induced by mild stressors having different specific effects and what is the contribution of hormetic stimulation of non-specific and specific adaptive mechanisms in plant resilience to strong stressors (i.e., preconditioning) remains unclear. This paper analyses hormetic stimulation of non-specific and specific adaptive mechanisms in plants and its significance for preconditioning, the phenomenon of the hormetic trade-off for these mechanisms, and the position of hormetic stimulation of non-specific and specific adaptive mechanisms in the system of plant adaptations to environmental challenges. The analysis has shown that both non-specific and specific adaptive mechanisms of plants can be stimulated hormetically by mild stressors and are important for plant preconditioning. Due to limited plant resources, non-specific and specific adaptive mechanisms have hormetic trades-offs 1 (hormesis accompanied by the deterioration of some plant traits) and 2 (hormesis of some plant traits with the invariability of others). At the same time, hormetic trade-off 2 is observed much more often than hormetic trade-off 1, at least, this was demonstrated here for non-specific adaptive responses of plants. The hormetic stimulation of non-specific and specific adaptive mechanisms is part of the inducible adaptation of plants caused by stress factors and is an adaptation to random (unpredictable) changes in the environment.
Collapse
Affiliation(s)
- Elena A Erofeeva
- Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Gagarina Pr, Nizhni Novgorod 603950, Russian Federation.
| |
Collapse
|
13
|
Alkhatib R, Alkhatib B, Abdo N. Impact of exogenous nicotine on the morphological, physio-biochemical, and anatomical characteristics in Capsicum annuum. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:666-674. [PMID: 34406092 DOI: 10.1080/15226514.2021.1962798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nicotine is an alkaloid which only highly exists in tobacco plants. It accounts for 95% of its total alkaloid content. Nicotine is synthesized in the roots and transported via the xylem to the shoot. This study aimed to investigate the morphological, physio-biochemical, structural, and ultrastructural impacts of different nicotine concentrations in bell pepper. Capsicum annuum seedlings were grown hydroponically in a growth chamber with different nicotine concentrations (0, 100, 400, 700, 1,000, 3,000, and 5,000 µM). Nicotine-treated leaves (3,000 and 5,000 µM) exhibited severe chlorosis and necrosis. Moreover, nicotine-treated seedlings (1,000, 3,000, and 5,000 µM) exhibited severe reduction in leaf area (p < 0.0001) and photosynthetic efficiency (p < 0.0001), which significantly reduce the photosynthetic rate (p < 0.0001). Also, the drop in the photosynthetic rate was associated with significant drop in stomatal conductance (p < 0.0001). The electron transmission micrographs revealed that nicotine-treated seedlings (3,000 and 5,000 µM) exhibited deformed chloroplasts with numerous plastoglobules reducing the photosynthetic rates.
Collapse
Affiliation(s)
- Rami Alkhatib
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Batool Alkhatib
- Department of Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour Abdo
- Department of Public Health, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
14
|
Atudorei D, Stroe SG, Codină GG. Impact of Germination on the Microstructural and Physicochemical Properties of Different Legume Types. PLANTS 2021; 10:plants10030592. [PMID: 33809819 PMCID: PMC8004221 DOI: 10.3390/plants10030592] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
The microstructural and physicochemical compositions of bean (Phaseolus vulgaris), lentil (Lens culinaris Merr.), soybean (Glycine max L.), chickpea (Cicer aretinium L.) and lupine (Lupinus albus) were investigated over 2 and 4 days of germination. Different changes were noticed during microscopic observations (Stereo Microscope, SEM) of the legume seeds subjected to germination, mostly related to the breakages of the seed structure. The germination caused the increase in protein content for bean, lentil, and chickpea and of ash content for lentil, soybean and chickpea. Germination increased the availability of sodium, magnesium, iron, zinc and also the acidity for all legume types. The content of fat decreased for lentil, chickpea, and lupine, whereas the content of carbohydrates and pH decreased for all legume types during the four-day germination period. Fourier transform infrared spectroscopic (FT-IR) spectra show that the compositions of germinated seeds were different from the control and varied depending on the type of legume. The multivariate analysis of the data shows close associations between chickpea, lentil, and bean and between lupine and soybean samples during the germination process. Significant negative correlations were obtained between carbohydrate contents and protein, fat and ash at the 0.01 level.
Collapse
|