1
|
Chen X, Xie MT, Li QL, Dang YX, Peng S, Tan YY, Wang MY, Fan YM, Lai JL, Wu G. New insights into plant physiological responses to uranium: An integrative analysis of autophagy, DNA repair, and antioxidant systems in radish. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109641. [PMID: 39961252 DOI: 10.1016/j.plaphy.2025.109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/11/2025]
Abstract
The application of uranium (U) in the nuclear energy and defense industry has driven U mining activities, leading to subsequent U contamination. Understanding the toxicity and detoxification mechanism of U in plants is crucial for enhancing the efficiency of phytoremediation efforts in U-contaminated soils. The present study investigated the toxicity of uranium (U) in radish and its impact on physiological and molecular responses. The application of U (5-25 μM) for 3 days significantly inhibited the elongation of radish lateral roots, and the lateral root length decreased by 35.6%-60.7% compared with the control. Under U stress, radish root tip meristem cells suffered DNA damage, fortunately the cells remained viable. To repair damaged DNA, the expression of genes involved in DNA repair (e.g. RAD2, XPC, BLM) was up-regulated, and the expression of genes involved in cell cycle was down-regulated (e.g. CYCB, CDKB). Under U stress, the expression of respiratory burst oxidase homologs (RBOHs) genes in radish roots up-regulated, which caused ROS burst, and then enhanced autophagy by promoting the expression of autophagy related genes (ATGs). Simultaneously, the glutathione (GSH) content increased, and the gene expression levels and activities of antioxidant enzymes (e.g. catalase) were increased, which enhanced the antioxidant capacity of root cells. Moreover, ubiquitin-proteasome system (UPS) (e.g. E3 ligase genes NEDD4) was involved in the activation of DNA repair, GSH synthesis and autophagy. In summary, DNA repair, autophagy, and antioxidant systems were activated in radish roots, which promoted the survival of apical meristem cells under U stress.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610068, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Meng-Ting Xie
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Qing-Ling Li
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Yu-Xi Dang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Shi Peng
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Yang-Yang Tan
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Meng-Yuan Wang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Yu-Meng Fan
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jin-Long Lai
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Guo Wu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610068, China; College of Life Science, Sichuan Normal University, Chengdu, 610101, China.
| |
Collapse
|
2
|
Przybyla-Toscano J, Chetouhi C, Pennera L, Boursiac Y, Galeone A, Devime F, Balliau T, Santoni V, Bourguignon J, Alban C, Ravanel S. New insights into uranium stress responses of Arabidopsis roots through membrane- and cell wall-associated proteome analysis. CHEMOSPHERE 2025; 370:143873. [PMID: 39647793 DOI: 10.1016/j.chemosphere.2024.143873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Uranium (U) is a non-essential and toxic metal for plants. In Arabidopsis thaliana plants challenged with uranyl nitrate, we showed that U was mostly (64-71% of the total) associated with the root insoluble fraction containing membrane and cell wall proteins. Therefore, to uncover new molecular mechanisms related to U stress, we used label-free quantitative proteomics to analyze the responses of the root membrane- and cell wall-enriched proteome. Of the 2,802 proteins identified, 458 showed differential accumulation (≥1.5-fold change) in response to U. Biological processes affected by U include response to stress, amino acid metabolism, and previously unexplored functions associated with membranes and the cell wall. Indeed, our analysis supports a dynamic and complex reorganization of the cell wall under U stress, including lignin and suberin synthesis, pectin modification, polysaccharide hydrolysis, and Casparian strips formation. Also, the abundance of proteins involved in vesicular trafficking and water flux was significantly altered by U stress. Measurements of root hydraulic conductivity and leaf transpiration indicated that U significantly decreased the plant's water flux. This disruption in water balance is likely due to a decrease in PIP aquaporin levels, which may serve as a protective mechanism to reduce U toxicity. Finally, the abundance of transporters and metal-binding proteins was altered, suggesting that they may be involved in regulating the fate and toxicity of U in Arabidopsis. Overall, this study highlights how U stress impacts the insoluble root proteome, shedding light on the mechanisms used by plants to mitigate U toxicity.
Collapse
Affiliation(s)
| | - Cherif Chetouhi
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Lorraine Pennera
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Yann Boursiac
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Adrien Galeone
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Fabienne Devime
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91 190, Gif-sur-Yvette, France
| | - Véronique Santoni
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France
| | - Stéphane Ravanel
- Univ. Grenoble Alpes, INRAE, CNRS, CEA, IRIG, LPCV, 38000, Grenoble, France.
| |
Collapse
|
3
|
He Y, Wei STS, Kluge S, Flemming K, Sushko V, Hübner R, Steudtner R, Raff J, Mallet C, Beauger A, Breton V, Péron O, Stumpf T, Sachs S, Montavon G. Investigating the interaction of uranium(VI) with diatoms and their bacterial community: A microscopic and spectroscopic study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116893. [PMID: 39173225 DOI: 10.1016/j.ecoenv.2024.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Diatoms and bacteria play a vital role in investigating the ecological effects of heavy metals in the environment. Despite separate studies on metal interactions with diatoms and bacteria, there is a significant gap in research regarding heavy metal interactions within a diatom-bacterium system, which closely mirrors natural conditions. In this study, we aim to address this gap by examining the interaction of uranium(VI) (U(VI)) with Achnanthidium saprophilum freshwater diatoms and their natural bacterial community, primarily consisting of four successfully isolated bacterial strains (Acidovorax facilis, Agrobacterium fabrum, Brevundimonas mediterranea, and Pseudomonas peli) from the diatom culture. Uranium (U) bio-association experiments were performed both on the xenic A. saprophilum culture and on the four bacterial isolates. Scanning electron microscopy and transmission electron microscopy coupled with spectrum imaging analysis based on energy-dispersive X-ray spectroscopy revealed a clear co-localization of U and phosphorus both on the surface and inside A. saprophilum diatoms and the associated bacterial cells. Time-resolved laser-induced fluorescence spectroscopy with parallel factor analysis identified similar U(VI) binding motifs both on A. saprophilum diatoms and the four bacterial isolates. This is the first work providing valuable microscopic and spectroscopic data on U localization and speciation within a diatom-bacterium system, demonstrating the contribution of the co-occurring bacteria to the overall interaction with U, a factor non-negligible for future modeling and assessment of radiological effects on living microorganisms.
Collapse
Affiliation(s)
- Yihua He
- SUBATECH, IMTA/CNRS-IN2P3/Université de Nantes, 4, rue Alfred Kastler, 44304 Nantes, France
| | - Sean Ting-Shyang Wei
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Sindy Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Katrin Flemming
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Vladyslav Sushko
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Clarisse Mallet
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, 1 Impasse Amélie Murat, Aubière 63178, France; LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, Aubière F-63000, France
| | - Aude Beauger
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand 63000, France; LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, Aubière F-63000, France
| | - Vincent Breton
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont (LPC), UMR 6533, Aubière 63178, France; LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, Aubière F-63000, France
| | - Olivier Péron
- SUBATECH, IMTA/CNRS-IN2P3/Université de Nantes, 4, rue Alfred Kastler, 44304 Nantes, France
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Gilles Montavon
- SUBATECH, IMTA/CNRS-IN2P3/Université de Nantes, 4, rue Alfred Kastler, 44304 Nantes, France; LTSER "Zone Atelier Territoires Uranifères", Clermont-Ferrand, Aubière F-63000, France.
| |
Collapse
|
4
|
Ali S, Baloch SB, Bernas J, Konvalina P, Onyebuchi EF, Naveed M, Ali H, Jamali ZH, Nezhad MTK, Mustafa A. Phytotoxicity of radionuclides: A review of sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2024; 240:117479. [PMID: 37884073 DOI: 10.1016/j.envres.2023.117479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Various anthropogenic activities and natural sources contribute to the presence of radioactive materials in the environment, posing a serious threat to phytotoxicity. Contamination of soil and water by radioactive isotopes degrades the environmental quality and biodiversity. They persist in soils for a considerable amount of time and disturb the fauna and flora of any affected area. Hence, their removal from the contaminated medium is inevitable to prevent their entry into the food chain and the organisms at higher levels of the food chain. Physicochemical methods for radioactive element remediation are effective; however, they are not eco-friendly, can be expensive and impractical for large-scale remediation. Contrastingly, different bioremediation approaches, such as phytoremediation using appropriate plant species for removing the radionuclides from the polluted sites, and microbe-based remediation, represent promising alternatives for cleanup. In this review, sources of radionuclides in soil as well as their hazardous impacts on plants are discussed. Moreover, various conventional physicochemical approaches used for remediation discussed in detail. Similarly, the effectiveness and superiority of various bioremediation approaches, such as phytoremediation and microbe-based remediation, over traditional approaches have been explained in detail. In the end, future perspectives related to enhancing the efficiency of the phytoremediation process have been elaborated.
Collapse
Affiliation(s)
- Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Sadia Babar Baloch
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Jaroslav Bernas
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic.
| | - Petr Konvalina
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Eze Festus Onyebuchi
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zameer Hussain Jamali
- College of Environmental Science, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Mohammad Tahsin Karimi Nezhad
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental 13 Gardening, Lidicka, 25/27, Brno, 60200, Czech Republic
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences Guangzhou, 510650, China.
| |
Collapse
|
5
|
Klotzsche M, Vogel M, Sachs S, Raff J, Stumpf T, Drobot B, Steudtner R. How tobacco ( Nicotiana tabacum) BY-2 cells cope with Eu(III) - a microspectroscopic study. Analyst 2023; 148:4668-4676. [PMID: 37646162 DOI: 10.1039/d3an00741c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The extensive use of lanthanides in science, industry and high-technology products is accompanied by an anthropogenic input of rare earth elements into the environment. Knowledge of a metal's environmental fate is essential for reasonable risk assessment and remediation approaches. In the present study, Eu(III) was representatively used as a luminescent probe to study the chemical environment and to elucidate the molecular interactions of lanthanides with a suspension cell culture of Nicotiana tabacum BY-2. Biochemical methods were combined with luminescence spectroscopy, two-dimensional microspectroscopic mappings, and data deconvolution methods to resolve the bioassociation behavior and spatial distribution of Eu(III) in plant cells. BY-2 cells were found to gradually take up the metal after exposure to 100 μM Eu(III) without significant loss of viability. Time-resolved luminescence measurements were used to specify the occurrence of Eu(III) species as a function of time, revealing the transformation of an initial Eu(III) species into another after 24 h exposure. Chemical microscopy and subsequent iterative factor analysis reveal the presence of four distinct Eu(III) species located at different cellular compartments, e.g., the cell nucleus, nucleolus and cell walls, which could be assigned to intracellular binding motifs. In addition, a special type of bioaccumulation occurs through the formation of a Eu(III)-containing oxalate biomineral, which is already formed within the first 24 hours after metal exposure. Oxalate crystals were also obtained in analogous experiments with Gd and Sm. These results indicate that tobacco BY-2 cells induce the precipitation of metal oxalate biominerals for detoxification of lanthanides, although they also bind to other cellular ligands at the same time.
Collapse
Affiliation(s)
- Max Klotzsche
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Insitute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Manja Vogel
- VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V., Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Insitute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Insitute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Insitute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Insitute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Insitute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
6
|
Jessat J, John WA, Moll H, Vogel M, Steudtner R, Drobot B, Hübner R, Stumpf T, Sachs S. Localization and chemical speciation of europium(III) in Brassica napus plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114741. [PMID: 36950990 DOI: 10.1016/j.ecoenv.2023.114741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/18/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
For the reliable safety assessment of repositories of highly radioactive waste, further development of the modelling of radionuclide migration and transfer in the environment is necessary, which requires a deeper process understanding at the molecular level. Eu(III) is a non-radioactive analogue for trivalent actinides, which contribute heavily to radiotoxicity in a repository. For in-depth study of the interaction of plants with trivalent f elements, we investigated the uptake, speciation, and localization of Eu(III) in Brassica napus plants at two concentrations, 30 and 200 µM, as a function of the incubation time up to 72 h. Eu(III) was used as luminescence probe for combined microscopy and chemical speciation analyses of it in Brassica napus plants. The localization of bioassociated Eu(III) in plant parts was explored by spatially resolved chemical microscopy. Three Eu(III) species were identified in the root tissue. Moreover, different luminescence spectroscopic techniques were applied for an improved Eu(III) species determination in solution. In addition, transmission electron microscopy combined with energy-dispersive X-ray spectroscopy was used to localize Eu(III) in the plant tissue, showing Eu-containing aggregates. By using this multi-method setup, a profound knowledge on the behavior of Eu(III) within plants and changes in its speciation could be obtained, showing that different Eu(III) species occur simultaneously within the root tissue and in solution.
Collapse
Affiliation(s)
- Jenny Jessat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Warren A John
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manja Vogel
- HZDR Innovation GmbH, Bautzner Landstraße 400, 01328 Dresden, Germany; VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e.V., Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
7
|
Li Y, Li B, Chen L, Dong J, Xia Z, Tian Y. Chelating decorporation agents for internal contamination by actinides: Designs, mechanisms, and advances. J Inorg Biochem 2023; 238:112034. [PMID: 36306597 DOI: 10.1016/j.jinorgbio.2022.112034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/16/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
Abstract
During the wide utilization of the actinides in medicine, energy, military, and other fields, internal contaminations can profoundly endanger human health and public security. Chelating decorporation agents are the most effective therapies to reduce internal contamination that includes radiological and chemical toxicities. This review introduces the structures of chelating decorporation agents including inorganic salts, polyaminocarboxylic acids, peptides, polyphosphonates, siderophores, calixarenes, polyethylenimines, and fullerenes, and highlights ongoing advances in their designs and mechanisms. However, there are still numerous challenges that block their applications including coordination properties, pharmacokinetic properties, oral bioavailability, limited timing of administration, and toxicity. Therefore, additional efforts are needed to push novel decorporation agents with high efficiency and low toxicity for the treatment of internal contamination by actinides.
Collapse
Affiliation(s)
- Yongzhong Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bin Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Junxing Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziming Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ying Tian
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
8
|
Jessat J, Moll H, John WA, Bilke ML, Hübner R, Kretzschmar J, Steudtner R, Drobot B, Stumpf T, Sachs S. A comprehensive study on the interaction of Eu(III) and U(VI) with plant cells (Daucus carota) in suspension. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129520. [PMID: 35908404 DOI: 10.1016/j.jhazmat.2022.129520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Daucus carota suspension cells showed a high affinity towards Eu(III) and U(VI) based on a single-step bioassociation process with an equilibrium after 48-72 h. Cells responded with an increased metabolic activity towards heavy metal stress. Luminescence spectroscopy pointed to multiple species for both f-block elements in the culture media, providing initial hints of their interaction with cells and released metabolites. Using nuclear magnetic resonance spectroscopy, we could prove that malate, as an released metabolite in the culture medium, was found to complex with U. Luminescence spectroscopy also showed that Eu(III)-EDTA species are interacting with the cells. Furthermore, Eu(III) and U(VI) coordination is dominated by phosphate groups provided by the cells. We found that Ca ion channels of D. carota cells were involved in the uptake of U(VI), which led to a bioprecipitation of U(VI) in the vacuole of the cells, most probably as uranyl(VI) phosphates along with an intracellular sorption of U(VI) on biomembranes by lipid structures. Eu(III) could be found locally concentrated in the cell wall and in the cytoplasm with a co-localization with phosphorous and oxygen.
Collapse
Affiliation(s)
- Jenny Jessat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Warren A John
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Marie-Louise Bilke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Jerome Kretzschmar
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
9
|
Wu G, Chen X, Zheng T, Xiao PX, Zhong NY, Yang XL, Li Y, Li W. Effects of U on the growth, reactive oxygen metabolism and osmotic regulation in radish (Raphanus sativus L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55081-55091. [PMID: 35312915 DOI: 10.1007/s11356-022-19803-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Uranium (U) is a non-essential and toxic element, so it is necessary to study the physiological mechanism of plant response to U stress. The present study evaluated the growth status, reactive oxygen metabolism and osmotic regulation system in radish (Raphanus sativus) under U stress (0, 25, 50 and 100 μM). The results showed that U had no significant effect on the germination of radish seeds but inhibited the growth of seedlings, such as reduced root activity and increased plasma membrane permeability. U is mainly distributed in radish roots, so it poisons the roots more than the aboveground parts. When U concentration was 25 μM, superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities in radish were increased to cope with the oxidative stress caused by U stress, and the accumulation of proline and soluble sugar was increased to maintain cell turgor. However, under high concentration (100 μM), the damage of radish root was serious; thus, the SOD, CAT and soluble sugar could not respond to U stress. In conclusion, the identification and characterization of U-stress responses in genuine U-tolerant plants would improve our knowledge on the detoxification of this radionuclide.
Collapse
Affiliation(s)
- Guo Wu
- Life Science College, Sichuan Normal University, Chengdu, 610101, China.
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, China.
| | - Xi Chen
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Ting Zheng
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, China
| | - Pi-Xian Xiao
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Ning-Ying Zhong
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Xiu-Lin Yang
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Yi Li
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| | - Wei Li
- Life Science College, Sichuan Normal University, Chengdu, 610101, China
| |
Collapse
|
10
|
John WA, Lückel B, Matschiavelli N, Hübner R, Matschi S, Hoehenwarter W, Sachs S. Endocytosis is a significant contributor to uranium(VI) uptake in tobacco (Nicotiana tabacum) BY-2 cells in phosphate-deficient culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153700. [PMID: 35168012 DOI: 10.1016/j.scitotenv.2022.153700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Endocytosis of metals in plants is a growing field of study involving metal uptake from the rhizosphere. Uranium, which is naturally and artificially released into the rhizosphere, is known to be taken up by certain species of plant, such as Nicotiana tabacum, and we hypothesize that endocytosis contributes to the uptake of uranium in tobacco. The endocytic uptake of uranium was investigated in tobacco BY-2 cells using an optimized setup of culture in phosphate-deficient medium. A combination of methods in biochemistry, microscopy and spectroscopy, supplemented by proteomics, were used to study the interaction of uranium and the plant cell. We found that under environmentally relevant uranium concentrations, endocytosis remained active and contributed to 14% of the total uranium bioassociation. Proteomics analyses revealed that uranium induced a change in expression of the clathrin heavy chain variant, signifying a shift in the type of endocytosis taking place. However, the rate of endocytosis remained largely unaltered. Electron microscopy and energy-dispersive X-ray spectroscopy showed an adsorption of uranium to cell surfaces and deposition in vacuoles. Our results demonstrate that endocytosis constitutes a considerable proportion of uranium uptake in BY-2 cells, and that endocytosed uranium is likely targeted to the vacuole for sequestration, providing a physiologically safer route for the plant than uranium transported through the cytosol.
Collapse
Affiliation(s)
- Warren A John
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Benita Lückel
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Nicole Matschiavelli
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Matschi
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | | | - Susanne Sachs
- Helmholtz - Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
11
|
Sarthou MCM, Devime F, Baggio C, Figuet S, Alban C, Bourguignon J, Ravanel S. Calcium-permeable cation channels are involved in uranium uptake in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127436. [PMID: 34638071 DOI: 10.1016/j.jhazmat.2021.127436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) is a non-essential and toxic element that is taken up by plants from the environment. The assimilation pathway of U is still unknown in plants. In this study, we provide several evidences that U is taken up by the roots of Arabidopsis thaliana through Ca2+-permeable cation channels. First, we showed that deprivation of Arabidopsis plants with calcium induces a 1.5-fold increase in the capacity of roots to accumulate U, suggesting that calcium deficiency promotes the radionuclide import pathway. Second, we showed that external calcium inhibits U accumulation in roots, suggesting a common route for the uptake of both cations. Third, we found that gadolinium, nifedipine and verapamil inhibit the absorption of U, suggesting that different types of Ca2+-permeable channels serve as a route for U uptake. Last, we showed that U bioaccumulation in Arabidopsis mutants deficient for the Ca2+-permeable channels MCA1 and ANN1 is decreased by 40%. This suggests that MCA1 and ANN1 contribute to the absorption of U in different zones and cell layers of the root. Together, our results describe for the first time the involvement of Ca2+-permeable cation channels in the cellular uptake of U.
Collapse
Affiliation(s)
- Manon C M Sarthou
- Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | - Fabienne Devime
- Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | - Célia Baggio
- Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | - Sylvie Figuet
- Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | - Claude Alban
- Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | | | - Stéphane Ravanel
- Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
12
|
Revel B, Catty P, Ravanel S, Bourguignon J, Alban C. High-affinity iron and calcium transport pathways are involved in U(VI) uptake in the budding yeast Saccharomyces cerevisiae. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126894. [PMID: 34416697 DOI: 10.1016/j.jhazmat.2021.126894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) is a naturally-occurring radionuclide that is toxic for all living organisms. To date, the mechanisms of U uptake are far from being understood. Here we provide a direct characterization of the transport machineries capable of transporting U, using the yeast Saccharomyces cerevisiae as a unicellular eukaryote model. First, we evidenced a metabolism-dependent U transport in yeast. Then, competition experiments with essential metals allowed us to identify calcium, iron and copper entry pathways as potential routes for U uptake. The analysis of various metal transport mutants revealed that mutant affected in calcium (mid1Δ and cch1Δ) and Fe(III) (ftr1Δ) transport, exhibited highly reduced U uptake rates and accumulation, demonstrating the implication of the calcium channel Mid1/Cch1 and the iron permease Ftr1 in U uptake. Finally, expression of the Mid1 gene into the mid1Δ mutant restored U uptake levels of the wild type strain, underscoring the central role of the Mid1/Cch1 calcium channel in U absorption process in yeast. Our results also open up the opportunity for rapid screening of U-transporter candidates by functional expression in yeast, before their validation in more complex higher eukaryote model systems.
Collapse
Affiliation(s)
- Benoît Revel
- Univ. Grenoble Alpes, CEA, INRAE, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | - Patrice Catty
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, LCBM, 38000 Grenoble, France
| | - Stéphane Ravanel
- Univ. Grenoble Alpes, CEA, INRAE, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, CEA, INRAE, CNRS, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
13
|
Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z. Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125319. [PMID: 33582470 DOI: 10.1016/j.jhazmat.2021.125319] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on: i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accumulates in roots with a quite limited translocation. However, plants such as willow, water lily, and sesban are reported to translocate high U levels from roots to aerial parts. Indeed, U does not possess any identified biological role, but provokes numerous deleterious effects such as reducing seed germination, inhibiting plant growth, depressing photosynthesis, interfering with nutrient uptake, as well as oxidative damage and genotoxicity. Yet, plants tolerate U toxicity via various defense strategies including antioxidant enzymes, compartmentalization, and phytochelatin. Moreover, we review two biological remediation strategies for U-contaminated soil: (i) phytoremediation and (ii) microbial remediation. They are quite low-cost and eco-friendly compared with traditional physical or chemical remediation technologies. Finally, we conclude some promising research challenges regarding U biogeochemical behavior in soil-plant systems. This review, thus, further indicates that the combined application of U low accumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Weixiong Zhang
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou 730030, Gansu, PR China
| | - Jiqiang Zhou
- Gansu Nonferrous Engineering Exploration & Design Research Institute, Lanzhou 730030, Gansu, PR China
| | - Danqi Luo
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zimin Li
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Louvain-La-Neuve 1348, Belgium.
| |
Collapse
|
14
|
Moll H, Schmidt M, Sachs S. Curium(III) and europium(III) as luminescence probes for plant cell (Brassica napus) interactions with potentially toxic metals. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125251. [PMID: 33556856 DOI: 10.1016/j.jhazmat.2021.125251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
We have investigated the interaction of the actinide Cm(III) and its lanthanide homologue Eu(III) with cells of Brassica napus in suspension. This study combines biochemical techniques (plant cell response) with spectroscopic experiments to determine the chemical speciation of hazardous metals in contact with the plant cells. Experiments conducted over a period of 7 d showed that B. napus cells were able to bioassociate both potentially toxic metals in significant amounts up to 0.58 µmol Eu/gfresh cells and 1.82 µmol Cm/gfresh cells at 30 µM Eu(III) and 0.68 µM Cm(III), respectively. For Cm(III), a biosorption process could be identified as soon as 5 h post-exposure with 73 ± 4% of the Cm(III) bioassociated. Luminescence spectroscopy results based on UV and site-selective excitation confirmed the existence of three Cm(III)/Eu(III) [M(III)] species in both the supernatants and cells. The findings detailed herein support that M(III) coordinates to two kinds of carboxyl groups and phosphate groups.
Collapse
Affiliation(s)
- Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Moritz Schmidt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
15
|
Jessat J, Sachs S, Moll H, John W, Steudtner R, Hübner R, Bok F, Stumpf T. Bioassociation of U(VI) and Eu(III) by Plant ( Brassica napus) Suspension Cell Cultures-A Spectroscopic Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6718-6728. [PMID: 33929840 DOI: 10.1021/acs.est.0c05881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the interaction of U(VI) and Eu(III) with Brassica napus suspension plant cells as a model system. Concentration-dependent (0-200 μM) bioassociation experiments showed that more than 75% of U(VI) and Eu(III) were immobilized by the cells. In addition to this phenomenon, time-dependent studies for 1 to 72 h of exposure showed a multistage bioassociation process for cells that were exposed to 200 μM U(VI), where, after initial immobilization of U(VI) within 1 h of exposure, it was released back into the culture medium starting within 24 h. A remobilization to this extent has not been previously observed. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to correlate the bioassociation behavior of Eu and U with the cell vitality. Speciation studies by spectroscopy and in silico methods highlighted various U and Eu species over the course of exposure. We were able to observe a new U species, which emerged simultaneously with the remobilization of U back into the solution, which we assume to be a U(VI) phosphate species. Thus, the interaction of U(VI) and Eu(III) with released plant metabolites could be concluded.
Collapse
Affiliation(s)
- Jenny Jessat
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Warren John
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Frank Bok
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|