1
|
Gade C, von Hellfeld R, Mbadugha L, Paton G. Variable toxicity of inorganic mercury compounds to Artemia elicited by coexposure with dissolved organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65109-65122. [PMID: 39570530 PMCID: PMC11624217 DOI: 10.1007/s11356-024-35558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
The chemical behavior of mercury (Hg) and its interactions with naturally occurring ligands shape its environmental fate and impact. The neurotoxic properties of Hg are widely known and studied both in vitro and in vivo. However, there continues to be limited information on the influence of chelation with large organic ligands on the toxicity to marine macro-organisms. This work examined the effect of Hg complexed with various types of dissolved organic matter (DOM) on the mortality and hatching success of Artemia sp. nauplii under varying marine media conditions. The results confirmed both, an alleviating as well as additive, DOM-specific, effect on mortality. DOM coexposure resulted in a compound specific decreased or increased toxicity in comparison with single exposure in artificial seawater, with LC50 values ranging from 2.11 to 62.89 µM. Hatching success under conditions of Hg exposure was almost two orders of magnitude more sensitive than toxicity in hatched individuals. Elevated DOM concentrations had no statistically significant impact on hatching success with computed EC50 values ranging from 196 to 324 nM.
Collapse
Affiliation(s)
- Christoph Gade
- National Decommissioning Centre, University of Aberdeen, Aberdeen, Scotland, UK.
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, Scotland, AB24 3UU, UK.
| | - Rebecca von Hellfeld
- National Decommissioning Centre, University of Aberdeen, Aberdeen, Scotland, UK
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, Scotland, AB24 3UU, UK
| | - Lenka Mbadugha
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, Scotland, AB24 3UU, UK
| | - Graeme Paton
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, Scotland, AB24 3UU, UK
| |
Collapse
|
2
|
Souza CRD, Souza-Silva G, Silva FVM, Cardoso PVR, Lima WDS, Pereira CADJ, Mol MPG, Silveira MR. Ecotoxicological studies of direct and indirect genotoxicity with Artemia: a integrative review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:305-320. [PMID: 39087887 DOI: 10.1080/10934529.2024.2384216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Artemia is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. Artemia franciscana and Artemia salina species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present Artemia genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of Artemia for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using Artemia genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.
Collapse
Affiliation(s)
| | - Gabriel Souza-Silva
- Social Pharmacy Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Walter Dos Santos Lima
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Marcos Paulo Gomes Mol
- Department of Research and Development, Ezequiel Dias Foundantion, Belo Horizonte, Brazil
| | | |
Collapse
|
3
|
Kamalakannan M, Rajendran D, Thomas J, Chandrasekaran N. Synergistic impact of nanoplastics and nanopesticides on Artemia salina and toxicity analysis. NANOSCALE ADVANCES 2024; 6:3119-3134. [PMID: 38868821 PMCID: PMC11166108 DOI: 10.1039/d4na00013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Polystyrene nanoplastics (PSNPs) when exposed to nanopermethrin (NPER) exacerbate toxicity on Artemia salina. In the environment, NPs act as a vector for other pollutants mainly heavy metals and pesticides. Nanopesticides are efficient compared to their bulk form. The adsorption of NPER on PSNPs was studied systematically and it was found that the binding of NPER is inversely proportional to its concentration. NPER adsorption on PSNPs followed pseudo-first-order kinetics with an adsorption percentage of 1.7%, 3.7%, 7.7%, 15.4%, and 30.8% when PSNPs were incubated with 2 mg L-1,4 mg L-1, 8 mg L-1, 16 mg L-1, and 32 mg L-1 of NPER. The adsorption followed the Langmuir isotherm. The increased hydrodynamic size of the NPER/PSNP complex was observed. Different characterization studies were performed for NPER, PSNPs, and their complex using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, and gas chromatography-mass spectrometry. The LC50 value for the NPER/PSNP complex treated with Artemia salina was 3.127 mg L-1, compared to LC50 NPER which was found to be 4.536 mg L-1. PSNPs had a lower mortality rate in Artemia salina, where 50% mortality (LC50) was not observed at their working concentration. Both the nanoforms led to morphological changes in Artemia salina. Reactive oxygen species increased to 87.94% for the NPER/PSNP complex, 78.93% for NPER, and 23.65% for PSNPs. Greater amounts of ROS in the cells may have led to SOD degradation. Superoxide dismutase activity for the NPER/PSNP complex was 1.2 U mg-1, NPER was 1.3 U mg-1, and PSNPs was 2.1 U mg-1. A lipid peroxidation study reveals that the melondialdehyde synthesis by NPER/PSNPs complex, NPER and PSNPs were found to be 2.21 nM mg-1, 1.59 nM mg-1, and 0.91 nM mg-1 respectively. Catalase activity in a complex of NPER/PSNPs, NPER, and PSNPs was found to be 1.25 U mg-1, 0.94 U mg-1, and 0.49 U mg-1. This study envisages the individual and combined toxicity of nanopesticides and PSNPs on aquatic organisms. Increased plastic usage and new-age chemicals for agriculture could result in the formation of a PSNPs-NPER complex potentially causing highly toxic effects on aquatic animals, compared to their pristine forms. Therefore, we should also consider the other side of nanotechnology in agriculture.
Collapse
Affiliation(s)
- Mahalakshmi Kamalakannan
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore-632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| | - Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore-632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore-632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore-632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| |
Collapse
|
4
|
Kanimozhi S, Seenivasan R, Mukherjee A, Chandrasekaran N. Naturally weathered polypropylene microplastic from environment and its toxic behaviour in Artemia salina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13207-13217. [PMID: 38240975 DOI: 10.1007/s11356-024-31998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
The increasing use of polypropylene (PP) in consumer products leads to the microplastic (PP MPs) contamination of the aquatic ecosystems. Comprehensive toxicological studies of weathered/aged and new PP MPs with Artemia salina are a need of the hour. Our study explores the toxicological differences between naturally weathered (aged) and prepared new PP MPs on Artemia salina. Both the weathered and new PP MPs were prepared using controlled grinding and sieving at ≤ 125 µm. Artemia salina was treated with different concentrations (0.25, 0.5, and 1 mg/mL) of PP MP particles for up to 48 h. The uptake of weathered PP MP particles by Artemia salina was higher than the new PP MPs. The accumulation of PP MP particles was found in the intestine. There was increased oxidative stress recorded in the animal treated with the weathered PP MPs than the new PP MPs. Artemia salina treated with weathered PP MPs showed higher ROS generation and increased, activity of oxidative enzymes like LPO, SOD, and CAT. Collectively, our findings underscore the detrimental effects of weathered and prepared new PP MPs on Artemia salina, which is an ecologically significant species of zooplankton. There is an urgent need and effective measures required to address plastic disposal strategies in an environmentally safe manner.
Collapse
Affiliation(s)
- Subramanian Kanimozhi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Ramasubbu Seenivasan
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
5
|
Guermazi W, Annabi-Trabelsi N, Belmonte G, Guermazi K, Ayadi H, Leignel V. Solar Salterns and Pollution: Valorization of Some Endemic Species as Sentinels in Ecotoxicology. TOXICS 2023; 11:524. [PMID: 37368624 PMCID: PMC10303847 DOI: 10.3390/toxics11060524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Solar salterns and salt marshes are unique ecosystems with special physicochemical features and characteristic biota. Currently, there are very few studies focused on the impacts of pollution on these economic and ecological systems. Unfortunately, diversified pollution (metals, Polycyclic Aromatic Hydrocarbons, etc.) has been detected in these complex ecosystems. These hypersaline environments are under increasing threat due to anthropogenic pressures. Despite this, they represent a valuable source of microbial diversity, with taxa displaying special features in terms of environmental remediation capacities as well as economical species such as Artemia spp. (Branchiopoda) and Dunaliella salina (Chlorophyta). In this review, we discuss the impacts of pollution on these semi-artificial systems. Therefore, we have indicated the sentinel species identified in plankton communities, which can be used in ecotoxicological investigations in solar salterns. In future, researchers should increase their interest in pollution assessment in solar salterns and salt marshes.
Collapse
Affiliation(s)
- Wassim Guermazi
- Laboratoire Biodiversité Marine et Environnement (LR18ES30), Université de Sfax, Sfax CP 3000, Tunisia; (W.G.); (N.A.-T.); (K.G.); (H.A.)
| | - Neila Annabi-Trabelsi
- Laboratoire Biodiversité Marine et Environnement (LR18ES30), Université de Sfax, Sfax CP 3000, Tunisia; (W.G.); (N.A.-T.); (K.G.); (H.A.)
| | - Genuario Belmonte
- Laboratory of Zoogeography and Fauna, University of the Salento, 73100 Lecce, Italy;
| | - Kais Guermazi
- Laboratoire Biodiversité Marine et Environnement (LR18ES30), Université de Sfax, Sfax CP 3000, Tunisia; (W.G.); (N.A.-T.); (K.G.); (H.A.)
| | - Habib Ayadi
- Laboratoire Biodiversité Marine et Environnement (LR18ES30), Université de Sfax, Sfax CP 3000, Tunisia; (W.G.); (N.A.-T.); (K.G.); (H.A.)
| | - Vincent Leignel
- Laboratoire BIOSSE, Le Mans Université, Avenue Olivier Messiaen, 72000 Le Mans, France
| |
Collapse
|
6
|
Kukavica B, Davidović-Plavšić B, Savić A, Dmitrović D, Šukalo G, Đurić-Savić S, Vučić G. Oxidative Stress and Neurotoxicity of Cadmium and Zinc on Artemia franciscana. Biol Trace Elem Res 2023; 201:2636-2649. [PMID: 35831694 DOI: 10.1007/s12011-022-03352-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Despite not being redox-active metals, Cd and Zn can disrupt cellular redox homeostasis by acting pro-oxidatively. The aim of this study was to examine the effects of exposure to Zn (14 and 72 mg/L) and Cd (7.7 and 77 mg/L) for 24 and 48 h on oxidative and antioxidative parameters and the activity of glutathione-S-transferase in Artemia franciscana tissue. In addition, the neurotoxicity of the metals was examined by determining the activity of acetylcholinesterase (AChE). In A. franciscana tissue, Cd (0.0026 ± 0.0001 mg/L) was detected only after 48 h of exposure to 77 mg/L Cd. After 24 h, the 14- and 72-mg/L Zn treatments resulted in significant increases in the Zn concentration (0.54 ± 0.026 mg/L (p < 0.01) and 0.68 ± 0.035 (p < 0.0001), respectively) in A. franciscana tissue compared with the control level, and significant increases were also detected after 48 h (0.59 ± 0.02 (p < 0.0001) and 0.79 ± 0.015 (p < 0.0001), respectively). The malondialdehyde (MDA) concentration in the metal-treated samples was increased after 24 h of exposure, whereas after 48 h, an increase in the MDA concentration was detected only with 7.7. mg/L Cd. A significant increase in the H2O2 concentration after 24 h was measured only after treatment with 72 mg/L Zn. The treatment with 7.7 mg/L Cd for 24 h induced a significant increase in the AChE activity, whereas 48 h of treatment with 77 mg/L Cd and 14 mg/L Zn significantly inhibited AChE. The results indicate that lipid peroxidation resulting from metal toxicity may constitute the basis of neurotoxicity.
Collapse
Affiliation(s)
- Biljana Kukavica
- Departmant of Biology, Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina.
| | - Biljana Davidović-Plavšić
- Departmant of Chemistry, Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ana Savić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Dejan Dmitrović
- Departmant of Biology, Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Goran Šukalo
- Departmant of Biology, Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | | | - Goran Vučić
- Faculty of Technology, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
7
|
Gencer Ö, Aguilar Vitorino H. Effect of Diet on Growth Performance of First Crab Stage Callinectes sapidus Rathbun, 1896 (Brachyura: Portunidae): A Comparison of Three Different Regimens. Animals (Basel) 2023; 13:ani13071242. [PMID: 37048498 PMCID: PMC10093128 DOI: 10.3390/ani13071242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
This study aimed to supply three foods to the crab Callinectes sapidus in its juvenile stage and compare their effects on its growth. For that, crab larvae were cultured from oviparous adult female crabs. The larvae (z1–z8) were fed with rotifers, previously cultured with microalgae and megalopae (Meg.) with live Artemia salina larvae, obtained from fresh cysts until they reached juvenile development (c1, first crab). Then, 270 animals (c1) were analyzed in three groups of 90, with different diets: shrimp (Penaeus vannamei; Group 1), squid (Mastigoteuthis flammea; Group 2), and tilapia fish (Oreochromis niloticus; Group 3). After 90 days of feeding regimens, the sizes of juvenile crabs were measured by microscopy, and the following relationship was found (p < 0.001): Group 1 (20.8 ± 0.7) > Group 2 (14.5 ± 0.9) > Group 3 (10.4 ± 0.6). The nutritional factor played an essential role in this size differentiation. This intelligent and differentiated feeding strategy showed us that shrimp could be an essential source for the growth of crabs in the juvenile stage. This new approach to safe and efficient roost feeding can classify crabs by size for further hormonal, molting, and reproductive studies.
Collapse
Affiliation(s)
- Övgü Gencer
- Aquaculture Department, Ege University Faculty of Fisheries, 35040 Izmir, Turkey
- Institute of Marine and Environmental Technology, Columbus Center, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Hector Aguilar Vitorino
- Centro de Investigación en Biodiversidad para la Salud, Universidad Privada Norbert Wiener, Lima 15046, Peru
| |
Collapse
|
8
|
Albarano L, Ruocco N, Lofrano G, Guida M, Libralato G. Genotoxicity in Artemia spp.: An old model with new sensitive endpoints. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106320. [PMID: 36206704 DOI: 10.1016/j.aquatox.2022.106320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Artemia spp. represent models species widely used in ecotoxicological studies due to its simple and fast manipulation in laboratory conditions that makes this crustacean well adaptable to several methodological approaches. Although cysts hatching, swimming behavior, reproductive success and mortality are the main endpoints used for the determination of toxicity, the detection of slight alterations induced by certain substances found at low concentrations in the environment may require more sensitive biomarkers. For this reason, the identification of DNA or chromosomal damages has been proposed as an additional and appreciable endpoint for the ecotoxicological assessment of environmental chemicals. Concerning Artemia models, only few studies indicated that the exposure to organic and inorganic compounds (i.e. pesticides, nanoparticles, bacterial products or heavy metals) can reduce the survival and fitness through the onset of DNA breaks or the dysregulation of key genes. In contrast, literature research revealed a lot of works primarily focusing on the mortality and hatching rates of Artemia nauplii and cysts despite the well-known low sensitivity of these species. The present review reports the current state of knowledge concerning the effects induced by various chemicals, including organic and inorganic compounds, on the common parameters and genotoxicity in both Artemia franciscana and Artemia salina. Advantages and limitations of Artemia spp. models in eco-toxicological investigations together with the most used classes of compounds are briefly discussed. Moreover, a mention is also addressed to scarce availability of literature data focusing on genotoxic effects and the great reliability of molecular approaches observed in this poorly sensitive model organism. Thus, the opportunity to take advantage of genotoxic analyses has also been highlighted, by suggesting this approach as a novel endpoint to be used for the eco-toxicological assessment of several stressors.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy.
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Ecosunstainable Marine Biotechnology, C. da Torre Spaccata, 87071, Amendolara, Italy
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, 00135 Rome, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| |
Collapse
|
9
|
Protective Effect of Ultrasound-Processed Amazonian Sapota-do-Solimões (Quararibea cordata) Juice on Artemia salina Nauplii. Processes (Basel) 2022. [DOI: 10.3390/pr10091880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Juice processing by non-thermal technology has been extensively studied, aiming at microbial inactivation and quality improvement. However, the knowledge about the possible toxic effects that those technologies can produce in foodstuffs due to the production of reactive oxygen species is still unknown. In this study, sapota-do-Solimões juice processed by ultrasound (2, 6, and 10 min) was evaluated by a toxicity test and protective effect through stress biomarkers (catalase, superoxide dismutase, and lipid peroxidation) using Artemia salina nauplii. The non-thermal processed juice was nontoxic to A. salina. However, the juice fibers imparted some damage to the animal’s body. The ultrasound-processed juice (2 and 6 min) decreased the A. salina mortality to 30% compared to the control assay with H2O2 where mortality was 80% after 48 h of exposure. However, after 72 h of exposure, the A. salina was entirely degraded by H2O2-induced toxicity. Furthermore, the catalase and superoxide dismutase presented the highest activity after A. salina was exposed to the unprocessed juice. Thus, sapota-do-Solimões juice processed by the ultrasound could promote a protective effect on A. salina, revealing this technology’s potential to enhance juice features without toxicity.
Collapse
|
10
|
Lins TF, O'Brien AM, Kose T, Rochman CM, Sinton D. Toxicity of nanoplastics to zooplankton is influenced by temperature, salinity, and natural particulate matter. ENVIRONMENTAL SCIENCE: NANO 2022; 9:2678-2690. [DOI: 10.1039/d2en00123c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Increases in temperature/salinity promote nanoplastics toxicity, while organic matter/natural colloids mitigate toxicity.
Collapse
Affiliation(s)
- Tiago F. Lins
- Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada
| | - Anna M. O'Brien
- Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, M5S3B2, Ontario, Canada
| | - Talha Kose
- Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada
| | - Chelsea M. Rochman
- Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, M5S3B2, Ontario, Canada
| | - David Sinton
- Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Ontario, Canada
| |
Collapse
|