1
|
You Y, Ma F, Zhang W, Guo H, Liu L, Zhang Y. Modulation by arbuscular mycorrhizal fungi on biochar - Phragmites australis system in P-deficient environment: Cd tolerance and migration. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137747. [PMID: 40043399 DOI: 10.1016/j.jhazmat.2025.137747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/08/2025] [Accepted: 02/23/2025] [Indexed: 04/16/2025]
Abstract
This study addresses the challenge of low phytoremediation efficiency caused by nutrient deficiency by evaluating abiotic and biotic-abiotic enhancement strategies. Specifically, we examine the potential of biochar (BC) alone and in combination with arbuscular mycorrhizal fungi (BCA) to improve cadmium (Cd) phytoremediation under phosphorus-deficient conditions. The results demonstrate that both BC and BCA enhance Cd resistance and accumulation in Phragmites australis through shared mechanisms, including improved rhizosphere nutrient availability and increased proline accumulation. However, BC primarily reduces oxidative stress by lowering the metal burden, while BCA more effectively mitigates oxidative stress by activating antioxidant enzymes. BC-induced rhizosphere Cd passivation and stem Cd retention significantly promoted plant growth, increasing biomass and Cd accumulation by 299 % and 378 %, respectively, under high-Cd conditions. BCA eliminated the Cd passivation and retention effects of BC and modulated root functional groups to facilitate Cd translocation to the shoots. Consequently, shoot Cd concentrations in the BCA treatments were 3.18 and 2.46 times higher than in the control and BC treatments, respectively, under high-Cd conditions. The effects of BC and BCA under phosphorus-deficient conditions provide novel strategies for expanding phytoremediation applications, demonstrating their potential to improve remediation efficiency in nutrient-deficient environments.
Collapse
Affiliation(s)
- Yongqiang You
- Research Institute of Environmental Engineering, Liaoning University, Shenyang 110036, PR China; School of Environment, Liaoning University, Shenyang 110036, PR China.
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Weijie Zhang
- School of Environment, Liaoning University, Shenyang 110036, PR China
| | - Haijuan Guo
- School of Environment, Liaoning University, Shenyang 110036, PR China.
| | - Li Liu
- School of Environment, Liaoning University, Shenyang 110036, PR China
| | - Ying Zhang
- School of Environment, Liaoning University, Shenyang 110036, PR China
| |
Collapse
|
2
|
Wei T, Li H, Wang Y, Chi M, Guo J, Jia H, Zhang C. Alleviation of cadmium toxicity and minimizing its accumulation in rice plants by methyl jasmonate: Performance and mechanisms. J Biotechnol 2025; 398:133-145. [PMID: 39724943 DOI: 10.1016/j.jbiotec.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive. In this study, we found that the Cd induced-growth inhibition was ameliorated by MeJA. Upon MeJA application, Cd content in root and shoot was decreased by 10.15 % and 36.39 %, which paralleled with less Cd2 + influx of rice roots and depressed expression of the cation transporters (OsNramp1 and OsNramp5). The subcellular distribution revealed that MeJA enriched Cd distribution in cell wall, which was accompanied by increased cell wall thickness and altered cell wall polysaccharide (pectin, cellulose, hemicellulose) content, meanwhile, the Cd content in pectin, cellulose, hemicellulose was increased, the FTIR analysis implied that functional groups (especially -OH and COO-) on cell wall were involved in Cd fixation. The root to shoot translocation of Cd was hindered by exogenous MeJA, this was validated by the decreased expression of OsHMA2 in root and declined Cd level in xylem sap. Overall, our results revealed that MeJA could act as a foliar resistance control substance to reduce Cd accumulation in rice plants. The detailed molecular mechanisms of MeJA in Cd detoxification in plants still need further investigation.
Collapse
Affiliation(s)
- Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Hong Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuyao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Ming Chi
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin 300192, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
3
|
Dias OBS, Borgo L, Silva DFD, Souza ADC, Tezotto T, Vangronsveld J, Guilherme LRG, Rabêlo FHS. Screening High-Biomass Grasses for Cadmium Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:3450. [PMID: 39683244 DOI: 10.3390/plants13233450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024]
Abstract
Investigating the ability of non-hyperaccumulator plants to grow in soils polluted by cadmium (Cd) and their potential for phytostabilization or phytoextraction is essential for assessing their use in phytomanagement efficiency. Therefore, we evaluated the tolerance of high-biomass grasses to Cd by measuring biomass production and element accumulation and valued them for their suitability for phytoextraction or phytostabilization purposes on moderately Cd-polluted land (total Cd concentration of 7.5 mg kg-1) by determining Cd accumulation in the plants and calculating the bioconcentration (Cd BCF) and translocation factors (Cd TF). Among the ten species under investigation, Panicum maximum cv. Massai and Pennisetum glaucum cv. Purpureum Schum showed lower root biomass due to Cd exposure. Cadmium exposure altered element accumulation in some grass species by reducing P, K, and Mg accumulation in P. glaucum cv. Purpureum Schum; K accumulation in P. maximum cv. Massai; Mg accumulation in P. maximum cv. Mombaça; Ca, Fe, and Zn accumulation in P. maximum cv. Aruana; and B accumulation in Brachiaria brizantha cv. Piatã. However, this was not correlated with lowered biomass production, except for K, which was associated with lowered root biomass allocation in P. maximum cv. Massai and P. glaucum cv. Purpureum Schum. Cadmium concentrations decreased from roots to shoots, indicating a clear limitation of upward Cd transport. Although some grasses exhibited a Cd BCF > 1, the Cd TF remained below 0.4 for all tested species. These results indicate that, under moderate Cd pollution, the evaluated grasses are more suitable for Cd phytostabilization than phytoextraction, except for P. maximum cv. Massai and P. glaucum cv. Purpureum Schum, which showed inhibited root growth and may not be efficient over time.
Collapse
Affiliation(s)
| | - Lucélia Borgo
- Department of Soil Science, Federal University of Lavras, Lavras 37200-900, Brazil
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Deivisson Ferreira da Silva
- Department of Soil Science, Federal University of Lavras, Lavras 37200-900, Brazil
- Federal Institute Catarinense, Araquari 89245-000, Brazil
| | | | - Tiago Tezotto
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Maria Curie Sklodowska University, 20-033 Lublin, Poland
| | | | - Flávio Henrique Silveira Rabêlo
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil
| |
Collapse
|
4
|
Wang Y, Cui T, Niu K, Ma H. Co-expression analyses reveal key Cd stress response-related metabolites and transcriptional regulators in Kentucky bluegrass. CHEMOSPHERE 2024; 363:142937. [PMID: 39059638 DOI: 10.1016/j.chemosphere.2024.142937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Kentucky bluegrass (Poa pratensis) is known for its high cadmium (Cd) tolerance and accumulation, and it is therefore considered to have the potential for phytoremediation of Cd-contaminated soil. However, the mechanisms underlying the accumulation and tolerance of Cd in Kentucky bluegrass are largely unknown. In this study, we examined variances in the transcriptome and metabolome of a Cd-tolerant variety (Midnight, M) and a Cd-sensitive variety (Rugby II, R) to pinpoint crucial regulatory genes and metabolites associated with Cd response. We also validated the role of the key metabolite, l-phenylalanine, in Cd transport and alleviation of Cd stress by applying it to the Cd-tolerant variety M. Metabolites of the M and R varieties under Cd stress were subjected to co-expression analysis. The results showed that shikimate-phenylpropanoid pathway metabolites (phenolic acids, phenylpropanoids, and polyketides) were highly induced by Cd treatment and were more abundant in the Cd-tolerant variety. Gene co-expression network analysis was employed to further identify genes closely associated with key metabolites. The calcium regulatory genes, zinc finger proteins (ZAT6 and PMA), MYB transcription factors (MYB78, MYB62, and MYB33), ONAC077, receptor-like protein kinase 4, CBL-interacting protein kinase 1, and protein phosphatase 2A were highly correlated with the metabolism of phenolic acids, phenylpropanoids, and polyketides. Exogenous l-phenylalanine can significantly increase the Cd concentration in the leaves (22.27%-55.00%) and roots (7.69%-35.16%) of Kentucky bluegrass. The use of 1 mg/L of l-phenylalanine has been demonstrated to lower malondialdehyde levels and higher total phenols, flavonoids, and anthocyanins levels, while also significantly enhancing the uptake of Cd and its translocation from roots to shoots. Our results provide insights into the response mechanisms to Cd stress and offer a novel l-phenylalanine-based phytoremediation strategy for Cd-containing soil.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
5
|
Wang Y, Cui T, Niu K, Ma H. Root cell wall polysaccharides and endodermal barriers restrict long-distance Cd translocation in the roots of Kentucky bluegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116633. [PMID: 38941659 DOI: 10.1016/j.ecoenv.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Soil Cd pollution is a significant environmental issue faced by contemporary society. Kentucky bluegrass is considered a potential phytoremediation species, as some varieties have excellent cadmium (Cd) tolerance. However, the mechanisms of Cd accumulation and transportation in Kentucky bluegrass are still not fully understood. The Cd-tolerant Kentucky bluegrass cultivar 'Midnight' (M) exhibits lower Cd translocation efficiency and a higher leaf Cd concentration compared to the Cd-sensitive cultivar 'Rugby II' (R). We hypothesized that Cd translocation from roots to shoots in cultivar M is hindered by the endodermal barriers and cell wall polysaccharides; hence, we conducted Cd distribution, cytological observation, cell wall component, and transcriptomic analyses under Cd stress conditions using the M and R cultivars. Cd stress resulted in the thickening of the endodermis and increased synthesis of cell wall polysaccharides in both the M and R cultivars. Endodermis development restricted the radical transport of Cd from the root cortex to the stele, while the accumulation of cell wall polysaccharides promoted the binding of Cd to the cell wall. These changes further inhibited the long-distance translocation of Cd from the roots to the aerial parts. Furthermore, the M cultivar exhibited limited long-distance Cd translocation efficiency compared to the R cultivar, which was attributed to the enhanced development of endodermal barriers and increased Cd binding by cell wall polysaccharides. This study provides valuable insights for screening high Cd transport efficiency in Kentucky bluegrass based on anatomical structure and genetic modification.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
6
|
Li W, Li J, Hussain K, Peng K, Yu J, Xu M, Yang S. Transporters and phytohormones analysis reveals differential regulation of ryegrass (Lolium perenne L.) in response to cadmium and arsenic stresses. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134228. [PMID: 38626683 DOI: 10.1016/j.jhazmat.2024.134228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024]
Abstract
Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.
Collapse
Affiliation(s)
- Wenwen Li
- School of Ecology and Environment at Anhui Normal University, Wuhu, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, China
| | - Jie Li
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Khateeb Hussain
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Kaihao Peng
- Beijing Peace Carbon Environmental Technology Co. Ltd, China
| | - Jiaming Yu
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Miaoqing Xu
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Shiyong Yang
- School of Ecology and Environment at Anhui Normal University, Wuhu, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, China.
| |
Collapse
|
7
|
Liu Z, Wu X, Hou L, Ji S, Zhang Y, Fan W, Li T, Zhang L, Liu P, Yang L. Effects of cadmium on transcription, physiology, and ultrastructure of two tobacco cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161751. [PMID: 36690104 DOI: 10.1016/j.scitotenv.2023.161751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal pollutants worldwide. Tobacco is an important cash crop; however, the accumulation of Cd in its biomass is very high. Cadmium may enter the body of smokers with contaminated tobacco and the surrounding environment via smoke. Therefore, it is important to understand the mechanisms of Cd accumulation and tolerance in tobacco plants, especially in the leaves. In this study, the effects of Cd on the growth, accumulation, and biochemical indices of two tobacco varieties, K326 (Cd resistant) and NC55 (Cd sensitive), were studied through transcriptomic and physiological experiments. Transcriptome and physiological analyses showed differences in the expression of Cd transport and Cd resistance related genes between NC55 and K326 under Cd stress. The root meristem cells of NC55 were more severely damaged. The antioxidant enzyme activity, ABA and ZT content, chlorophyll content, photosynthetic rate, and nitrogen metabolism enzyme activity in K326 leaves were higher than in NC55. These data elucidate the mechanisms of low Cd accumulation and high Cd tolerance in K326 leaves and provide a theoretical basis for cultivating tobacco varieties with low Cd accumulation and high Cd resistance.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Shengzhe Ji
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Yao Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Tong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
8
|
Cui T, Wang Y, Niu K, Dong W, Zhang R, Ma H. Auxin alleviates cadmium toxicity by increasing vacuolar compartmentalization and decreasing long-distance translocation of cadmium in Poa pratensis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153919. [PMID: 36706576 DOI: 10.1016/j.jplph.2023.153919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Kentucky bluegrass (Poa pratensis L.) hyperaccumulates cadmium (Cd) and exhibits a hypertolerance. Thus, it has potential for the phytoremediation of Cd-containing soil. Auxin signaling is involved in the response to Cd stress. However, the mechanisms of auxin-mediated detoxification and Cd translocation in plants remain unclear. This study aimed to investigate the effects of exogenous application of indole-3-acetic acid (IAA) on the Cd translocation, subcellular Cd distribution, chemical forms of Cd, and transcriptional regulation of Kentucky bluegrass. The results showed that the exogenous application of IAA increased the amount of organelle-bound Cd and vacuole-compartmentalized Cd in root cells, reduced the Cd concentration in the leaf tissues (epidermis, mesophyll, and vascular bundle) and root tissues (rhizodermis and cortex) but increased in the stele, and alleviate Cd-induced leaf chlorosis and growth inhibition. The expression of genes associated with Cd transporters (ABCs, ZIPs, NASs, OPTs, and YSLs), phosphatases, oxalate decarboxylases and lignin biosynthesis were significantly regulated by exogenous IAA under Cd stress. A positive regulation of phosphatases and oxalate decarboxylases genes related to an increase in phosphate- and oxalate-bound Cd, as well as a decrease in pectate- and protein-bound Cd and inorganic Cd, thereby contributing to a decrease in Cd phytotoxicity. The significant regulation of Cd transporters associated with decreasing the long-distance translocation of Cd, and the activation of lignin biosynthesis may contribute to the development of root endodermal barriers and increase the deposition of undissolved Cd phosphates and oxalate-bound Cd in the stele. These results revealed the important role of auxin in Cd detoxification and translocation in Kentucky bluegrass and they provide a theoretical basis for the phytoremediation of Cd-containing soil.
Collapse
Affiliation(s)
- Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Wenke Dong
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Ran Zhang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
9
|
Niu K, Zhu R, Wang Y, Zhao C, Ma H. 24-epibrassinolide improves cadmium tolerance and lateral root growth associated with regulating endogenous auxin and ethylene in Kentucky bluegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114460. [PMID: 38321679 DOI: 10.1016/j.ecoenv.2022.114460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/08/2024]
Abstract
The application of phytohormones is a viable technique to increase the efficiency of phytoremediation in heavy metal-contaminated soils. The objective of this study was to determine how the application of 24-epibrassinolide (EBR), a brassinosteroid analog, could regulate root growth and tolerance to cadmium (Cd) stress in Kentucky bluegrass. As a result, the number of lateral root primordia and total root length in the Cd-treated seedlings decreased by 33.1 % and 56.5 %, respectively. After the application of EBR, Cd accumulation in roots and leaves, and the negative effect of Cd on root growth were reduced under Cd stress. Additionally, the expression of the brassinosteroid signaling gene PpBRI1 was significantly upregulated by exogenous EBR. Moreover, exogenous EBR upregulated the expression of genes encoding antioxidant enzymes and improved the activity of antioxidant enzymes, thereby reduced oxidative stress in roots. Finally, targeted hormonomics analysis highlighted the utility of the application of EBR to alleviate the effect of Cd on the reduction in auxin (IAA) content and the increase in ethylene (ACC) content. These were known to be associated with the upregulation in the expression of auxin biosynthesis gene PpYUCCA1 and downregulation in the expression of ethylene biosynthesis gene PpACO1 in the roots treated with Cd stress. Overall, the application of EBR alleviated Cd-induced oxidative stress in addition to improving root elongation and lateral root growth crosstalk with auxin and ethylene in Kentucky bluegrass subjected to Cd stress. This study further highlights the potential role of brassinosteroids in improving the efficiency of phytoremediation for Cd-contaminated soils.
Collapse
Affiliation(s)
- Kuiju Niu
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ruiting Zhu
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunxu Zhao
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
10
|
Trasoletti M, Visentin I, Campo E, Schubert A, Cardinale F. Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants. PLANT, CELL & ENVIRONMENT 2022; 45:3611-3630. [PMID: 36207810 PMCID: PMC9828678 DOI: 10.1111/pce.14461] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Strigolactones are phytohormones with many attributed roles in development, and more recently in responses to environmental stress. We will review evidence of the latter in the frame of the classic distinction among the three main stress acclimation strategies (i.e., avoidance, tolerance and escape), by taking osmotic stress in its several facets as a non-exclusive case study. The picture we will sketch is that of a hormonal family playing important roles in each of the mechanisms tested so far, and influencing as well the build-up of environmental memory through priming. Thus, strigolactones appear to be backstage operators rather than frontstage players, setting the tune of acclimation responses by fitting them to the plant individual history of stress experience.
Collapse
Affiliation(s)
| | | | - Eva Campo
- DISAFA, PlantStressLabTurin UniversityTurinItaly
| | | | | |
Collapse
|
11
|
Kleman J, Matusova R. Strigolactones: Current research progress in the response of plants to abiotic stress. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
You Y, Ju C, Wang L, Wang X, Ma F, Wang G, Wang Y. The mechanism of arbuscular mycorrhizal enhancing cadmium uptake in Phragmites australis depends on the phosphorus concentration. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129800. [PMID: 36027745 DOI: 10.1016/j.jhazmat.2022.129800] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) is a vital strategy to enhance the phytoremediation of cadmium (Cd) pollution. However, the function of AMF was influenced by phosphorus (P) concentration. To reveal the effect of AMF on the Cd accumulation of host plants under different P concentrations and how the AMF and P interact, this study comparatively analyzed the regulatory effects of AMF on the Cd response, extraction, and transportation processes of Phragmites australis (P. australis) under different P levels, and explored its physiological, biochemical and molecular biological mechanisms. The study showed that AMF could induce different growth allocation strategies in response to Cd stress. Moreover, AMF promoted plant Cd tolerance and detoxification by enhancing P uptake, Cd passivation, Cd retention in the cell wall, and functional group modulation. Under P starvation treatments, AMF promoted Cd uptake by inducing Cd to enter the iron pathway, increased the transport coefficient by 493.39%, and retained Cd in stems. However, these effects disappeared following the addition of P. Additionally, AMF up-regulated the expression of ZIP, ZIP, and NRAMP genes to promote cadmium uptake at low, medium, and high phosphorus levels, respectively. Thus, the Cd response mechanism of the AMF-P. australis symbiotic system was P dose-dependent.
Collapse
Affiliation(s)
- Yongqiang You
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Chang Ju
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Xin Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Gen Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Yujiao Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
13
|
Liu H, Wang Q, Wang J, Liu Y, Renzeng W, Zhao G, Niu K. Key factors for differential drought tolerance in two contrasting wild materials of Artemisia wellbyi identified using comparative transcriptomics. BMC PLANT BIOLOGY 2022; 22:445. [PMID: 36114467 PMCID: PMC9482295 DOI: 10.1186/s12870-022-03830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Drought is a significant condition that restricts vegetation growth on the Tibetan Plateau. Artemisia wellbyi is a unique semi-shrub-like herb in the family Compositae, which distributed in northern and northwest of Tibetan Plateau. It is a dominant species in the community that can well adapt to virous environment stress, such as drought and low temperature. Therefore, A. wellbyi. has a potential ecological value for soil and water conservation of drought areas. Understanding the molecular mechanisms of A. wellbyi. that defense drought stress can acquire the key genes for drought resistance breeding of A. wellbyi. and provide a theoretical basis for vegetation restoration of desertification area. However, they remain unclear. Thus, our study compared the transcriptomic characteristics of drought-tolerant "11" and drought-sensitive "6" material of A. wellbyi under drought stress. RESULTS A total of 4875 upregulated and 4381 downregulated differentially expressed genes (DEGs) were induced by drought in the tolerant material; however, only 1931 upregulated and 4174 downregulated DEGs were induced by drought in the sensitive material. The photosynthesis and transcriptional regulation differed significantly with respect to the DEGs number and expression level. We found that CDPKs (calmodulin-like domain protein kinases), SOS3 (salt overly sensitive3), MAPKs (mitogen-activated protein kinase cascades), RLKs (receptor like kinase), and LRR-RLKs (repeat leucine-rich receptor kinase) were firstly involved in response to drought stress in drought tolerant A. wellbyi. Positive regulation of genes associated with the metabolism of ABA (abscisic acid), ET (ethylene), and IAA (indole acetic acid) could play a crucial role in the interaction with other transcriptional regulatory factors, such as MYBs (v-myb avian myeloblastosis viral oncogene homolog), AP2/EREBPs (APETALA2/ethylene-responsive element binding protein family), WRKYs, and bHLHs (basic helix-loop-helix family members) and receptor kinases, and regulate downstream genes for defense against drought stress. In addition, HSP70 (heat shock protein70) and MYB73 were considered as the hub genes because of their strong association with other DEGs. CONCLUSIONS Positive transcriptional regulation and negative regulation of photosynthesis could be associated with better growth performance under drought stress in the drought-tolerant material. In addition, the degradation of sucrose and starch in the tolerant A. wellbyi to alleviate osmotic stress and balance excess ROS. These results highlight the candidate genes that are involved in enhancing the performance of drought-tolerant A. wellbyi and provide a theoretical basis for improving the performance of drought-resistant A. wellbyi.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| | - Qiyu Wang
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jinglong Wang
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Yunfei Liu
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Wangdui Renzeng
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Guiqin Zhao
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| | - Kuiju Niu
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
14
|
Buffer Green Patches around Urban Road Network as a Tool for Sustainable Soil Management. LAND 2022. [DOI: 10.3390/land11030343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Urban areas are facing a range of environmental challenges including air, water and soil pollution as a result of industrial, domestic and traffic emissions. In addition, global climate change is likely to aggravate certain urban problems and disturb the urban ecology by increasing the frequency and severity of extreme weather events. In the context of urbanization growth and the consequent impact on the environment, there is a growing interest in maintaining urban soil quality and functions as they are the medium for green infrastructure development. Furthermore, urban soils are becoming one of the key factors in the delivery of many ecosystem services such as carbon storage, climate regulation, water flow regulation, etc. On the other hand, urban soils are well-known to be a major sink of air pollutants due to the wet and dry atmospheric deposition and recirculation. Soil has the ability to degrade some chemical contaminants but when the levels are high, urban soils could hold on large amounts and pose a risk to human health. A cost-effective technological solution is to use the ability of some plant species to metabolize, accumulate and detoxify heavy metals or other harmful organic or inorganic compounds from the soil layer. The establishment of urban lawns (grass covered surfaces) is a helpful, environmentally friendly, economically sustainable and cost-effective approach to remove contaminants from polluted soils (terrains), which also has some aesthetic benefits. In this paper, an overview of the benefits and limitations of urban lawn construction is presented. The focus is on the perspectives for sustainable management of urban lawns, especially as buffer green patches in the road network surroundings, that can represent strategies to provide ecological and social multifunctionality of urban soils, and thus, increasing their ecosystem services capacity. Specifically, the paper highlights (i) the possibilities for phytoremediation of urban soils, (ii) potential of some perennial grasses and (iii) key issues that should be considered in the planning and design of urban lawns.
Collapse
|
15
|
Han T, Sun M, Zhao J, Dai C, Li Y, Zhang P, Lang D, Zhou J, Li X, Ge S. The roles of cadmium on growth of seedlings by analysing the composition of metabolites in pumpkin tissues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112817. [PMID: 34563888 DOI: 10.1016/j.ecoenv.2021.112817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Changes in the types and contents of metabolites in plants can occur in response to environmental stress. In this study, pumpkin seeds were cultivated in a cadmium ion solution (cadmium sulfate) for 7 days, and growth parameters, antioxidant enzyme activities, and metabolites in the root, stem, and leaf were analyzed. The results showed that cadmium accumulation characteristics were in the order of root > stem > leaf. Cadmium restrained root growth and promoted superoxide dismutase, peroxidase, catalase activities in the root, but inhibited their activities in the leaf. Cadmium did not change the total biomass of pumpkin seedlings. Orthogonal partial least squares (OPLS) analyses were conducted to detect the relationships between fresh weight and metabolites. These analyses revealed that maltose had significantly positive relationships with the fresh weight of the root, stem, and leaf. Cadmium influenced glyoxylate and dicarboxylate metabolism, aminoacyl-tRNA biosynthesis, sulfur metabolism, butanoate metabolism, alanine, aspartate and glutamate metabolism, glutathione metabolism, glycine, serine and threonine metabolism in the root; glycolysis/gluconeogenesis in the stem; and biosynthesis of unsaturated fatty acids, galactose metabolism, cutin, suberine and wax biosynthesis in the leaf. It is important that cadmium inhibited root growth by inhibiting carbohydrate transport from the leaf to the root and promoted leaf growth by the accumulation of carbohydrates in the leaf. Furthermore, cadmium also restrained amino acid metabolism in the root of pumpkin seedlings. These results provide new information about how pumpkin seedlings respond to cadmium stress.
Collapse
Affiliation(s)
- Tao Han
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Mengyuan Sun
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Jinjin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Chunying Dai
- Autobio Diagnostics CO., Ltd., Zhengzhou 450016, China
| | - Yang Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Peng Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Dongmei Lang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Junguo Zhou
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Xinzheng Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Shidong Ge
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
16
|
Rabêlo FHS, Vangronsveld J, Baker AJM, van der Ent A, Alleoni LRF. Are Grasses Really Useful for the Phytoremediation of Potentially Toxic Trace Elements? A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:778275. [PMID: 34917111 PMCID: PMC8670575 DOI: 10.3389/fpls.2021.778275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 05/27/2023]
Abstract
The pollution of soil, water, and air by potentially toxic trace elements poses risks to environmental and human health. For this reason, many chemical, physical, and biological processes of remediation have been developed to reduce the (available) trace element concentrations in the environment. Among those technologies, phytoremediation is an environmentally friendly in situ and cost-effective approach to remediate sites with low-to-moderate pollution with trace elements. However, not all species have the potential to be used for phytoremediation of trace element-polluted sites due to their morpho-physiological characteristics and low tolerance to toxicity induced by the trace elements. Grasses are prospective candidates due to their high biomass yields, fast growth, adaptations to infertile soils, and successive shoot regrowth after harvest. A large number of studies evaluating the processes related to the uptake, transport, accumulation, and toxicity of trace elements in grasses assessed for phytoremediation have been conducted. The aim of this review is (i) to synthesize the available information on the mechanisms involved in uptake, transport, accumulation, toxicity, and tolerance to trace elements in grasses; (ii) to identify suitable grasses for trace element phytoextraction, phytostabilization, and phytofiltration; (iii) to describe the main strategies used to improve trace element phytoremediation efficiency by grasses; and (iv) to point out the advantages, disadvantages, and perspectives for the use of grasses for phytoremediation of trace element-polluted soils.
Collapse
Affiliation(s)
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Alan J. M. Baker
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Laboratoire Sols et Environnement, Université de Lorraine – INRAE, Nancy, France
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|